.

L

A KT O IO O I DX X 150 G000 O G 50 X X DO O TR 1K)

S

£

1 1
o159
",

Practical

SO

i’

& Introduction to

2 APL 3 & 4 B T—p——

é‘ Featuring DV/\ LO C Versions 10 & 11

—d

(X Bay 1: Third Generation APL - onioms
‘I‘. Modules 110 10

o Graphical User Interfzce
g o Object Linking and Embedding .
o
%)
& Bay 2: Fourth Generation APL - The Internet 4
:: Modules 11 to 2 2 :’j
> Trahsmissi Praotocol P,
ot . - Yal
< . Wictoscft: : .
"‘ ."-" -~ - . S, i 3 g
f’: (o N \ .":.'2"'
-‘: N R ov y rt e s 2 (SN QAR :
: Y |
X > ' X)
F learning . =
4 e |vher ot Jeixe] © e Hag TR I ?‘ |
a s foe b the | T0S | 0100 | Vars s & P mdtive Opc |JCORE A, ey
"4 ’ foe 12 the | £0% | 115¢ |Poettel Atrns and Aot an; |and Gvnerchin Ny
- Modules: Notation n)
N for 0 Hintha | 50 | 1132 | Otjec Orteichion SUL AYs) |OULACLE e
‘E . 2 for inthe | 00% | 110 | Tregoret Qrisvdatior (MET dppch | TCH/D & N "4
e~ Modulei: Objects an opertps 3 o It | 109 |11 be | Tb cve Apoctons e =
‘E Module?: Matheds &n ' . A
e~ Modulel: Dot Syntac, t e
bA Moduled: The Sossio 7% o 4
' Modules: Contral Sirucl pres £ Y salities of R tn & it Cor® =
E Modulet: In-Prccess O e S ‘: .?cﬂ‘uts‘“lzs A ‘;\Eu.‘rl-:-“.-t::‘;- ¢ *:..’l‘:l.l:.u?:.cn .‘n::sc?éé'_} ?:‘
.; “0‘0'9’: OLE cn‘m ‘\ " 8)6 oaitie L) : s.-ll'. st .ucn 13 M M {8 ?_"
<) Modules: ActiveX Controls B R B e e A 4
.: Moduled: CFUHCNO'\ Awb | thr: Fra | Primtdee 33" : ;
: Modulel0: Staml-AlUnQQ ;f"f g::: :-g}::{l‘zgn?‘:g' ?.ﬁ
F - :ni:r-d O-lerrial o0 -.A?'»-:mu' :
s MO‘UIQ"E Mvanc - _-:1’"’7‘ . ﬁnhuf":.“.'?.'hl‘;ﬂl::l:‘:(‘Gl A 0L IPAP L L3 vt E
V“ :::::::g: x;’l‘.‘m 4 :’Qlﬁa::risﬁ’a,,,« ‘1)4'! 1 2430077 20.9 %
= Modulet d; TCPY =
‘:‘ :r;g‘:‘g: 2 "":.;.’;'l ' ’ QWM O E
1la 4 .' canic zanr =t 18ttt 20
(% Moiu S
) N N £ N vl Lndivnd by e3> ‘1
r,': Jrad ;‘,‘ ¢
ot
Rk ,;.‘
4 ' &)
i IR0 B BB IR R 54 54 65 BB £ B4 BX) B 64 ©X) £ X)X 32
L0 . ' T r :
o) - ¥ &

Q Third & Fourth Generation Dyalog APL Q

ROBERTSON (Publishing)
15 Little Basing, Old Basing,
Basingstoke, RG24 8AX, UK.

Copyright © Graeme Donald Robertson 2007-2008

This publication may be used, reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without the permission of the publisher.

This document is distributed subject to the condition that it shall not, by way of trade or otherwise, be sold or hired
out without the publisher’s prior consent. It may however be used in APL classes and circulated in any form of
binding or cover with a similar condition, including this condition, being imposed on the subsequent owner.

First published January 2007 as APL3_4*.PDF.
Second edition published December 2007 as APL3_4*.PDF.
Third edition published May 2008 as APL3&4*.PDF.

ISBN 0952416727

Dyalog APL is worth learning because it:

o can be obtained for £50 from http://www.dyalog.com/private registration.html
strictly complies with APL 1SO Standard 8485
has a brilliant tracer for the interpreted APL environment
runs on Windows (9x, NT, 2000, CE, XP, Vista), AIX, Solaris, Linux and more...
affords multilingual development and runtime environments
has 71 built-in GUI classes (based on Windows API), each with 10 to 80 properties...
is .NET enabled and Microsoft supported
has freely available downloadable manuals and detailed help files (created using APL)
has many useful supporting sample workspaces and files
provides a Dyalog Support Service via www.dyalog.com and support@dyalog.com

The level 1 course in APL 1 & 2 introduces mainstream 1% and 2" generation APLs such as IBM APL2, Dyalog
APL, STSC APL*PLUS and MicroAPL APL.68000. APL1&2.PDF is freely available from MicroAPL at
http://www.microapl.co.uk/apl/APL1&2.PDF and may be given by instruction.

This level 2 course in APL 3 & 4 introduces Dyalog APL versions 7-11 under Microsoft XP Pro.
The course, when delivered by Graeme Robertson Ltd., comes bundled with supporting materials:
e varChar, a Dyalog APL addin for studying Dyalog APL arrays,
(a free stand-alone version is available from the www.dyalog.com download zone)
¢ ahandy, short, fold-up Dyalog APL Reference Card
e asample Pocket Dyalog application workspace called AddrBk.DWS

Conduct of this course: The suggested conduct of the course is similar to that stated for APL1&2.PDF as reproduced below. The
course notes are provided in Portable Document Format, one APL3&4Module,.PDF file at a time, to enable cut & paste, to
encourage experimentation and remote learning, and to increase the likelihood of obtaining feedback ©.

After short introductions, the group is invited to divide up into pairs. Each pair works on one computer for the duration of the course.
Each pair is given the first module and asked to work through it on their computer at their own pace. Pairs are encouraged to help each
other with new concepts and difficulties as they arise and to experiment on the computer with any ideas that they think they can express
in APL statements. Tuition is given when the pair cannot resolve problems. Questions may be answered directly on matters of fact, or
indirectly by way of a suggestion as to how the problem might be tackled. Each day could cover up to 10 modules, depending upon the
pace and background of each pair. There is no pressure to complete all modules (remaining modules are given out at the end of the
course). At the discretion of the tutor, modules may be skipped or assigned for private study after the course. Introductions and short
synopses are given with an overhead projector at suitable intervals throughout the course to the group as a whole.

http://www.dyalog.com/private_registration.html
http://www.dyalog.com/
mailto:support@dyalog.com
http://www.microapl.co.uk/apl/aplx_docs.html
http://www.microapl.co.uk/apl/aplx_docs.html
http://www.dyalog.com/

Q Third & Fourth Generation Dyalog APL Q

APL 3 & APL 4

Course Contents

ModuleO: Notation and CONVENTIONSciiiiiiiiiieie ettt e b bbb sre s e 9
§ 0.1 NEW SYMDIOIS. ...ttt et b st e st e se et e st e e re et et neerenens 9
§ 0.2 NAMING CONVENLIONSvcviriiiiietiriisie ettt sttt se st s bbb s e b s e b s e e st se s e e s s eserenis 10
§ 0.3 Variable “OaATYPES”ottt bbbttt b bbbttt e e ettt nbenbeeneas 11

Modulel: Objects and their PrOPEITIEScouiiiiieeieiic ettt sne e 13
§ 1.1 ODJECE SPACES ...eveueevereeterereeteeeteeateseseete e tesesteseseate e seeseseese e esesesease st eseseaeesensese e asenessese e asenenaeneneanes 13

88 1.1.1 Creating vanilla Namespaces With (NSccccceiiiiriiiienieieresie et 13
8§ 1.1.2 Creating GUI Object Spaces With [WCccccvviiveeeiiiicceee e 13
88 1.1.3 Changing SPace With [C Sccuriiiireeiiiisieieiest ettt 14
8 1.2 Properties OF ODJECE SPACES........eiiiiiieiieieieie ettt bbbttt st sbenreareas 14
8§ 1.2.1 Examining Properties of an Object With OWG ..o, 14
88 1.2.2 Setting Properties of an ObJect With OIScociiiriiireieiee e 14
§8 1.2.3 BUIlding COMPIEX OBJECES ...ttt 15
8 1.3 ProPerty VariablESccoiiiiiiiiiciciiiiis ettt renis 15
88 1.3.1 Exposing Object PropertieS With OW Xccoiiiiiiiiinieienese s 16
88 1.3.2 AsSIgNING Properties WIth <ccocooiiiiiiieiie s 16
88 1.3.3 Rebuilding complex ODJECESciiiiiieiee s 16

Module2: Methods @and EVENTS.........ccoiiiiiiiiiiiee ettt ens 17

8 2.1 ODJECE MELNOUAS ...ttt ettt bbb 17
§§ 2.1.1 Enqueuing Object Methods With (N Q........ccccveeiiieiiiciiicee e 17
88 2.1.2 Invoking Event default ACtion USING ONQceoviviiriiiiiiiiieisesce e 17
88 2.1.3 MEtNOT FUNCLIONSc.cviiiiciiisiee ettt ettt ettt st s s b e aene s 17

8§ 2.2 Object Events and callback FUNCHIONS..........c.oiiiiiiiiii e 18
88 2.2.1 Firing EVeNnts DY USEI ACHIONSccviiiieieiie et 18
8§ 2.2.2 Attaching callback FUNCLIONS t0 EVENTSc.ooiiiiiiiiiiicee s 18
§8 2.2.3 Bringing ODjJECES t0 Lifeccvciiiieiiiciii e 19

8 2.3 THE EVENT QUEUE ...ttt sttt e st e te et e st e te e st e aseesteeseesseesseaneesneenneeneenreenseaneens 19
8§ 2.3.1 Dequeuing Events with and Without DQcccoviiiiiiiiniie 19
88 2.3.2 TTaCiNG [DQ .veuveveierereeieie ettt ettt ettt ettt a b e et se st s e s e b e e st e se st et e et ese st et e s e b ene st ene s 20
88 2.3.3 Defining complexX BENAVIOUTcovoiiiiiiiiice e 21

IMOAUIE3: DOT SYNTAX.......eviitiitiitietieiet ettt bbbttt b bbbt b bbbt et et et bbbt 23

§ 3.1 ODJECE REFEIBNCES.ocviviiciiictee ettt b et et se et sttt b e aese s enis 23
88 3.1.1 Making References With & and «.........ccooeiiiiiiiiiiiie s 23
88 3.1.2 Parent.Child HIEIarChYcooiiiiiiieicee e 24
88 3.1.3 Object.Object. .. Object.Object Rationalecccoeviiiiiiiiie e 25

8 3.2 DIFECT PrOPEITY ACCESS ...veiueirtete sttt sttt ettt b e bbbttt et bbbt bt s bttt e s e et et e be et e nbesbesbeeneas 26
88 3.2.1 ObjJect.Variable SYNTAX.........cccceiiiieiriiiiisieesieee ettt r b bene s 26
88 3.2.2 Object.Object. .. Object.Property Rationaleccocvviiiiiiieeee s 27
8§ 3.2.3 Using Object.Object. .. Object.Property CONStIUCLIONS.........ccccverieiiiinieieiesiese e 27

§ 3.3 Direct Method INVOCALION.........c.cciiiiiicieeiis ettt nerenis 27
88 3.3.1 ObJECt.FUNCLION SYNTAXvcviviiiiiiiictiiectes ettt b e bene s 27
88 3.3.2 Object.Object. .. Object.Function Rationale.............cccoviieiiiiieniieeee s 28
88 3.3.3 Defined Operators iN ODJECT SPACEcceiiiiiiiiieitieie ettt ae e b e 28

Q Third & Fourth Generation Dyalog APL Q

Moduled: The SESSION ODJECTooiiiie i et b et et sreenae e 30
§ 4.1 USiNg the SESSION ODJECvivivevieiiiiiicietiiie ettt sn s nne 30
88 4.1.1 Immediate EXeCUtion MO OF [SEcvcveuiriiiiieececee ettt 30
88 4.1.2 Tracer and EditOr OF S Eccoviiiiiieice ettt 30
88 4.1.3 Ch0o0SING SYNAX COIOUISeviiiuiieiiiieieieteie ettt ettt enenas 31

8§ 4.2 Inside the SESSION ODJECT........cviveiiiiiiccee e 33
88 4.2.1 Exploring the WOrkSpace and (S Ecourueereereeieierieiesieieeseeesesiesesiene s e sessesessesesessenesnenes 33
88 4.2.2 Examining Session Menus and BULTONS.cooiiiiiiiiieiene e 33
8§ 4.2.3 Miscellaneous Properties and Methodsccuiiiniiniiinisiseee e 34

8 4.3 BUilding the SESSION ODJECL.......c.iiiiiiiiieiee e 34
88 4.3.1 TraCing VBUILD SESSIONY .ccseeerereiesteeseateeseteessesestesesssessssesessssessstesessesessssessssasessssens 34
88 4.3.2 FOreign Language SUPPOIT.cuueierieieiesiesiieeesieieee sttt st sbe bbb sseeneenens 35
88 4.3.3 Adding USETUI EXIENSIONScvvviieieiciiiiisieieiceisie et 35
MOAUIES: CONTIOI STFUCTUIES.......ouviiiiteitieieeiie ettt bbbt ettt et e n e ne e e e e 36
8 5.1 Logical DeCiSIONS AN JUMPSueiuiiriiieiiie ettt sttt sttt b b sbesreene s e s 36
88 5.1.1 The : T£ STABIMENT ...c.ecviviictiectcecciete ettt e bbb et se st ne b b sabens 36
88 5.1.2 Further truth Conditionals............cccoiiiiiiiiciccce e e 36
885.1.3The : Select StAEMENL......ccccciiicreecriiisictecee ettt 37

§ 5.2 LOOPING CONSIIUCESvcviviviriiitetesiesis e tete ettt ss sttt st s e s bbb s e e st e b b se s st e b s e e s s rne 37
88 5.2.1 The : FOI SEAtBIMENL......coiviviiiviiiierecestee sttt ettt b et st se bt a et e benas 37
88 5.2.2 Generalised : For STAEIMENTSccvviieieeieeie ettt see e nnes 38
885.2.3 :Repeat and : WA I 1€ LOOPS......ccivieeirieereeeieieesieeseetee e e et e teneseeneseesenesnenas 38
ST J BT To o [T TP 38
885.3.1 The : Wit h StAIEMENEcvivieiiiiecce ettt 38
88 5.3.2 Digging iNt0 SUDSPACESc.eiviviiieiiiictie ettt neaens 39
88 5.3.3 : Trap VEISUS [T RAP ...oueieiiteeeeieee ettt bbbttt ettt bt bbbt b e 39
MOAUIEE: IN-ProCcesS OLE SEIVEIS.......ccoo ittt aneesreesteeneeaneenneens 40
8 6.1 Creating an OLE Server iN @ DLL ..o 40
886.1.1 The OLEServer ODJECE ..ot 40
88 6.1.2 Exporting Variables and Functions as Properties and Methodscccccovvevivivvinivennee 40
88 6.1.3 Saving and regiStering YOUr O LE S @IV L uiiuiaiaieieriesiesiesiesiessesseaseeeessessessessessessessesseesens 41

8 6.2 Variable type INFOIMALION.ccuiiiiiieee ettt 41
88 6.2.1 Setting Method INFOrMALION.ccooiiiiiiiie e 41
88 6.2.2 Setting Property INfOrMationccoooiiiiiiiiciceee e 41
88 6.2.3 EXplOring the RegiStry ENTIYceoiiiieeeeee e 42

8§ 6.3 USING YOUT OLE SEIVENocviiiviicicit ettt sttt ettt 42
886.3.1 The OLEC L1ient ODJECE ..cuiiiiiiieiiiiiieste et 42
88 6.3.2 EXamining TYPe LIDIAriescovoiiiiieiee e 43
88 6.3.3 Calling an OLE Server from VBccco i 44
V[To (U] Lo A @] I @ 1= o | 3SR 46
8§ 7.1 InSide MICrOSOTt WOciiiiviicici ettt sttt 46
88 7.1.1 Registry Entries, Object Models and Type LiDrariesccccooevoviiinieneienc e, 46
88 7.1.2 Digging iNtO WOKccviuiieiiicici ettt e nens 47
88 7.1.3 Demonstrating the POWEr OF OLEccccoiiiiiiiiiiiiie e 48

8 7.2 Manipulating Microsoft Excel from the INSIde...........ccoiiiiiiiiiie s 49
88 7.2.1 Recognising the OBJECt MOEIcovoiiiiiiie e 49
88 7.2.2 Digging INtO EXCElc.oiviuiieiiicice ettt aens 49
88§ 7.2.3 Gaining full Control 0f EXCElcc.oooiiiiiiiii e 50

8 7.3 LINKING 10 OThEI SEIVEISeoviiiciecieeieee ettt sttt nes 50
88 7.3.1 OULIOOK ...ttt ettt s bbbt et b et s bt n s e nns 50
88 7.3.2 Microsoft INterNet EXPIOTETc.oiviiiiiiciee sttt 51

88 7.3.3 BEYON ...ttt bttt ettt ennenerns 52

Q Third & Fourth Generation Dyalog APL Q

MOAUIE8: ACTIVEX CONTIOIS ...ttt ettt bbbt besneens 53
8§ 8.1 Creating an ActiveX Control i @an OCXcciiiiiiiiiiineeieie e 53
888.1.1The Act iveXControl ODJECE.....co i 53
888.1.2 The Create CallDACKcceccuiiieii ettt s sae e s sbe et 53
88 8.1.3 Creating the OCX ON) SAVE .ecui ettt ettt sttt ae e sbe e sneesneenee s 54

§ 8.2 USINg YOUr ACLIVEX CONIOLoviiiiiiiiieiiieeee e e 55
88 8.2 1 Creating an INStance from @N OCXC 1@S S uiuiiiiiiiiiieieieriesie et 55
88 8.2 2 UsSiNG CoNtrolS iN TE 6.0c.eiiiieiciiiisieteee ettt 55
88 8.2 3 Using Controls in Visual BasiC and VBA ... s 56

8§ 8.3 Browsing registered OLE CONTIOISccciiiiiiiiieie it 56
88 8.3.1 HAVING @ QUICK LOOKc.vvevieiiiicieieieisisis ettt 56
88 8.3.2 HaVING @ AEEPEI LOOKcvcviviiiiicicice sttt 56
88 8.3.3 TryiNg SOME EXAMPIESccuiiiiiiieieieeec ettt seene 57
MOAUIE: € FUNCLION ACCESSvvvieuiesieiteste sttt ee ettt sttt se et et e e e bt sbesbeebeebe e s e st et e nbenbeabenbenreenes 59
§ 9.1 Declaring “dataTypes” of Arguments and RESUILS............ccvveiiiniii i 59
88 9.1.1 Quick View of DLLS and their CONtENLS.........cccoiviviieieierese e 59
88 9.1.2 The Meaning of the right Argument of ONAcccoiiiiiiiiiiee e 59
88 9.1.3 DiscOVEring C FUNCLION SYNTAX.....c.uiiiiiieieiiiiiesiisesieeie ettt 60

§ 9.2 Examples 0f C FUNCEION CallS........coooiiiiiiiiieeie e 60
88 9.2.1 SIMPIE EXAMPIESocviviiiiicicicee ettt an e 60
§8 9.2.2 More COMPIEX EXAMPIEScviiiiieiiisiec ettt 62
88 9.2.3 Other API CallScocviviiiiciceie ittt bbbttt ss s b 64

8 9.3 Harnessing 1arge C LIDIariesooiiiiiiieie e 65
88 9.3.1 Fastest Fourier Transform in the World ... 65
88 9.3.2 Open GraphiCs LIDIarycccooiiiiiiieee s 66
88 9.3.3 Linear AlgeDra PACKAQEccuiiiieiiieie ettt 66
Modulel0: Stand-AloNe APPHCATIONS..........coiiiiieieiee e 70
§ 10.1 BUilding GUI APPIICAtIONS.cueiieiiieciie ettt ne e e enes 70
88 10.1.1 The Dare MINIMUMc..oiiiiiee et esteeseeareesreeneeeneenneeneens 70
88 10.1.2 Completing the Address Book APPHICALION.ccccviieiiiiie e 71
88 10.1.3 Enhancing your AdAress BOOK..........ccooiiiiiiiiiiiiieee s 71

§ 10.2: MakKing runtime EXECULADIES.........ciiiiiieieie ettt eneas 71
88 10.2.1 FileS 10 INCIUGR ...ttt e reesreeteeneenneenee s 71
88 10.2.2 Inifiles and the WINAOWS REGISIIYoveiiiiiiiiiiiiiieee e 72
88 10.2.3 The [File][EXPOrt] MENUITEMccuviiiiiieie it 74

§ 10.3 ASPECES OF POCKET APLooiiviiiiiciiiices ettt b st nsaeneneanas 74
88 10.3.1 POCKEL PIAtfOIMS.....c.uieiiiiieiie ettt e s te e esnaesraeneeneesnaenee s 74
88 10.3.2 Creating the executable Program...........coiiiiiiiie e 76
88 10.3.3 Building a distributable APPlICALIONcooiiiiiiiiiieee s 76
Modulell: AAVaNCed DOt SYNTAX.........c.cciiiiiiiiieiiiie et e e b e sree e beesbaeenreesrne e 77
8 11.1 ODJECT VAITADIES ...t 77
88 11.1.1 Stranding ODJECt PrOPEITIES.c.eeiiieii ettt sbe e 77
88 11.1.2 Sranding ODJECEScuveieieeiteitesieiti ettt sttt bbb 80
88 11.1.3 Arrays Of .. Arrays OF ODJECEScoiiiiiiiiiee e e 83

8 11. 2UNAErSTANAING (...) v (1rt) rerieriiriiiieei ettt b e bbbttt sb et bbb eneas 87
88 11.2.1 EXPanding AITaY.STrANGcoiiiiieieieiie sttt 87
88 11.2.2 EXPANUING AITAY.AITAY ...oeiiienieiiieiteeie sttt sttt st be s et e besseesbeenbesneesbeenseaneesbeeneens 9
88 11.2.3 EXpanding Array.FUNCIIONccoiiiiieieie et 96

8 11.3 AITAYS OF PrOQIAIMS. .. ccuiiuiiieieite sttt sttt ete ettt re e e et e aesbesbesbeeseareeseeneesbesaesbesbesseasenneas 99
88 11.3.1 INErPreting ... (.o.) vove (or) o g e et bbb 99
88 11.3.2 Arrays of .. Arrays of defined FUNCHIONS ..o 100
88 11.3.3 Arrays of .. Arrays of defined OpPerators..........ccooeiieieiienieie e e 101

Q Third & Fourth Generation Dyalog APL Q

[V [oTo [U] F=N b ad Y o T 1o o[Tol = oo | = SO RR 103
§ 12.1 DIreCt DEFINITIONvcvcvcviiiiceee ettt 103
88 12.1.1 Programming DFNS.........ccoiiiiiiiiieesieie ettt seenas 104
88 12.1.2 MUIILINE DFNS.....coiviiiiicietcis sttt n st n s b 106
88 12.1.3 GUArds and ErTOr GUAITSccciveuiiieiieitiiieiete ettt sttt e ans 108

§ 12.2 Extended direCt DefinitioNn.........cccvcviveviiiiiiiicccee e 109
88 12.2.1 Programming DOPSceueuerueueieierereeierietesesteeste et sesse e se s se e ssesesesse e sseseseeseseesesssenes 109
88 12.2.2 1di0mMS aNd ULHILIES.......ocvcvevciiiciccces e 110
88 12.2.3 Object.Object. .. Object.Operator Rationale..............cccoeieiiiiiiieiiiee e 111

§ 12.3 RECUISION ...ttt ettt b ettt s e bbb s s s et et b e e s bbb s ettt e b e s e e s s nns 111
88 12.3.1 RECUISIVE FUNCHIONS.......uiitiiiiiiieiiiieie ettt bbbttt 111
88 12.3.2 RECUISIVE OPEIALOIS.cueeteeeiesieeeseseeteseeteesteseste e e teseeesseseeseseesenessesessesesessesesseneseasenessenes 113
88 12.3.3 Bi0l0QICal BEAULIESvcvcvcviiiieiciceete ettt 114
V(o To [N] Fo R SR o I I] - T LSRR 117
8 13.1 Spawning @ NEW THIBAU.......ccuiiiiiieeieieiie ettt sttt bbb eere et e e e 117
88 13.1.1 The SPaWN OPEIALON, &cvrveueieerrereerireereeetereseeeseeseesssseseesesessesessesessesesessesessesessasensssenes 117
88 13.1.2 Thread Identity from 0T ID and OTNAMEc.cceeivririeiereiieeisieeessesisseesesasissesesessssssesens 119
88 13.1.3 Thread Numbers with OTNUMS and OTCNUMS .c.cvvvevereeiiisieieieesesesseeesasesseeesesessesens 120

8 13.2 MUItIThread INTEraCtiONSccviieeeieieie ettt st reera e e e e e 122
88 13.2.1 Thread Synchronisation With OT.SYNC......ccccuiuiiiiiieiene st 122
88 13.2.2 Holding TOKENS With : HO Id......cccciiiiiiiciciciiiicetee et 122
88 13.2.3 Pooling Tokens With OTPUT aNd OTGET ...ocvcvevevereiieieteeeeesieees s 123

8 13.3 General Thread Programmingccceeeieieieiesesieeeie et ee e sbe st sbessessessessessens 124
88 13.3.1 Thread SWItChiNGccoviv et 124
88 13.3.2 External Threads With [N A.........ccceviiiiiiieiieicceee e 125
88 13.3.3 Threading Callback FUNCLIONSccoiiiiiiiieiceee e 126
MOAUIELA: TCP/IP SOCKETScueeiueeiieie ettt et e e neesreesteeneesreenaeaneesneenneeneenres 129
§14.1 The TCPSOCKEEL ODJECE ..cuviviuiieiiiiice ettt 129
88 14.1.1 IP AdAresses NG POITScceiveriiiieriiietiieiee sttt nsaens 129
8814.1.2 SocketType and Sty 1e PrOPEITIES.......cooiiiiiiiiiieiesie et 129
88 14.1.3 Workspace to Workspace COMMUNICALIONScvrrierieriiriiniesiieeeieie s 130

8 14.2 A simple CharaCter SOCKELcciiieieeie e 132
88 14.2.1 Connecting to a server Socket With TCPCONNECE .covcviiiiiiiiiiceee e 132
88 14.2.2 Sending to the server SOCKEt USING TCPSENA ..c.ooveiuereiiiiiiieiieeeiee e 132
88 14.2.3 Receiving from the server SOCKet With TCPRECV ..ccuvvveiiiiiiiieiceee s 132

8 14.3 SOME COMPIICALIONS ...ttt bbb bbbt 133
88 14.3. L HTTP AN HTML ..ottt ettt nn e ens 133
88 14.3.2 BUTTEring reCEIVEA Data........ccveeeiiiiiieiie ittt 134
88 14.3.3 Servicing Multiple CONNECLIONS.........c.uiiiiiiiiesiee et 134
MOAUIELE: APL WD SEIVELSoeeiieiecee ettt st ste et e te et eeneenreeneennes 136
8 15.1 MaKiNgG @ SIMPIE SEIVEL ...ttt ettt be et ne e reenae e 136
88 15.1.1 Creating a liStening SOCKETc..ciuiriiiiiiieicieeee s 136
88 15.1.2 Cloning a listening SOCKEt ON TCPACCEPDE coueieeieiieiieeiie ettt 137
88 15.1.3 Sending an HTML File ON TCPRECV cvvviiiiiieiesiesieeee ettt 138

8 15.2 MaKiNgG @ rEALISTIC SEIVET ...ttt ettt nae e b ae e 139
88 15.2.1 Threading multiple CONNECTIONS........cciiiiiiiiiiieee e 140
88 15.2.2 Communicating through HTTPc.oiiii e 141
88 15.2.3 RUNNING APL FUNCEIONS 0N & SEIVEToiuiiiiiiiiiieieie ettt 142

8 15.3 INtErNet PraCtiCAlITIEScoiiiiieiieieiees sttt sttt 143
88 15.3.1 DOMAIN NAIME SEIVEIScuiiiiiiieiieierieite sttt sttt bbbt ne s 143
88 15.3.2 Firewalls and ProXY SEIVELSccvciieiieiiiieiete st ee sttt e sttt e besae s eneans 144

88 15.3.3 An ISP running DYalOg.DLLccoiiiiiiiiiiiieieee e 145

Q Third & Fourth Generation Dyalog APL Q

MOAUIELE: APL WED CHENTS.. ..ottt sttt sbe e b 146
§ 16.1 Getting to the OULSIAE WOTIGcocveveviiiiicccee e 146
88 16.1.1 Direct Connection through your Internet Service Provider...........c.ccoceoviieneiinencienennnn. 146
88 16.1.2 Proxy Servers and FIFEWallS...........ccoiiiiiiiiiiiiiicee e 146

§ 16.2 ASKING The WED ...ttt e ettt s et naere s re s 146
88 16.2.1 Connecting and sending the QUESTIONccoiiiriiiiiieieiese e 146
88 16.2.2 Receiving and interpreting the ANSWET ..o 147

Y ToTo (U] L= A Y= oo L= SOOI 148
§ 17.1 Revealing the .NET FramMeWOIK.........c.ccoiiiiieieieie sttt ene e 148
88 17.1.1 Getting MICroSOft INETcciiiiiiiicieiises s 148
88 17.1.2 Assemblies (a), Namespaces (77) and CIaSSES ($)..vuvevrrurriererieririnisieieenie e 148
88 17.1.3 USING OUSTING c.vvvevereriieieieteiee sttt sttt ettt et st et s e s st sene e 152

§ 17.2 EXPIOring the .NET INTEITACEoiiiieieieee e e 153
88 17.2.1 EXAMINING ClaSSES......veuteereeaterereeseseateseeteeseesessesesestesesaesesessessssesessssessasesessesessesensasenessesens 153
88 17.2.2 EXaMINING MELhOGS.cvcviiiiiiccci s 154
8§88 17.2.3 EXaMINING PrOPEITIEScveveieiiieieiiieeiesiete ettt seene s 156

§ 17.3 DIgQING iNtO INET ..ottt b bbb sn s benis 158
88 17.3.1 WINAOWS FOIMS....c..cuiiiiiiiitiiieiee sttt sttt s ettt se st se et ettt eebesnensene e 158
88 17.3.2 COMMUNICALIONS.......ocviviiiiieteiesii ittt ettt bbbt s bbb s et b b ne e 161
88 17.3.3 Generalising APL PriMiItiVES........cccoeiieiiieesee e 163
MOAUIEL8: DYAIOY.NEL CIASSEScveiveeieiiieiteeite e sttt et e s e s te e s e e teebesreesreeseereesreeneas 165
§ 18.1 WIiting DYalog.NEt CIASSESccviiierieiiriiiieiieie ettt bttt es 165
88 18.1.1 Dyalog Namespaces and .NET NAMESPACES..........cccueurrierierierieniesiiseseeeesie e sie e siessesseas 165
88 18.1.2 Creating @a Net Ty Pe ODJECLoiuiiieieieeieeee e 165
88 18.1.3 Writing Functions and defining Variablesccoooiiiiiiiiiiieee e 165

§ 18.2 Exporting Methods and PrOPEItIEScveeieieieii e 165
88 18.2.1 Arguments and ReSUIt “dataTYPES™covoiiririiiiiiieiee e 165
88 18.2.2 Making an ASSEMDBIYcoiviiiiiiiicicieee et 166
88 18.2.3 Checking the MEtaDataccuiieieieieiie ittt 167

§ 18.3 CalliNg DYalOg.NEt ClIaSSES.......ccuiiiirierieieieiie ettt st re e esbe e sbesreareene e 167
8§ 18.3.1 Calling your Dyalog.Net Class from Dyalog APL.........cccocoiiiiiiiininiceeee e 167
8§ 18.3.2 Calling your Dyalog.Net Class from C# and VB.NETcccccovviiiiiiniieiene e 168
88 18.3.3 COMPIICALIONS.......eiuiiieeiete ittt bbbttt sbe bbb 168
MOdUIEL9: DYalOG.ASP.INEL ...t te et e s be et e s reesre e te e e e e reereas 169
8 19.1 DYNAMIC WED PAGES......cueiiiieieeieete bbbttt bbb 169
88 19.1.1 Active Server Pages in VBSCHPL OF JSCIIPL.....oiiiiiieieieieiie et 169
8819.1.2The System.Web.UI.Page Class ... 171
8819.1.3The System.Web.UI .WebControls NAMESPACE........ccccereriririeeieerienieniesiesiesieeneas 173

8§ 19.2 DYalog SCIIPL LANGUAGE ..c.veuveeeiteiteitietieiieie ettt sttt bbbttt b e bbb b s 174
§8 19.2.1 Callbacks iN DYalOg APLcovciiiieiieieeceesee ettt 174
§§ 19.2.2 Workspace DEhindcoooiiiiiiiiiiiiii e 175
88 19.2.3 The TeXtBOX CONLIOL........ccoiviviiiiiiiietisicteec ettt 176

8 19.3 REMOLE APPIICALIONSveiiieieeesee sttt bttt bbb b 178
88 19.3.1 The C:\Inetpub\WWWroot\ DIFECIOIYcccciiiiiiieiii et 179
8819.3.2The System.Drawing NAMESPACEcccereriririeieierie ettt 180
8819.3.3The System.Web.Services NAMESPACEccccerrieriieriene et 181
MOdule20: DYalog APL CIASSEScouiiviriiriiiiiiieieie ettt sttt st bbb e st st sbe b s 183
8§ 20.1 USEr AEfiNEUA ClaSSES. . .uviuieuieieiteitiiiestieieieie et ste sttt ettt sbe st e s beaseereene e e e beseeabesseaseeneans 183
88 20.1.1 THe :CLass SIUCIUIE.....ccceveverereicieiee ettt 183
88 20.1.2 The : Field StAEMENEcccciiiieecice ettt 185
88 20.1.3 Name sub Classifications OF NC..........ccccereiiiiiiieieceees e 186

§ 20.2 Methods and Properties iN CIaSSESciiiiiiiiii st 187

Q Third & Fourth Generation Dyalog APL Q
88 20.2.1 The V (Method) SLIUCLUIEc.eiviieiiiieiee ettt 187
§8§20.2.2 The : Implements StAEMENT.......c.coiuirirriricieiee e 188
8820.2.3 The :Property SIUCIUIEccevvieececeeie ettt 190

8§ 20.3 Architecture With Class FACIOMESccueiiiiiiiiiiiieie e 192
§8 20.3.1 Designing an OBJECt MOcoviuiiieieece s 192
88 20.3.2 BUIldING With ODJECEScveviiiiicictiiiesicte e 194
§8 20.3.3 Encapsulating, Inheriting and MOrphingcccooiiiiiiinninceeeee s 194

Some innocent facts ©
e There is no exact finite Boolean representation of the decimal number 0.1 as a binary floating-point number.
e The density of rational numbers on the real line is infinitesimal compared to the density of transcendentals.
e One Jupiter day equals 0.416.. Earth days.

Question @ Is there a planet somewhere whose day is approximately equal to 10 Earth days?
Answer @ Very likely! (On that planet, this is a two day teach-yourself course ©.)

R N

(OBERTSON ROBERTSON

Module0: Notation and Conventions

§ 0.1 New Symbols

Let us introduce a few new suggestive symbols with well-defined meanings suggestive of their shape. Most
of these new symbols are not to be found in the J4v of any APL font and are simply introduced to clarify
explanation and writing in the spirit of the original Iverson Notation. Some of these symbols are to be
found in some APL fonts, but they are here not coloured green and are, by implication, not available as part
of an executable Dyalog APL statement. Executable APL keywords are written in green.

An executable input expression is written in green APL font and indented by 6 spaces. Any resulting output
from an expression is coloured red and is placed on the subsequent unindented line or lines, or on the same

line as the input expression, separated from it by the instructive (non-executable) new (black) symbol & .

Expr » Result Expression Expr returns result Resu 1t

The symbol v (returns) is black to identify it as non-executable, and the definition is in black to emphasise

that is not genuine (current) APL. The Resu 1t may also be an executable expression which itself would, if
executed, return a result identical to that returned by the original expression, Expr. So, a valid illustration

of v would be 3x4 & +/3p4

Exprw0bj Ex pr instantiates object 05 j (as a side effect)

This is used to document functions that internally create global GUI objects.

Expr - Function Ex pr can fire callback function Funct ion

This is used to document expressions or functions that assign callbacks to events in global objects.

APILCode ...d Code continues on next line ...
. APLCode T ..end of line of code

The pair («,7) is used to wrap 2 or more input lines while maintaining their syntactic unity and integrity.

F Prop Proposition Pro p is contingently true

Symbol | (contingently) means factually true, so here Prop v 1. |'avb implies, a posteriori, that avbu 1

FProp Proposition Prop is necessarily true, so Prop & 1

Symbol F (logically) establishes the logical truth of a proposition, so kav b implies, a priori, that avhu 1,
and further therefore, that (Fa) or (Eb), where or is understood to be inclusive rather than exclusive.

Code ..Code Means fill in the gap with the obvious code

This single character .. (double-dot or gap) can also be used at the very start of a line (in an ambivalent
fashion) to mean fill in the obvious start.

(Note in the modules to follow, boxed syntax definitions often just apply to one of a number of possible
syntaxes. For example, possible ambivalence and shy results are not usually left unspecified.)

Code ... Means finish the statement with the obvious ending

This single character ... (triple-dot or ending) asks you, the reader, to complete the extreme end of any
expression or suitably parenthesised expression. It asks more of you than standard dittos, which just imply
repetition, and more than gaps (..), which are usually essentially repetition too, given the clues from the code

on either side. An author who uses an ending should feel that the code to the left is sufficient for the reader
to be able to fill in an appropriate ending without undue pain, ie suitable filler code should spring to mind.

Q Day1: Third Generation Dyalog APL - Objects Q

You might consider the symbols .. and ... as notation for x or y in some ‘literal algebra’. eg "Hello .., this is
.., how are you ... ?" where .. and ... are any suitable, possibly empty, strings.

O) E()=o

This implies that () =eu 1 and that therefore F(,0)=p ()

Other symbols which may be introduced in the following modules include:

£, as a generic monadic function (distinguish monadic function from monistic operator),
g as a generic dyadic function (distinguish dyadic function from dualistic operator),

0. to represent a typical unipotent operator and

i, to represent a typical namespace.

§ 0.2 Naming Conventions
The following suggested naming conventions have been adopted where possible and where appropriate.

Variable names are regarded as proper nouns and therefore start with a capital letter; an exception being
allowed for local temporary variables used near to their creation origin. These exceptions may be regarded
as pronouns for which we may use small letters and shortened words.

Functions and operators play the roles of verbs, adverbs, adjectives, conjunctions or prepositions depending
on the details of their syntax. Their names generally start with a small letter, as they are mid-sentence
words. However, niladic functions may start with a capital because, if they return a result, they are
syntactically like variables, and if they do not return a result they are like complete imperative intransitive
verb sentences. Likewise, monadic functions that do not return a result may also begin with a capital letter
because they are like imperative transitive verbs and therefore usually begin a sentence.

To give you the idea, an attempt has been made to compose the Course Contents roughly in this style.
Module titles are noun phrases that represent the subject matter. Section and subsection headings are
subjects or predicates or object noun phrases. An attempt is thus made to capitalize the words according to
their contextual parsing character as elaborated in APL Linguistics in Vector Vol.2 No.2 p118.

Sentence Syntactic Elements Grammatical Réle Example Names

Variable Noun/Pronoun Data o DATA o d
Niladic Intransitive imperative | Run ¢ RunApplication
R«Niladic Noun .. iIs Temperature
Monadic w Transitive imperative RunoOn ...

Remonadic w Adjective/Participle . is purple ...

o dyadicFn w Verb .. takes ..

R<a dyadic w Preposition/Conjunction | . ijs .. tiedTo ...
R<(aa; monistMonadOpr)uw Adverb . is . accurately ...
R<o (aa; monistDyadOpr) w Adverb . is separately ...
R<(aa; dualMonadOpr ww;) w | Conjunction/Preposition | = is . togetherWith ..
R<o (oo; dualDyadOpr ww,) w | Conjunction/Preposition | . is and

etc...

This loose heuristic pragmatic association with ordinary language is for the purpose of producing
meaningful readability. Note the convention of capitalizing the first letter of each word or syllable after the
first rather than using the APL-specific underscore character to separate words, as was an older convention.

N

onrats Module0: Notation and Conventions nonenradk

Object names follow APL variable naming conventions. Object method names should follow function
conventions but are often predetermined by another author. From a glance at the method names in IE6 (or
OpenGL) Microsoft and others may be moving in the above direction. Object property names are nouns
and are generally, by our convention, ‘correctly’ capitalized.

An effort has been made to capitalize and colour keywords in the text when used as keywords rather than as
general concepts: eg an object initiates an event, cf an object has an Event property. (Choosing long
meaningful names is less painful than it used to be as AutoComplete springs into action in version 10.)

Pre-empting a Unicode (see http://www.unicode.org) [JAV, letters in names here assume all the familiar
characteristics of modern fonts, ie you can have AAAAAAAAetc... all for the price of JAV [66] and
all equivalent, just as an ordinary word is assumed to have the same meaning in any colour. The three
alphabets in 04V aretakentobe 4. .z .., “ “ ie capital letters, small letters (possibly subscripted) and
superscripted letters of various styles This is done to enable full tensor notation such as (X1, X, X3) or
Tijk1 <« Gip +.% T
(as used in eg http://arxiv.orq/ftp/hep—th/papers/0304/0304244.pdf ;-)) and also to encourage traditional
British shorthand forms such as W™ Robertson & C° LY or Sci™ & Med® Net™ . We also suppose, in these
notes, that any linear Rich Text may follow a comment symbol in the APL Session and we assume that any

number of new symbols (here written in black) will one day be available in green for APL programmers.

Menus and other one-click options relating to an application under discussion are placed in square brackets.
Thus [File][Load] and [Tools][Options] might refer in an obvious way to specific APL Session menu items.

§ 0.3 Variable “dataTypes”

Different languages use different words to indicate the number of bytes employed and the interpretation of
the individual bits. For example, the C programming language, which we meet via O~ 4 in Module 9,
describes numbers as integer, double, long double, float, .. whereas [~ 4 itself uses notation similar to that
used in the Larg (left argument) of OF¥T which itself originates from FORTRAN nomenclature. More
recent definitions of numeric “dataTypes” are written VT 12, VT 14, VT DECIMAL, VT R4, VT RS&, ...

Happily, APL does not generally demand that a programmer be aware in advance of exactly what type of
binary representation is being used for any particular piece of data. Mathematica, J and some other modern
computer languages are even more forgiving - numbers may even become characterised as infinite!

In pure mathematics, occasionally the domain of numbers in which one is thinking has to be generalised to
the next set. Whole numbers are a subset of natural numbers which are a subset of the group of integers
which is a subgroup of the group of rational numbers which is a subgroup of the field of real numbers which
is a subfield of the complex field which is a subfield of the non-commutative quaternion ring which is a
subring of the non-commutative, non-associative octonion ring.

NCZCQCRCCCHCO
There is a natural hierarchy that is embraced at each level, as and when required, when learning advanced
arithmetic. Thus when learning, at an early age, that division of integers can land you in the rationals, you
are not generally obliged thenceforth to predetermine whether the result of any particular division will result
in a number which is integer or one which is non-integer (although necessarily rational).

In APL the actual representation employed for storing a number can change from line to line and from
function call to function call without the programmer having to know. The interpreter itself attempts to
discover the most efficient storage representation. However, when communicating through APL with the
computer world at large you have to start thinking about machine architecture a bit more. You often have to
tell functions, in advance, exactly what sort of arguments to expect and exactly what sort of results to
generate. This is the dataType signature of a function. It helps hardware to know how to store and retrieve.

11

http://www.unicode.org/
http://arxiv.org/ftp/hep-th/papers/0304/0304244.pdf

Day1: Third Generation Dyalog APL - Objects

Loosely Correlated dataType Definitions (of internal memory formats)

Interface Definition .
if ;ﬁﬁ]!\ﬁ o ON4 C Language \Q:‘;‘ZI ct da'tzl'll'ETes
say... (OLE/COM) yp
CharSc CL, T uchar Byte byte, System.Byte,
char System.Char
CharVec C, T[] char[], | VT_BSTR, VT_PTR | String string System.String
char* TO VT _BSTR
VecCharVe | {T[4]}[5] | (char* | VT_ARRAY OF String(0 | string[]
c) [] VT BSTR, to 12)
VT _STRING[]
NumSc, 12,14, F8, | short, |VT_BOOL, Integer, | shyte, System.SByte,
BoolSc, Ul,U4 | uint, VT _DECIMAL, Long, short, int, Syiiimﬂiég
IntSc int, VT _I1, VT 12, Single, uint, sttem:lmmz
long, VT _ 14, VT R4, Double, ulong, System.UInt16,
float, |VT_F8,VT_RS, Decimal, | float, System.UInt32,
dword, | VT _PTRTOVT_Ul4 | Boolean, | double, System.UInt64,
lptstr Date bool, System.Decimal
double decimal
NumVec, {F8 12}, Int[] VT_CY, VT _DATE, | Integer(1 | int[],
IntVec I[], F8[] VT_I4]], to 3) double[]
VT _COLOR,
Arr A void[], | VT_VARIANT, Variant() | object System.Object,
int[] VT _ARRAY System.Array
ArrEncArr | {I4 T[9]}, | struct | VT_ARRAY OF Variant(| object System.Object
{14 U4 VT_VARIANT, 1t03,1
{U1[4]} VT_SAFEARRAY |[to4,1to
1414} 2)
MatEncArr VT _VARIANTJ;] int[][,] System.Object
RefSc VT_DISPATCH, Object System.Object,
VT PTRTO etc...
VT _COCLASS
Empty, void VT _VOID, Empty, | void System.Void
ONULL Nothing,
Null
doRr of VT _DISPATCH
space

031Review APL1&2.PDF which introduces mainstream 1% and 2™ generation APLs such as IBM APL2,

Dyalog APL, STSC APL*PLUS and MicroAPL APL.68000.
Note: You can download APL1&2.PDF free from http://www.microapl.co.uk/apl/APL1&2.PDF .

http://www.microapl.co.uk/apl/aplx_docs.html

& |

ROBERTSON ROBERTSON

Module1: Objects and their Properties

Amongst Ken Iverson’s many aphorisms is the cautionary dictum not to labour too hard on any particular
explanation of any particular fine point of APL notation (such as 0p 0) because it is as likely to be an
indication of an unsuccessfully hurdled hurdle behind the tutor as an especially difficult conceptual leap for
that audience. We try to adhere to his advice, albeit that APL becomes not more, but less rational with each
new generation, and grey areas should be exposed and not left hidden. Nevertheless Dyalog APL does an
admirable job of incorporating object-oriented concepts into the core of the APL language.

In 1967 Simula 67 introduced most of the key concepts of object-oriented (OO) programming - objects, classes, subclasses
(involving inheritance) and virtual procedures. Most (but not all) of the objects discussed below have a graphical (visual)
manifestation. The first graphical user interface (6UT) was designed by Xerox Corporation's Palo Alto Research Center in the
1970s. It was not until the 1980s and the emergence of the Apple Macintosh that GUIs started to prevail, and not until the
appearance of Microsoft Windows in the early 1990s that GUIs became almost ubiquitous.

Modern computer applications, including operating systems themselves, are designed using object-oriented
architecture. Microsoft's graphical user interface has evolved into an archetypically object-oriented
collection of buttons, forms, and other progressively more complex active constructs. Most of Dyalog's 71
or so Microsoft-based GUI objects are virtually tangible, arguably real and thoroughly recognisable.

“For a comprehensive list of primitive GUI objects available in Dyalog APL version 10, see [Help][GUI
Help][Objects Overview]. Or type Ty pe into the APL session and hit F1. Or see the invaluable Dyalog
APL Object Reference manual. Load workspace wINT R0 and follow the 56 lessons. Load wTUTOR and
follow 37 tutorials in there. Load wTUT0R95 and follow the 18 extra tutorials in there. Alternatively,
begin your investigations at http://www.dyalog.com [Products]. But first, please follow Modules 1-3 below
for a simple introduction to this vast encyclopaedic network of information about APL objects

§ 1.1 Object Spaces
§§ 1.1.1 Creating vanilla Namespaces with NS

Cvec Ons ! a Creates an empty Namespace, named through Cvec

“""'Create an empty namespace called MySpace.

)CS Name Changes current space into Namespace named Name

1112Change space into your new namespace and verify that F(ONZ 14)=0 0p' !
Read this as, ".. it happens to be true that O~ L 4 matches an empty character matrix." Compare with
E1vo which reads, ".. it is necessarily true that 1vo ."

)CS Changes Space to the workspace Root space - named #

1113Change back to the Root space using system command) ¢S and examine the result of OVZ 9

§§ 1.1.2 Creating GUI Object Spaces with OwcC

CVvec2 [OWC CVec1 a Creates GUI Object named in Cvec2 oftypein CvVec1

1121Create an object of Ty pe Form with name MyForm. The structure of the right argument of this
system function can be much more complicated (essentially Name-Value pairs) as we shall see later.

)OBS Displays a list of global objects

1122Use system command) 085 to verify the existence of MyForm, although its existence is manifest:

13

http://www.dyalog.com/

Q Day1: Third Generation Dyalog APL - Objects Q

11237y moving and resizing your 7orm with your mouse.

With a less obvious existence are other objects, such as the SysTrayItem object created by typing
'"STI'OWC'SysTrayItem!'

But notice the new APL icon that consequently appears in the system tray at bottom right of your task bar.

§§ 1.1.3 Changing Space with IC.s

gcs cvec a Changes current space to object named in Cvec

An object of a particular Ty pe can only exist as the child of particular parent Ty pes. For example, a
But ton can be the child of a Form but not of a SysTrayItem object.

1131Change space to MyForm and create an object of Ty pe But t on with name MyButton.

The But ton hasno Capt ion because this property has not yet been specified.
1132Change into MyButton space and verify ONZ 1950 0p' ' then change back to the Root space (#).

§ 1.2 Properties of Object Spaces

Objects have properties. These properties determine the specific appearance and behaviour of individual
objects. For example, the S i ze property, which is common to many objects, determines the height and
width of the object.

§§ 1.2.1 Examining Properties of an Object with Ow¢G

Some information about MyForm object can be discovered by right-clicking on the word MyForm in the
APL Session and then selecting the menu item [Properties]. However, the value of a specific individual
property is found by way of the property name.

Arr <« CVec2 OWG CVeci1 a Gets the value of property CvVec1 of object Cvec2

1211Get the 5ize of MyForm. Go into MyForm space and get the S i ze of MyButton.

)PROPS Reports the properties in the space of the current object

1212Display the list of properties in the MyForm space and the MyButton space. These are the intrinsic
properties of Forms and But t ons respectively. Examine the values of various properties. Return to #.

§§ 1.2.2 Setting Properties of an Object with 0w s

CVec2 WS CVec_ Arr a Sets prop-value pair cVec_Arr of object cCvec2

For example,
'"MyForm'OWS'Size' (6.5 11)
sets the s ize of MyForm to 6.5% by 11% of the full screen size.

Q Module1: Objects and their Properties Q

'"MyForm'OWS'Caption' 'Form' o [CS 'MyForm'
'MyButton' OWS'Caption' 'Button'

A Form E| [E| [g|
Button

L2211y getting and setting the values of various properties of 7o rms and
Buttons. Returnto # and erase your Form with) ERASE or (EX.

As we shall soon discover, it is possible to get (0w G) and set (Ow.S) many properties in a single call, and to set many properties
at create time (OwC). Indeed a few (irregular) properties, such as the Po i nt s property, must be set at create time, as must
Type. Most properties, however, have sensible default values and do not need to be explicitly set at all on most occasions.

§§ 1.2.3 Building complex Objects

Owc returns a shy result of the name of the object just created (Larg). Here are some lines that illustrate the
flexibility of the right argument (Rarg) of 0w ¢ and Ow.S. Note that Name-Value pairs do not need the Name
if specified in the default property order (see for example the ¥enu and Menu I t em objects below).

w<,c'Type' 'Form' o w,<«c'Caption' 'Temperature Conv+

erter'c w,<c'Size' (266 238)¢ w,<c'Coord' 'Pixel'q
Ocs'Temp'OWC w
OCcS'MB'(OWC'MenuBar'o [OCS'M'OWC'Menu' 'Scale'

AL Temperature Conver... [Z”E”‘S__d

Scale
'C'OWC'MenuItem' 'Centigrade'o'F'UWC'Menultem' 'Fahd
R 22 00 Fa renheit'oCS'#'o(CS'Temp' onum<«'FieldType' 'Numeric'{
'"LF'OWC'Label' 'Fahrenheit'(16 8) (24 72)
'"F'OWC'Edit' ''(16 88)('Decimals' 2)num
i .00 d
Centigrade e "F'OWS('ValidIfEmpty' 1)('Value' 32)('Size' 2u 72)
Fabrentsit '"F2C'0OWC'Button' 'f->c'(16 184) (24 u48)
e '"LC'OWC'"Label' 'Centigrade'(56 8)(24 72)
o] o 'Cc'OWC'Edit' ''('Decimals'(2))num

'C'OWS('ValidIfEmpty' 1)('Size' 24 72)('Posn' 56 88)
"C2F'OWC'Button' 'c->f'(56 184) (24 48)
'"LTB'OWC'Label' 'Fahrenheit'(88 96) (24 72)
'"LLO'OWC'Label' '"'(112 16)('Decimals' 0)num
V"LLO'OWS('FCol'(0 0 255))('Value' 0)('Size' 24 16)
'"TB'WC'TrackBar'('Limits'(0 212))('Posn' (112 40))
'"TB'OWS('Size'(32 168))('TickSpacing' 10)
'"LHI'OWC'Label' ''(24 24)('Decimals' 0)num
V"LHI'OWS('FCol'(255 0 0))('Value' 0)('Posn' 112 208)
'Q'OWC'Button' 'Quit'(152 80)(24 80)('Default' 1)

1231verify that a Menu is only visible if it has set a non-empty Capt ion. A MenuBar is never visible.

)NS Reports the name of the current space

§ 1.3 Property Variables
It is possible to create ordinary APL variables in vanilla as well as in GUI namespaces.

131Create a namespace called MySpace and inside it create a variable called MyVar. Verify that the
variable is only visible inside MySpace and is invisible from the Root space.

15

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 1.3.1 Exposing Object Properties with [Jiwx

Owx a Whether GUI names are exposed

Every object has a property called ProprL ist that lists all the object’s properties in default order. WX is a
localisable system variable that determines whether or not the names of properties, methods and events
provided by Dyalog APL GUI objects are exposed. The value of 0w X in a clear workspace is defined by the

default_wx parameter (see the definitive Dyalog APL User Guide). Ensure that | Owx=o0.

1311Create a Printer object. Check that (W has inherited the value o from the Root. Type PropZList and
geta VALUE ERROR. Now assign OwX to 1 and again type PropList. The property variable has now
been exposed. The listed keywords are case dependent and cannot be erased. Show that they are exposed.

§§ 1.3.2 Assigning Properties with <

Notice that most properties, having been exposed, act just like variables in the object space. Go into a
Form’s object space and type

Size
50 50

13218y manipulating object properties, the state of an object may be changed and influenced. Try assigning
S ize and notice the Form dynamically change size accordingly. Show that there is a minimum Size of a
Form. Investigate the effect on Size and Posn when setting the Coord propertyto ' Pixel'. Every
object has a Dat a property to which may be assigned any APL array. Indeed, any other legitimate variable
may be assigned within the object space and treated like a new static property. Verify these statements.

1322Create a B t map object in a Form with the B ¢ s property set to a 150 by 150 matrix of random
numbers between 0 and 15. Assign the P ic ture property of the Form to the name of the B t map that
you have just created. This displays the Bitmap in the centre of your Form in colours chosen from the
first 16 rows of the default colour map. Now assign the CMap property of the Bitmap to a 16 by 3 matrix
of random numbers between 0 and 255. The picture changes each time this property is so set.

1323y0u can get more control over the Bitmap. Create an Image object as a child of a Form and then
assign the Pic ture property of the Image to the name of the Bitmap. Assignthe Dragable property
of the Tmage to 2 and use the mouse to drag the Tmage around the Form. (Remember that the Points
property is irregular in that it must be set explicitly at object create time.)

1324Using a Po 1y object, draw a solid triangle in the middle of a Form. Rotate it.

§§ 1.3.3 Rebuilding complex Objects
Essentially, properties are (shared) variables and can be treated as such. All use of OwG and 0w s may be
obviated in favour of this more natural approach as of Dyalog version 9.0.

1331Rewrite the lines of code in §§1.2.3 to eliminate the use of .S and to minimise the Rarg of 0w ¢.

Now you have to learn some details about some of the primitive objects available to you in Dyalog APL.
Typing any GUI keyword into the APL Session and hitting F1 brings up the easily navigable GUI Help file
at the page of the selected keyword topic. Learning is greatly facilitated by the extensive, thorough and
surprisingly comprehensive, Dyalog APL Object Reference manual.

1332 sk for the next module on methods and events. How did you get on with Module 1?

R 'Y

(OBERTSON ROBERTSON

Module2: Methods and Events

Obijects can be brought to life by built-in functionality that is intrinsic to the object (methods and default
event processing) or by arbitrary user-defined functions (callbacks) which are assigned to events in such a
way as to run whenever the particular event occurs as a result of some user interaction with the object.

§ 2.1 Object Methods

A method is essentially a type of event that can only be generated under program control. A method may
perform an operation and may return a result.

§§ 2.1.1 Enqueuing Object Methods with (¥ Q

2 ONQ CVec_Arr a Enqueues method given by Arr for object cvec

0N @Q adds the method specified in Arr to the end of the Windows event queue. The method will
subsequently be processed as soon as it reaches the front of the queue. If the method returns a result then it
is returned by 0N Q as a shy result.

2L nvestigate the methods associated with a 7orm by way of the Met hod L ist property or the
)METHODS system command, and try
2 ONQ(<c'MyForm'),c'ChooseFont'

§§ 2.1.2 Invoking Event default Action using 0¥ Q
The default action of an event can be invoked by calling the event as a method.

2121 |nvestigate the events associated with a #orm by way of the Event List property or the) EVENTS
system command and try

2 ONQ'MyForm' 'Configure' 10 10 20 20
This has the same effect as moving the 7ormto Posn 10 10 and resizing itto Size 20 20 but without
invoking (because of Larg 2) any associated callback function onthe Configure Event of the Form.

Unnecessary (through lenience) catenations and enclosures in the above right arguments for OvQ may be
included to emphasise the separation of the object name and method calling information. The forgiving
nature of O~ @ syntax (like that of (iwC) can obscure the essential components of the arguments. At this
point DISPLAY.DWS or varChar.exe might help to clarify some details of strand notation.

(Note that it can be useful to put system commands onto programmable function keys with OPFKEY.)

§§ 2.1.3 Method Functions

When [Ow X is set to 1(or 3) then not only are property names exposed and become immediately accessible as
pseudo-variables, but also method and event names are exposed and become pseudo-functions. Thus
OCS'MyForm'OWC'Form'
Configure 10 10 20 20
will configure the Form as above.

2L31Experiment with mouse events on a But t on, addinga Capt ion to the But ¢ on for clarity
OCS'MyButton'OWC'Button'
MouseDown 50 50 1 0
MouseUp 50 50 1 O

17

Q Day1: Third Generation Dyalog APL - Objects Q

Notice that when you are inside MyForm the C 1 ose event does make the 7o rm disappear, but the
remaining vanilla namespace called MyForm does not disappear until you exit the space.

§ 2.2 Object Events and callback Functions

An event may occur as a consequence of a user action. The user action triggers default behaviour and/or
some programmer-defined process of arbitrary complexity.

§§ 2.2.1 Firing Events by User Actions

2211Create a Formwitha ca lendar on it
'"F'OWC'Form' o 'F.C'UWC'Calendar'
Hit the right and left cursor keys to move the highlit day back and forth. Given that
OKL'RC'u'Right'
experiment in the F namespace with
2 ONQ'C'" 'KeyPress' 'RC'
gNQ'c' 22 'RC'
and in the C namespace with
KeyPress 'RC'
On the one hand the event may be triggered by user action, on the other hand it may be generated under
program control.

2212se the Ge t Env ironment method of the Root object (or alternatively use REGEDIT.EXE) to
discover the name of the APL input (.DIN) file. Open that file in Notepad and view the key labels section.
Which of these could apply to the Calendar? Look atthe Event List for the Calendar and guess
which events are triggered by which keystrokes. Check whether some do what you expect.

§§ 2.2.2 Attaching callback Functions to Events

Functions may be associated with events by way of the Event property. The Event property is very
flexible and tolerant (lenient) in its assignment. We shall focus on the simplest forms of assignment and
leave the more complicated forms aside for now.

In its simplest form, the Event property expects a 2-element vector of character vectors, the first element
being the name of the particular event and the second being the name of the callback function. (View the
default content of this property in varChar.) For example, in a clear workspace,

OcCS'F'OWC'Form'

Event<'MouseMove' '"MoveForm'
where we here define the callback function simply as

VMoveForm Msg

[1] Posn<«Posn+Msgl3 4]+100V

The Rarg of a callback function is supplied automatically if required by APL syntax, and its content is
determined by the event in question. In any event, the first element supplied contains the object in question
and the second element contains the event in question. In the case of a MouseMove event, for example, the
definition of the remaining 4 elements may be found in [Help][GUI Help]. In particular, the third and
fourth elements of the event message refer to the coordinates of the position of the mouse.

2221\ ove the mouse over the Form and explain the effect. Put a stop on the first line of the callback and
investigate the elements of the incoming right argument.

The Event property may be assigned to more than one event. Each assignment only affects the events
named in the assignment. All other events retain their current settings.

iQ Module2: Methods and Events Q

OBERTSON ROBERTSON

Event names may be prefixed with "on" to give a new set of properties that can obviate the need for the
Event property, and make it redundant. For example,

onMouseMove<'MoveForm'
results in behaviour very much like that produced by setting the Event property, but with one subtle
difference in the message right argument automatically supplied to the callback.

2222¢an you discover the difference? Use varChar if necessary.

Callback functions may return a result. If there is no result, or the result is 1, then APL proceeds to process
the default action for the event. If the result is O the default processing does not take place. If the callback
function modifies the incoming argument and returns that modified message as the result of the callback
function then APL (leniently) processes default action in accordance with that new message. (APL is even
surprisingly lenient with a would-be vALUE ERROR result and a niladic callback.)

§§ 2.2.3 Bringing Objects to Life

Now we have all the ingredients necessary to breathe life into primitive objects - and into ‘superobjects’
built by straight-forward ‘superposition’ of primitive Dyalog GUI objects.

There is a poorly documented but very useful event called 4 1 I that is recognised by every primitive GUI
object. This event can be used to associate a callback function with all the events relating to an object.
Write a trivial callback that just prints its message argument in the Session. Assign it to the A1 1 event.

v Show Msg
[1] Msg

\Y

onAll«'"Show'

Now use the mouse and keyboard to interact with the 7orm. Doing this you will discover many ways in
which you can programmatically intervene in the default behaviour of a Form using callbacks. This
technique is a good way to explore the event structure of any GUI object.

+n Event Viewer

In version 10.1, under the [Tools][Spy] menu, or 3py_ Columns Select Qptions
. H - Object EwentM ame EventMumber — #
In version 11’ under the [TOOIS] [Event VIeWGI’] ﬂ.atl:ldrbk.Form‘I.Ed!Q MouseE nter B
menu, there is a new Event Viewer that allows f addibk Forn?, Eelta Mouseteave 7
you to spy on events in a similar manner to the faddibk Fom 1, TrakBart potfocus 40
above, but with much more control through many §;:§j{§tﬁg;g];g§§k%” LostFocus i
extra features. # kit Formt £ MowsLime 7
#.addrbk. Form1 MouseE nter E
#.addbk. Farm1 Maouseleave 7
Compare this with the EventViewer in Lo oty ot
[Control Panel][Administrative Tools]. #.addibk FornT Edil LostFocus 4 v
< >
§ 2.3 The Event Queue

§§ 2.3.1 Dequeuing Events with and without (1DQ

Given the elements above it would be possible to write an APL cover-function to control the events and
activities associated with collections of GUI objects. However, as the complexities of superobjects grow,
and the numbers of combinations of events multiply, and ‘heavy’ callbacks begin to take noticeable
amounts of time to run, the administration of events waiting to be processed becomes a significant issue.

19

Q Day1: Third Generation Dyalog APL - Objects Q

In Immediate Execution Mode (IEM) events are processed as they arrive in the queue and the need for
further control might seem unnecessary. However, IEM is not available in runtime systems and an
alternative then becomes essential.

dDQ Cvec a Dequeues events associated with object Cvec

0DQ takes the name of a top-level object as its argument and administers its events, plus any events from
subobjects (child objects). (00 may also take a vector of top-level names, or most simply " #'.)
'"F'OWC'Form'
DDQ TR

231I\Write a callback on the Conf igure event of Form F which resizes the Calendar to fitthe Form
exactly whenever the Form is resized. What is the difference between running in IEM and under 0DQ?

The default value for an Event is zero. So, ifthe Close Event fora Form has not been set to a callback
function or any other action code then onC lose»0. Zero means handle the event normally, ie close the
form. Conversely, if the Event action code is set to ~ 1 then the event is entirely ignored.

23121nvestigate the consequence of
onClose<« 1

or, alternatively,
Event<'Close' "1

both in IEM and under 0Dg.

Note that the way to terminate (D@ as a programmer developing a system is either by the keyboard
Ctrl+Break, or by the Session menu [Action][Interrupt], or via the SysTray APL icon - select [Weak
Interrupt] or [Strong Interrupt].

Within the program itself, one way to terminate [JDQ is via action code 1.
onMouseMove<1
This causes [JDQ to terminate when the mouse is moved over the Form. We shall make use of this shortly.

§§ 2.3.2 Tracing 0DQ

O0DQ ' F ' is just like the "immediate™ default processing of the Session with one very significant difference -
YOU CAN TRACE INTO IT! Itis possible on a callback to put a 05T 0P which causes it to suspend

when run, but tracing into (0D is a much more powerful means of debugging applications. (Use
[Options][Configure][Trace/Edit] with Classic Dyalog mode and Independent trace stack checked!)

23211n the Root space, write a function (as in §§ 2.2.3) called v.showv which simply displays its right
argument. Then create a Form with some Event or Eventssetto call vShowv. For example,
'"F'OWC'Form' ('Event' '"AIl' '"Show')
Then trace 0DQ by typing
DDQ 1 F 1
and hitting Ctrl+Enter. Tracing 0DQ ' F ' allows you to see all the callback code that is running - this is a
very important ingredient in debugging GUI applications.

Msg<[0DQ CVec a Dequeues events of CVec and returns a message

It is important to know how to terminate [JDQ under program control. This is especially important for time-
consuming processes that the user might want to terminate early. Controlled interruption can be achieved in
a two-step arrangement. First set some arbitrary event on the object to action code 1.

iQ Module2: Methods and Events Q

OBERTSON ORERTSON

'"F'OWS'Event' 501 1
OnQing an event with action code 1 just before a 0D@ can allow you to pass through a 0Dg in a loop while
waiting for some other Event. Then analysing the result of (D@ allows one to continue, or not.

2322y placing line

ONQ'F' 501
in a callback function, show that this will terminate (0D as soon as the enqueued event reaches the top of
the stack of events to be dequeued. (Tracing is not usually fast enough to both enqueue then dequeue.)

2323ghow that it is possible to monitor some arbitrarily complex looping process in a function, such as that
below, while still displaying a GUI via 0DQ
V Process;I;Sink

(1] '"F'OWC'Form' ('Event' 'Close' 1)('Event' 501 1)
[2] I+0
(3] Loop:~»Endx110=I<I+1
(4] ONQ'F' 501 a Enqueue event 501
(5] U«R<[DQ'F"' a Dequeue event at top of queue
[6] -~(501#2>R)/0 n Was that event a 501 or a Close?
(7] Sink<BEBEEEEE?200 200010000 o Good on a 3GHz machine :)
[8] o o 0 n eg ProgressBar object in herez
9] ~Loop
[10] End:

\%

Why does tracing through line [4] not have the desired effect? (Instead put a stop on line [6] and run.)

2324Trace 0D ' OSE " and interact with the session.

Immediate Execution Mode makes most objects come alive and be usable - but a few special objects
actually need ODQ to give them life. For example, a MsgBox requires a D@ to make it visible.
"MBX'[OWC'MsgBox'('Style' 'Info')('Caption' 'Info')('Text' 'Msg')

Y -

0DQ'MBX'

232310 [Help][GUI Help], investigate the wa i t method and the objects to which it applies.

§§ 2.3.3 Defining complex Behaviour

You now have all the ingredients necessary to write complex GUI applications that call arbitrary APL
functions as a result of user actions. These functions can modify the GUI itself or create new GUI objects
and pass user control from one object to another. Essentially, all the visible GUIs and the all functionality
to be found in Microsoft Office applications you can now reproduce in Dyalog APL applications!

It is quite a conceptual leap to go from traditional linear programming to object-oriented programming, but
you might not have that baggage... A GUI object on a user’s screen may now be teeming with programmed
hotspots that are ready to spring into action at the whim of the user and radically change his virtual world
(or indeed her real world).

21

Q Day1: Third Generation Dyalog APL - Objects Q

2331Below is a function that creates a 7o rm with a number of controls on it, and associates a number of
(undefined) callback functions with these controls. Run the function (via [Edit][Paste Non-Unicode]).
Consider various alternative styles in which this function might have been written. Discuss with your
partner good practices and what the callback functions might do in the completed application.

V MakeForm

(1] UCS'"Formi'OWC'Form' 'Address Book'(60 268) (266 238)+«
('"Coord' '"Pixel')('Event'('Close' 1))¥

(2] '"Label2'UWC'Label' 'Name:'(0 8) (24 32)4
("Attach'('Top' 'Left' 'Top' 'Left'))T

[3] '"Edit1'OWC'Edit" ''(0 u48) (24 184)<4

('Attach'('Top' '"Left' 'Top' 'Right'))('FCol'(0 0 192))4
("Event'('KeyPress' 'eEditKeyPress'))T

(4] 'Label3'WC'Label' 'E-mail:'(24 8) (24 32)4
("Attach'('Top' 'Left' 'Top' 'Left'))T
[5] '"Edit2'OWC'Edit' ''(24 u8)(24 184) d

('Attach'('Top' 'Left' 'Top' 'Right'))<
('Event'('KeyPress' 'eEditKeyPress')) {1
[6] '"EditBox1'OWC'Edit' ''(48 0)(184 232)4
("Attach'('Top' 'Left' 'Bottom' '"Right'))('HScroll' 1)<
('VScroll"' "1)('Style' 'Multi')('Event'd
('KeyPress' 'eEditBoxKeyPress'))T
(7] '"TrackBari1'OWC'TrackBar'+<
("Attach'('Bottom' '"Left' '"Bottom' 'Right'))('Limits'(1l 1))4d
('Posn'(232 0))('Size'(32 184))('TickAlign' 'Top')+<
("Event'('KeyPress' 'eTrackBarKeyPress')+<
('Scroll' '"eTrackBarEvent')('ThumbDrag' 'eTrackBarEvent'))d
(8] "Push1'OWC'Button' 'Close'(240 184) (24 48) <

('Attach'('Bottom' 'Left' 'Bottom' 'Right'))('Data'(1))('Defa+
ult' 1)('Event'('Select' 1))vT

Notice that extra spaces introduced at the front of the last line above would matter, whereas the spaces
introduced at the front of the second last line displayed above do not matter - through expected APL syntax
lenience.

One conceptual leap involved in object-oriented programming (OOP) relates to a new mental model of the
place of a program. Evolving from a linear sequence of instructions with a few (screen) choice entry points
and corresponding occasional embedded jumps (ignoring loops), OOP now conceives a model of a
hierarchy of objects bristling with their own individual software programs that may each arbitrarily modify
any existing objects and create with impunity other new bristling object hierarchies.

2332 sk for the next module on dot syntax. How did you get on with Module 2? Was it clear?

R ROBERTSON

(OBERTSON

Module3: Dot Syntax

§ 3.1 Object References

§§ 3.1.1 Making References with ¢ and «

The APL primitive function execute («) has been generalised to take the name of an object as its argument
and return a reference to that object (of notional APL dataType RefSc).

RefSc<«eCharVec a Returns scalar reference to object, named in Charvec

This extended execute enables one to assign arbitrary names to a single GUI object or namespace.
Feo'F!

This has no noticeable effect as 7 already refers to the Form.
Ges 'F!

This creates another ‘ref” to the 7o rm, previously identified by 7 but now, more or less equally, by G.

Arr<«RefSceCharVec a Returns result of executing Charvec in RefSc

The dyadic extended definition of execute, with a space to its left, means ‘execute Rarg in space Larg’.

Changes to the object of one reference will make changes to the object of all so defined equivalent
references as there is in (virtual) reality only one underlying object. Thus for example,

Fo'A«1"

Fcerdr b1

VAR<RefSc a Creates new name, v AR, for the object referred to

Assignment has been generalised to take a ref on the right and assign that ref to the name on the left. So
refs can be assigned to names in the same way as variables, and their values can be accessed just like
(shared) variables. Thus objects are like ‘deep variables’ with ‘shallow references’.

J<I<H<G

Frerdrni

He' A<5"

kretAtus
Notice that the 7o rm itself will not disappear on JEX ' F'' - not until the last ref to it has been erased.

In version 9.0 the system functions ¢ .S, ONQ and 0DQ accept namespace refs as arguments as well as
quoted names (character vectors).

Objects are essentially like variables and therefore, quite naturally, user defined functions may take refs as
arguments and return refs as results.

A number of other primitive APL functions have been extended to accept arguments that are references to
objects, or to return references to objects as their results.

BoolSc<«RefSc;=RefSc, a Determines the absolute equality of refs

If fRefSc,=RefSc, -1 then RefSc, and RefSc, are two references to the same space. Not equal (=)
returns the opposite. Match (=) and not match (#) have been similarly extended. (Note that fe=G=¢.)

BSc<«RSc;=RSc, a Determines the absolute identity of refs

*1L1Create two refs to the same object. Try varying some more or less subtle aspects of each ref (eg the
04T of some internal function) to see if their equality and identity can be made to diverge.

23

Q Day1: Third Generation Dyalog APL - Objects Q

In APL 1, arrays may be indexed or otherwise manipulated without giving them a name. From what we
have seen so far it would appear that objects have to be given a name, but this is not the case.

RefSc<«[NS() a Return aref, Ref Sc, to an unnamed namespace

Note|= ()=8
A (pseudo-niladic) call to 0N S returns a reference to an ‘unnamed’ namespace that can be manipulated just
like a ‘named’ object. This is such a natural candidate for a niladic primitive function that John Scholes has
suggested that it be given a special symbol, @, which one might call anon.

BSc<«n,=i, Whether namespaces are isomorphic

Isomorphism of spaces (=) implies ‘topological’ or operational similarity but not absolute identity.

@ New anonymous namespace such that F @=(nNs '

In Dyalog version 11, @ in fact has become the new executable niladic system functions, JTHTS.

BSc,; = BSc, Material implication of BSc, from truth value of BSc,

(Ff.=1,) = Fa.=i,
The truth table of implies (=) may be defined as
BSc, = BSc, - ~BSciA~BSc,
The most basic implication is that ‘if the truth-value of BSc is true then BSc, is also true.’
Logical Aside: P=Q,P . Q is a valid argument (Modus Ponens)

P=0Q,~Q =P is a valid argument (Modus Tollens)
P=Q,Q0Q=R .. P= R isavalid argument (Hypothetical Syllogism)

3L12Compare the deep similarity (isomorphism) of spaces 4 and B with the deeper identity of spaces ¢ and
D.

A<(ONS'' o B<[NS''!

C«D<[NS""
Although these objects have much in common with ordinary (APL 1 & 2) variables, the system function
) VARS does not report the names of global objects, and the name class of (scalar) objects is not 2, but 9.
Instead,) 0BS reports the names of global objects and J¥Z 9 returns a matrix of all ‘visible’ global and local
objects.

§§ 3.1.2 Parent.Child Hierarchy

a Returns a ref to the Root space

The display name of the Root space is the one element vector (, '#'), thus Fz#s, '#'. Similarly,
Fs[seu 'OSE" and furthermore f#=¢'#' and FJSE=e '[Jse’

NS Displays the name of the current namespace

If you change space to the Root space and hit) #.S then you will be told that you are in the Root space #.
is a direct object reference to the Root space, and SE is a direct object reference to the Session space.
Every Dyalog primitive GUI object that you can create can trace its roots to # (or JSE).

If we create a Form object in # called FRM then this object can also be referred to as # . FRM. This is
the beginning of Dot Syntax in Dyalog APL. Objects that are children of the Root can have # . prepended
to their name without significant repercussions. Thus objects may be referenced hierarchically.

CVec<«sRefSc a Returns the display form of Re fSc

In the above example we have |sFRMs ' # . FRM'. Inversion 11, ODF can modify the display form.

iQ Module3: Dot Syntax Q

OBERTSON ORERTSON

The Parent .Chi1d relationship is valid at all levels. If our Form had a child But ton called BTn then
this But t on may be identified while in # by the syntax Fry . BTN, relating parent and child, surname first.

Ay« . 1, a Returns a direct reference to subspace 1i,

By means of dot syntax, objects may be referred to in a hierarchical fashion. Dot syntax describes object
ancestry. If i, is a direct descendent (child) of 71, then 7, . i1, returns a reference to 7, from a space
containing space 7i;. The notation 7, is used to represent the name of an argument of dataType RefSc.

3121Create a ref to an unnamed child of an unnamed namespace.

VecCVec<«[OWN CVec a Returns the name of each child object of cCvVec

This system function returns the names of all objects whose parent's name is given in cvec.
In a clear workspace, given
"FRM'OWC'Form'
"FRM.BTN'OWC'Button'
then
F(OwN'#')=,c'FRM'»1and F(OWN'FRM')=,<'FRM.BTN'u1
Also
Uwn'{se'
OSE.cbtop [OSE.cbbot OSE.mb [OSE.popup UOSE.tip

Consider John, also known as John Scholes, whose name is now to be written as Scholes.John to avoid any
confusion with Daintree.John. In other words, prepending (rather than appending) the ancestral name
identifies more specifically that John in question.

§§ 3.1.3 Object.Object. .. Object.Object Rationale

Dot syntax can be used repeatedly to reference objects deep inside an object hierarchy. If, for example, a
Form F has a child Group ¢ which itself has a child Edi¢ £ and if 7. G . E is called while execution is
inside the parent of 7 then the result will be a direct relative reference to the £d i t object. If 7 is a child
of # then # . F .G . E will return an absolute reference to £ when called in any space.

An address label written as Country.City.Area.Road.Number.Surname.Forename might serve as a useful
model of a dotted hierarchy. A more precise analogy might be DOS (or UNIX) directories wherein C: is
like the Root # and symbol \ (or /) is analogous to a dot.

Unfortunately the dot in dot syntax formally does not play the role of any regular APL syntactic element. In
the current context, where dot has a namespace on either side and returns a namespace, the dot looks like a
function. But parsing function expressions from right to left implies that # . F . ¢ . E is equivalent to
#.F.(G.E) and G is not necessarily visible from the current space and may give a VALUE ERROR.

However, interpreting dot as a dualistic operator with namespace operands and derived result is more
consistent with APL uses of dot and with the required order of execution. Parsing operator expressions
proceeds from left to right implying that # . 7. G . E is equivalentto ((#.F) .G) . E as required.

3131Examine the display forms of the derived functions

+oxo+o0oxo0o+ L +o0ox o4+ ox o+

—.t.x.+ b -+ X .+

25

Q Day1: Third Generation Dyalog APL - Objects Q

Experiment with the effect of parentheses in these expressions and in other similar expressions in order to
exhibit various alternative roles of the operators.

3132\\rite an operator such as
v r<a(f 0 g)b

(1] r<a f g b v

and a set of functions such as
vV r<{ayf1 b

[1] :If o=[NC'a'’
[2] r<+b

[3] :Else

(4] r<a+bh
(5] : End v

then trace the order of execution of various expressions such as

3 (f1 0 f2) 0 f3 0 fu 0 f5 4 L0.75
Try to force syntax errors. Note any interesting conclusions.

§ 3.2 Direct Property Access
§§ 3.2.1 Object.Variable Syntax
The value of a variable may be accessed or assigned by name from outside a namespace.

Arr<i.VAR a Read variable named v AR inside visible space i

N.VAR<Arr a Write variable named v AR inside visible space 71

Namespaces can contain variables. Dot syntax extends to variable names to the right of a dot. This
facilitates direct access to variables in other spaces.

GUI objects are essentially namespaces containing predefined properties etc .. , and properties are
essentially variables. Therefore the above syntax should and does apply to objects and their properties.

$2L1access the Capt ion of the Form F directly from the Root, where

"#.F'OWC'Form' 'This is It'
Note that Owx must be set to 1 in space 7. The default value of Owx in a clear WS is determined by the
value of the registry parameter default_WX. This can be changed in the registry using REGEDIT.EXE at
location HKEY_CURRENT_USER\Software\Dyadic\Dyalog APL/W 9.0 or directly through the APL
Session in [Options][Object Syntax][Expose GUI Properties].

3212Create a calendar CAL ona Form F and experiment with properties such as
F.CAL.CircleToday<0
F.CAL.CalendarCols<«?6pc3p255
F.C.MinDate<38717 A 2006 1 1

%213Createa RichEd it RE ona Form F and experiment with properties such as
F.RE.SelText<«(1 1)(1 20)

.RE.CharFormat[1]<«c'Italic'

.RE.CharFormat[5]<«50 a Superscript

.RE.PageWidth<5x1440

.RE.ParaFormat[1]<«c'Centre'

.RE.ParaFormat[3 5]<«288 1

Ry Ry

f& Module3: Dot Syntax Q

OBERTSON ROBERTSON

§§ 3.2.2 Object.Object. .. Object.Property Rationale

3221Create a namespace # . A. B. C . D containing a variable v with the value 1. Access this variable from
each of the spaces #, 4, B, C and D.

The analogy with DOS directories can be extended to files in directories. File names at the end of a
directory string are like variable names at the end of a namespace string.

3222Create a Menu on a MenuBar ona Formand set the Capt ion and Act ive properties of the e nu
directly from the 7o rm space.

Since objects are essentially APL variables, the rationale behind multiply dotted expressions ending with a
variable name is exactly the same as that for a similar expression ending with a namespace.

§§ 3.2.3 Using Object.Object. .. Object.Property Constructions

Object construction, as used in Visual Basic, can now be adopted, almost in totality, by APL. This makes
translation from VB often very straightforward. In particular, macros recorded in Microsoft Office products
can be viewed in VBA (via Alt+F11) and generally can be translated easily into APL. This, as we shall see
later, is a powerful way to transcribe Office VBA into OLE programs in APL.

$231Rewrite the function v 4kE Formv in §§ 2.3.3 setting as many properties as possible using direct
assignment from the Root (or by any preferred compromise with or without 0Ow...).

§ 3.3 Direct Method Invocation

Like much of the Dyalog APL implementation of GUI concepts (such as the use of name-value pairs), Dot
Syntax is imported from mainstream GUI-oriented computer languages such as C#, Visual Basic and Java.
Dot Syntax is a shorthand notation that can be used to specify the properties of any object or to call any
method on any object without explicitly having to be (executing code) inside the object space. One
difference worth noting, that we emphasise later, is that the object hierarchy in APL is more literal than that
found in VB, which is more notional.

§§ 3.3.1 Object.Function Syntax

f«fi.g a £ refers to function g in space i

Namespaces can contain functions. Dot syntax extends to function names on the right of the dot, allowing
immediate access to functions in different spaces. The functions may be niladic or ambivalent and their
arguments are found in the correct places for dot to be interpreted (informally) as an operator.

In this case the dot has a niladic, monadic or dyadic function g on its right and a space 7 on its left and
returns a function 7 — essentially a call to function g from the current space from which 7 must be visible.
Here the dot looks more like the familiar primitive inner product dot operator that takes a dyadic function to
left and right and returns a derived dyadic function (f,<h,.g5,).

Again the space on the left, 11, can be replaced with a dotted string referring to any arbitrary subspace.

Some justification for this extension has been given above.

3311Run a function defined in one namespace from another namespace, paying particular attention to the
values of local and global variables and to the spaces in which sub-functions are actually executed.

27

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 3.3.2 Object.Object. .. Object.Function Rationale

Primitive as well as user-defined variables and functions succumb to dot syntax.
F.010<«0
F.i 950 1 2 3 4 56 7 8
In keeping with rich choice of algorithms that APL frequently affords, this introduces more choice. eg
F.e'Caption'vF.Caption
'"F'e'Caption'uwF.Caption
Fe'Caption'uF.Caption
All these expressions give same result, with natural extension of dot syntax to primitive functions ¢ and 1,
and a natural generalisation of dyadic execute already alluded to. In the case of a scalar ref, dyadic execute
gives the same result as Arr«<RSc.e¢CVec, ie RSc.eCVecuLRSceCVec

The following three statements all have the same effect: JEx'F.¥B.M" or F.JEX'MB.M" oOr
F.MB.OEX'M'. OWN may also take a dotted character vector argument and return a dotted result:

(OWN'F.MB')b ,c'"F.MB.M'

In Visual Basic, you can use the dot syntax to access properties and invoke methods. For example:
Application.Workbooks.Add() calls method Add (with no arguments) from the collection object
returned by the Workbooks property of ... Note that the value of a property may be an object.

Dyalog APL dot syntax for functions extends to (niladic and monadic) methods, as in VB. eg

.RE.RTFPrintSetup ¢
.RE.RTFPrint F.RE.RTFPrintSetup'Selection'
.GetEnvironment'MaxWsS'"

F.CAL.SelDate<#.DateToIDN(2003 12 1)
The last two examples invoke methods on the Root. Root methods and properties are exposed according to
the setting of [Options][Object Syntax][Expose Root Properties] which, by default, depends on the value of
the registry entry PropertyExposeRoot and not on the value of 0w x.

F.Close

F.CAL.KeyPress upc'RC'

F.CAL.Size<3 4xF . CAL.GetMinSize

F.CAL.MouseDown 77 13 1 0 ¢ F.CAL.MouseUp 77 13 1 0
F.RE.GotFocus & a F.RE.GotFocus()
F.RE.RTFPrint @& @ F.RE.RTFPrint()

F

F

#

§§ 3.3.3 Defined Operators in Object Space
333.\What is the interpretation of # . +. #. x ? Could you space-qualify the inner product operator?

Dot (.) is not a token with a strict interpretation as a rational APL syntactic element - a variable, function or
normal operator. To see this clearly, consider dot syntax as applied to user-defined operators.

Given an operator 0, in space # . A. B, this operator can be referenced from any point in the code by the
notation # . 4.B.0, . If dotis to be interpreted as an operator, then this dotted list of tokens involves a
dualistic operator adjacent to another operator, which is a situation that would set a new precedent in APL
grammar.

The complexities of interpretation are not helped by the fact that dot is already used in APL in at least two
other different places. It is a neutral symbol used to represent the decimal point. (Perhaps in a later version

f& Module3: Dot Syntax Q

OBERTSON ROBERTSON

of APL this symbol will be supplied by the decimal symbol in [Control Panel][Windows Regional and
Language Options].) Dot is also used for the primitive inner (.) and (irrational) outer (- .) product
operators. Normally, once a symbol or token has been used to represent an operator then it must always
represent an operator (see APL Linguistics in Vector Vol. 2 No. 2 p118 for some discussion of this).
Therefore the dot in dot-syntax should be assumed to be an operator, given no other evidence to the
contrary. (Remember, however, that the reduce operator (/) and the replicate function (/) unfortunately
exemplify such a contradiction, albeit tolerated. Can you think of the other principal case?)

As a rule of thumb, the meaning of a dot (the big dot . here) may be (partially) interpreted by the class of the
token to its left. In the special ‘extra-APL' case of a decimal point, the symbol immediately to the left
clearly must be a numeric digit or space. The interpretation of the class 2 case is outlined in Module 11. As
we have seen above, the class 9 case includes various classifications of right ‘operand'.

Class of Larg of, | Syntax (Grammar) Semantics (Meaning)
©) D.... Decimal number < 10
0) D..D.... Decimal number

0) .D... Decimal < 1

1 Label

2 .RefArr,... See Modulell

2.1 Variable

2.2 Field

2.3 Property

3 .fe... Inner Product

3 ... Outer Product

3.1 Canonical Function
3.2 Dynamic Function

3.3 Derived Function

3.6 External Functions & Methods
4.1 Canonical Operator
4.2 Dynamic Operator

©) .Ref,... Dot syntax

9.1 Namespaces

9.2 GUI Object

9.3 Instances of Classes
94 Classes

9.5 Interfaces

9.6 NET Classes?

$332\What conclusions about the tokens involved can you draw from the syntax of the statement #. 4. B[X]
or#.A5.BOr#.A .50rB.0Or#.57?

3333 ask for the next module on the Session Object. How did you get on with Module 3? Was it easy to
follow?

29

ROBERTSON ROBERTSON

OBERTSON

Module4: The Session Object

There is only one object of Ty pe Root, called #, and there is only one object of Ty pe Session, called
OSE. OSE itself has properties, events and methods, and can support certain types of children, just like
other objects. In the development version of Dyalog the child content of 0SE is loaded from a DSE file
when APL starts. In the runtime version 0SE is empty of children but still retains its own innate
characteristics. First we shall approach the Session object from the point of view of a user of the
development environment. Then we shall explore its contents from the point of view of an object-oriented
programmer.

§ 4.1 Using the Session Object

§§ 4.1.1 Inmediate Execution Mode of SE

An APL session is, traditionally, the environment wherein one writes and executes APL code. In APL 1 and
APL 2 eras of Timesharing, the session was available for the period of time during which ones terminal
was connected and signed on to a mainframe computer running APL. Now, in APL 3 and APL 4 eras of
Windows, the session is the window in which one executes APL expressions and defines APL functions.
(See Vector Vol.3 No.3 p97 for mention of an early graphic vision of APL 3.)

/% CLEAR WS - Dyalog APL/W

File Edit Yew wWindows Session Log Action Options Tools Help
wi M EME S Obee B B 8 v Tool @) (3 . |Edi
Dualog APLAH Uersion 9.0.5 -E |
serial Mo @ 000678 » Pentium Mrerﬁj
Fri Dec 2 14:18:45 2005
clear Ws
=
=
W |
Debugger [Tid:0] Blo| x|
showsHide Horkspace Explt Ins HO MUH
Corlbg: (&:1 OoR:1 OTRAP |OsI:0 |OI0:1 OHL:0

The window is live. Expressions are, as ever, executed as soon as the Enter key is pressed. (Enter initiates
execution of the code on the line inhabited by the cursor.) Immediate execution now extends to GUI
objects. Objects are displayed as soon as they are created. Objects respond to mouse and keyboard when
created in the development environment in the same way as they would in the runtime environment under
0DQ. This takes the Dyalog APL Session to a new level of interactivity as regards the modern GUI nature
of immediate execution.

§§ 4.1.2 Tracer and Editor of 0SE

In the days of timesharing, one of the most important keystrokes to learn in APL was how to stop execution.
Every second of execution time cost real money, so you had to learn Ctrl+C early in your career. Now, on
a PC, runaway code is less frightening so Ctrl+Break is, perhaps, less important than:
e Ctrl+Enter initiates step by step execution of the code on the current line
e Shift+Enter opens for editing the program located under the cursor (or the suspended
function when the cursor is in column 1)
e Ctrl+Shift+Enter jumps over the current line in the tracer (cf Ctrl+Shift+Backspace)

30

iQ Module4: The Session Object Q

OBERTSON ROBERTSON

Other significant keys, such as Esc, are all listed in the current .DIN input file whose name and location may
be discovered from the result of
#.GetEnvironment ‘'aplkeys' ‘'aplk'

*1211nvestigate, using Notepad.exe, the content of your current .DIN file. Use the function KZYPRESS in
supplied workspace ..\WS\UTIL.DWS to investigate your keyboard further.

The GUI implementation of the APL Session ought to follow, as far as is reasonable, the general Windows
standards. Compare Microsoft’s Application Development Guide with details in Dyalog APL User Guide.

§§ 4.1.3 Choosing syntax Colours

Syntax colouring is a valuable aid to reading and writing APL programs. The choice of colours should
make some sort of sense to the programmer, viz you. It is particularly important to choose nice meaningful
colours for global and local names. There are many possible criteria. Very pale background colours for
some of the elements seem to work well.

+131H0w would you colour the various syntactic elements in APL?

Below is a suggested scheme whose philosophy rests on a proposed correlation between name class (OnNC)
and approximate frequency of the colour. Elements of class 1, 2, 3 and 4 are aligned with the spectrum of
colours: Black Red Orange Yellow Green Cyan Indigo Violet White, or any intermediate colours/intensities.
(For this purpose name class 9 is regarded as name class 2.) Unclassified APL symbols may be placed in
any suitable position in the ‘class spectrum’ from labels (1) to operators (4).

Class | Syntax Colour Syntax Element
0 Line Numbers
1 Black Labels
1 Dark Red Control Structures
Red Error - Unmatched parentheses, quotes, and braces
2.1 Orange Character constants
2.1 Dark Yellow Numeric constants
2 Black on Pale Red Localised System Variables
2 Red on Black Global System Variables
2.4 Black on Pale Yellow Local GUI Property
2.4 Global GUI Property
2v3 Black on Pale Green Local Names (functions and esp” variables)
0 Dark Green Comments
3v2 Black on Pale Blue Global Names (variables and esp" functions)
3 Black on Pale Cyan System functions
3.2 White on Light Indigo D-Fn name
3v4 Indigo Primitives (functions/ops/special...)
4.2 White on Light Violet D-Op (monadic)
4.2 Violet D-Op (dyadic)
White Background

31

ROBERTSON ROBERTSON

Day1: Third Generation Dyalog APL - Objects

X

Dyalog APLIW Colours E| Dyalog APL/W Colours X
AT Swess | pene st [o] swew| pos
Syntan]Vanab\es} Sssslonﬂlace} Slalus] Spntax Variables 1 SESSiﬂW’T'aCE} Statusl
[ol Colours nc:local:o:0I0:dfm:f & dummy function Foreground _[a]x] (Al Eoreground
[1] 010+«1 fi local sys war - 5 " "
2] OTRAP0 'C° 'sErrars’ @ global sys var File Edit Search Options File Edit Search Options
[3] local«'char const' @ local + char const Background _ Background
[4] global«<1.2 2 3 4 5 fi global + num const _lolx
[5] :For o :In JOML mc A keyword + sus fn 4 =101 4
File Edit Search Options
[al OSE.PRINT OCR o f global name
(71 :EndFor @ keunord ¥ Enable Colouing 3456748 il 3}
[s1 “1alx File Edit Search Options
[31 Errors: @ lakel . - h —
(107 CCH=0)/B1e< 'missing A errors I Single Background File Edit Search Options r
[111] Editable Vector of
[121 dfne{lrslte+ {an wi{ww wr+u? A Dynamic function Char Vectors
[131 «"Dualog APL' # Local Property
' ' i] .3
[14] «'Dyalog APL # Global Property Color Element : . =10] x| [Color Element
Bl ERN Seaeh QpiEns File Edit Search Options
- Editable Char Vector Z C4 E 7 8 510 -
oK Cancel ‘ Agply | oK Cancel ‘ Agply |
Colour for Comment 0:128:0 on 265:255:255
Dyalog APL/W Colours E| Dyalog APL/W Colours g|
Schemes [R Savedis Delete Schemes Save bs Delete
Syntan | Variables | Session/Tracs | Status | Syntay Variables | Session/Tracs | Status |
H so:0I0:dfn:f a i E d
EEH E?ésgr‘s nc:local:o:000;dfn;:f . Tg:ztf g:z::;'?n Foregroun ol o] Farsground
rz1 OTRAF0 'C' "sErrors' A global sys var FEile Edit Search Options File Edit Search Options B -
[al local«'char const' A local + char const Read Only Character “quad0R a
[41 glubaleﬁ 2345 @ global + num const | o0 o e B
[5] HER o Bl 4ONL no A keyword + sus fn 1~ " = =]~
(6] OSE.PRINT OCR o A global name [Ho [Eeit Sesh Ol 0
(71 A keyword Elamart 2345678910 B I=TE ||
[63 - | file Edit Search Options =emen
£s] Backgiound - File Edit Search Options ditable [Character Matiices |
1ol q latrix
[111 I Single Background Editable Uector of
[121 A Dynamic function o Char Vectors
£131 A Local Property [Function Editor o]
[14] Caption+"Dyalog APL" A Global Property ¥ Session Input < =10l —(Olx]
y Ele [E6i Soensh Do File Edit Search Options
I Oy cunent input e [aitable Char Uector \;IELLET == jof
Closs | ‘ Close | ‘
Colour for Background 266 265: 255

The main Session window can also be coloured. See [Options][Colours...][Session/Trace] tab.

B=E

- E:\ab31Mar4 - Dyalog APL/W
File Edit

Wiew Windows Session Log Action Options Tools Help

wi M EES | |EdByE v oo |[Ohiect BTE S VvV EE T
Google | E
1 A
P93
1
grep trawv'sIPHode'
20 _func traw)_rarg:_subs:OHL:0OI0 & In each space: _func _ra

f Default to o
A Change to g

O=ONC'_root' ¢ _root<=ONSI ©
"trav'=0C5"(20NEI) _raoot
"trav'OCE=0MSI
"trav'0Cs _root
_rslt«,=_func _rarg
xp_subs«dONL 9
_rslt,«t,/_func trawve_rarg _subs

2]
2]

i Result for t
A Anu sub spac
A Trav sub spa

HO
OsI:o

HUH
O1o:1

Ins

OTRAP

Ready...

Curlb,j: OML:0

grep CUndef &:1 aDQ:o

APL code for the Google bar appearing in the session above was kindly given free to
dyalogusers@yahoogroups.com by Norbert Jurkiewicz and is discussed a little in Module 8.

mailto:dyalogusers@yahoogroups.com

EQ Module4: The Session Object Q

OBERTSON

§ 4.2 Inside the Session Object
§§ 4.2.1 Exploring the Workspace and [SE

The 0SE window appears to be built from something like a multi-line Ed i ¢ object ora RichEd it object
just as the ¢r id object appears to be built from a matrix of Labe 1 or Edit or Combo .. objects. Normally
we can only explore these superobjects to the point allowed by the object programmer who decides (as we
shall see later) which properties, which methods and which events to expose to the outside world. These
lists can be found from the PropList, Met hodList and Event L ist properties of 0SE. (Note that
[Options][Object Syntax][Expose Session Properties], or the related registry parameter PropertyExposeSE,
has to be set in order to expose the GUI names of the Session object.)

*211Change into the Session space and examine its properties. Assign Posn.

§§ 4.2.2 Examining Session Menus and Buttons

The quickest way to gain an overview of the contents of [JSE is by way of the Workspace Explorer, to be
found in [Tools][Explorer...] or via the Explorer button, ‘tipped’ on the session image in §§ 4.1.1

&1 Exploring CLEAR WS [[]SE.mb.file] - Dyalog APL/W

File Edit Wew Toals
Horkspace Tree Contents of OSE.mb.file
* # A/ Mame | Description 2
= OsE [Ejavtoocs Henultem: &Make OCK-/D...
=[] chbot Emclear Menultem: &hew
-1-[e] bandshl [Econt Menultem: Congtinue
¥ sh [Elcopy Menultem: &Copu...
+ bandsh? [Edrop Menultem: &Crop...
+ chtop [Egload Menultem: &Open...
= mb [EImakeocx HMenultem: Ma&ke OCH/D...
+. (& action [Eoff Henultem: Efxit
e edit Eprint Henultem: &Print...
Sg File Eprintsetup Menultem: Print Setfu...
&) autooc [Elzave Henultem: &Save
cloar [E]saveas Henultem: Save &As...
cont v (@151 Separator v
4 4 h »>

#221se the Workspace Explorer to investigate the object hierarchy of the Session object.

42221n the explorer, use right click [Set Session Space] to change into the space of the Explorer
ToolButton Bitmap,USE.chtop.bandth3.tbh.explorer.bm,and display the value of the
Bits and CMap properties.

4223| ook at the value of the Event property of the MenuItemsin Menu space OSE.mb.file. The
Se lect event of most MenuTItems inthe Session has a bracketed keyword that performs some specific
function outside of APL itself. These calls are specially crafted for the Session object although you can
make use of some of them in your own applications if they are appropriate.

4224\ hat happens if you change the Event property of the 0SE . mb. file. load Menultem from

Event & ,c'onSelect' '[ChooseColors]!

to
Fvent < 0 0

#225Replace the Tip onthe ws load ToolBut t on with the word 'Open’, and the Hint onthe Ioad
MenuItemto 'Opens workspace file'.

33

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 4.2.3 Miscellaneous Properties and Methods
Some properties have obvious meanings. (Can you see the verb have here as a scalar dyadic function with no result?©)

“231Try changing OSE. State or USE.Size.

Other properties have a more session-specific role. For example, the Curob j property can be useful in
session-related functionality such as the Too IBut t on version of varChar. [JSE.Curo0bj reports the
name currently under the input cursor. Its value is reported in the session St atusBar and its significance
may be appreciated by clicking on various names in the session window and viewing the message reported
onthe StatusBar.

The session Font 0b j property is useful, although the version 9 session is not best geared to non-fixed-
width or large true-type fonts. version 11 is better, and obligingly includes a format bar in the session.

#232\\rite a function, such as that below, which loops round changing the 0SE . Font 0b j property to each
of the fonts in your Font List inturn. Trace vTestFontsv. Notice the effect in the session. Be
prepared to close APL if the session becomes illegible (or hit Ctrl+Shift+Enter to get to line [9]).

vV TestFonts;av;a;c

(1] 16 16pav<{AV[1+0ONXLATE 0]
(2] a<> #.FontList

(3] a<alhtal

(4] c<1

[5] Loop:~»(c>>pa)pknd

(6] OSE.FontObj<«coa

[7] ct+<«1

(8] ~Loop
(9] End:0SE.FontObj«'dyalog std'v

a Parent of the current space

1s analogous to the use of .. in DOS. ## returns a ref, as can be verified from statements such as
P<##0HINC'P'u9

42335 ggest a use for method (SE . creat e, bearing in mind that runtime systems do have a session
object, albeit initially empty.

4234Copy the function vDISPLAYv from workspace ..\ws\util.dws into the session object and set 1PATH
to 'OSE". Why is this useful?

§ 4.3 Building the Session Object
§§ 4.3.1 Tracing vBUILD SESSIONV

#3111 oad the supplied workspace ..\ws\buildse.dws . Choose a country from the list
Trans.CODESw'UK' 'FR' 'IT' 'FI' 'US' 'GR'

and type and trace vBUILD_SESSIONv with a Rarg of the language key of your choice; English, French,
Italian, Finnish, American or German. (This choice would normally match your innate keyboard language
and the language set in [Control Panel][Regional and Language Options][Languages][Details].) Watch the
component objects being built from the contents of the current (.DSE) session file (as identified in registry
parameter Session_File or as set in [Options][Configure][Session]).

iQ Module4: The Session Object Q

OBERTSON ORERTSON

+3L2practice tracing parts of the code and running others. Find the quickest keyboard-tracing route to some
particular point in the code. (Seta [0ST0P on the target line by using your mouse when the cursor is in the
first or second column on the left side of the edit window, first checking the editor menu items in [View].)

§§ 4.3.2 Foreign Language Support

+321Byild Sessions in other languages. Marvel at the changed ¥enus, Hintsand T ips. Notice how
standard menus and menu items make (almost blind) navigation possible. Any APL application may be
made multi-lingual by the techniques employed in this workspace (see variable Trans.STRINGS). Note
the [Session][Open] ¥enuItem, and also the [Log][Open] ¥enuItem which opens a .DLF log file that is
maintained separately from the .DSE session file. The session file is, however, entangled with the contents
of registry parameters that are described in the Dyalog APL User Guide.

Note that all the Dyalog APL manuals, the User Guide , the Language Reference, the Object Reference...
are freely downloadable from http://www.dyalog.com/documentation_library.htm.

§§ 4.3.3 Adding useful Extensions

#331Add a new [File][Open] #enuItem whose purpose is simply to tie an APL component file. Assign
the onSe Iect property of a F i IeBox object (with .DCF file filter) to the name of a function such as that
below.

onSelect<«'selectOpen'

vV selectOpen
(1] '##.FB'UWC'Filebox' 'Open'
(2] r<##.0DQ'FB'
[3] @ Tie the file In r Vv

4332ndd a Too 1But t on to the session that DISPLAYS the Curob j-Value pair in the session. (The
workspace version of varChar makes use of 0SE . Curobj in the APL development environment.)

#333please ask for the next module on Control Structures

35

http://www.dyalog.com/documentation_library.htm

&

ROBERTSON

Module5: Control Structures

§ 5.1 Logical Decisions and Jumps

In APL 1 and APL 2, program flow was controlled by branch (=) and also, sometimes, by execute (¢) or
OSIGNAL plus OTRAP. In APL 3 program flow may be controlled by more readable control structures
such as : 7f. There are 8 different types of control structures in Dyalog APL. They are defined by the
controlwords : 7, :While, : Repeat, :Forand : Select, :With, :Trap, : Hold. Like line labels,
these structures are only usable inside programs, and not in immediate execution mode.

§§ 5.1.1 The : I f Statement

: T £ offers a simple readable alternative to a common traditional application of the branch arrow (-).

:If Propo¢ ..¢:End

a If Prop is true execute..code

If fprop,ie Prop=11u1, where Prop is a logical (Boolean) proposition and therefore either true(1) or
false(0), then execute the code indicated by ..., otherwise end the : 7 f statement.

:If Prop¢..o:Elseo ..

o:End

a If Prop is false execute second ...

If FProp, then execute the code indicated by the first ... expression(s), otherwise therefore f~Prop. In this
case execute the second ... expression(s) before ending the : I 1 statement.

:If Proplo..o:Elself Prop2¢ ...

o:End

A : If statement may be embedded within another by means of the : £ Ise I f conditional.

5111pewrite
¢ (0=0NC'Forename')/'Forename<«"'"'"'""
ina :If statement.

§§ 5.1.2 Further truth Conditionals

:If Proplo:AndIf Prop2¢..¢:AndIf PropNo..o:End

Any number of : And 1 f conditionals may be included after : 77 or : E1se or : EIseIf conditionals.

:If Propl¢:0rIf Prop2¢..¢:0rIf PropNo¢..o:End

Any number of : 01 f conditionals may be included after : 7f or : Else or : ElseIf conditional
segments. But note that : AndTfsand : 0rI s may not be mixed within individual segments of code.

>!#'Rewrite the function below in APL 1 (1* generation) language.

(1]
(2]
[3]
(4]
[5]
(6]
(7]
(8]
(9]

vV pass(A B C D E)

:If A
:AndIf B

'A and B'
:ElselIf C
:0rIf D
:0rIf FE

'C or D or E'
:Else

'not A and not

C 1

36

iQ Module5: Control Structures Q

OBERTSON

[10] :End
\Y

Which notation is more legible? What other pros- and cons- can you identify?

>122Rewrite the expression

Q(PAQ)/“'P and Q'
without using any of the symbols ¢~ where P and @ are propositions. Replace (P~Q) [J with another
arbitrary logical expression involving logical connectives and (»), or (v) and not (~), eg
((PvQVvR)A~PaQ), and rewrite the formula in a : I f statement control structure?

§§ 5.1.3 The : Se lect Statement

: Se Ject is another simplified alternative to branch ().

:Select Arro:Case Arrio..¢o:Case Arr2o...0...0:End an Execute...case

Execute the code in the : Case segment expression which satisfies f4rr=4Arrny . The last ... in this
structure implies the possibility of more : Case ArrXo... code snippets.

:Select Arro:Case Arrio..o:Case Arr2o...0...0:Elseo...o:End

>131Run the function below with various sorts of arguments, such as What I's ONULL if in version 10+.
V WhatIs I

(1] :Select I
(2] :Case 1 o 'I=1"
(3] :Case 2 o 'I=2!
(4] tElse o '"((I#21)A(I#22))v(~I=1)a~I=2"
(5] :EndSelect
v

and then replace : £ I1se with a suitable : CaseL ist conditional qualifier, the precise definition of which
is to be found in [Help][Language Help] or the Dyalog APL Language Reference manual.

§ 5.2 Looping Constructs
§§ 5.2.1 The : For Statement

In many computer languages, a For statement provides a compact way to iterate over a range of values.
: For is another specific alternative to using branch (-).

:For Var :In Veco¢.Var...o:End a Execute .Var... for each Sc in ,Vec

In each iteration, v ar takes the value of the next element of vector ,vec.
>211Rewrite the expression +/NumVec ina : For Sstatement, using D40NITOR to compare efficiencies.

>212\\hen might this looping mechanism sometimes be preferable to using operators such as each (**)?
Hint: try tracing examples of both options.

>213Convert a looping statement such as
Loop: ©..o =Loopxxt1Bool
into a : For statement.

37

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 5.2.2 Generalised : For Statements

The var entry may be replaced by multiple variable names. In this case vec is expected to be a vector of
vectors and the N™ variable in the list of names is assigned at each iteration to the N™ element in the
disclosed next element of the control vector.

:For Varl Var2 .. :In VecNVeco.Vari.Var2...o:End a Strand

In each iteration, v ar v takes the value of the N™ element of iteration subvector of the control vector. An
example of a valid line in this case might be

:For Vl V2 V3 :In (l 2 3)(”’ 5 6)()

An alternative definition is used if : Tn is replaced by : TnEach. Again Vec is expected to be a vector of
vectors but in this case the N™ variable in the list of names is assigned, at each iteration, to the next element
in the N™ element of the control vector.

:For Varl Var2 .. :InFach NVecVec ¢.Vari.Var?2...o:End a Distribute

In each iteration, v ar N takes the value of the next element of vector N>NVecVec. Anexample of a valid
line in this case might be
:For V, V, V5 :InFach (1 4 .)(2 5 ..)(3 6 ..)

In Modulel1 we shall see how a collection object may be treated asa Vec ina : For statement.

§§5.2.3 : Repeat and :While Loops

:Repeato...o:Until Prop a Repeat execution of ..until FProp

This is necessarily an infinite loop unless proposition Prop can change from false to true in the ... process.

>231\Write a 2-line function with the infinite loop

(1] :Repeat ¥[2] :Until 04

Run the function and break the execution in a number of different ways. Now convert to a 1-line function
[1] :Repeat ¢ :Until 0

Try to break this loop. Be prepared to close APL. Repeat the experiment simply with [1] -1 . Avoid
such tight loops.

:While Propeo...o:End a Execute..while FProp

>232) oop round, executing some code, while proposition Prop is true (1), or :Unt il Prop2 is true.
Note : AndIf or : 0rIf may be included in the structure logic of :whi le and following : Repeat.

§ 5.3 Digging
§§ 5.3.1 The :w it h Statement

:W it hisan alternative formto JCS.

:With Objo...0:End a Execute..within object 0bj

iQ Module5: Control Structures Q

OBERTSON ORERTSON

0b j may be the name of an object (string) or an object reference (value). The lines of code in ... are

executed inside the space of 05 ;. The effect of : it h is similar to that of Jc.s. Local variables in the
outer space continue to be visible.

>3 Write a function like

Vv drill
(1] :With OSE
[2] :With chbhot
[3] :With bandshi
(4] Dockable
[5] : End
[6] : End
(7] : End
v

to drill into OSE.chtop. i 1h.bmand display the Ty pe property at each level.

Within the Dyalog function editor, [Edit][Reformat] indents control structures and substructures according
to the settings in [Options][Configure][Trace/Edit]. As in the case of the : For statement, : v i ¢t h extends
to Collections, as described in Modulell. :w it A also extends to unnamed namespaces, as described in
Modulell too.

§§ 5.3.2 Digging into SubSpaces

In an APL program one is usually working with local variables and functions all in the same space. It
would therefore be tedious to prefix all names with the full space-qualified name, especially for deeply
nested spaces. As we shall see when looking at 0 LEC 1 ient objects in Module7, the : it A control
structure plays an important role in identifying and changing the current space in a program.

§§5.3.3 : Trap versus [JTRAP
: Trap is asimplified version of JTRAP.

:Trap ENumo...o:End @ Trap error(s) ENum and execute

When running code ..., in the event of an error having an error number which is in the list E¥um, no default

error action is taken and execution is passed to code after the end of the : 7rap control structure, if there is
any. This is similar to the action of something like JTRAP<ENum 'C' '-»1+[LC'.

:Trap ENumo..o:Elseo...o:End @ On error in first..., do second ...

If an error of type ENum occurs in the first ... segment, then pass execution to the second segment and do
not report the error. Further, disable the error trapping prior to processing the second segment.

:Trap ENumo...0o:Case ENumio...o:Case ENum2¢...¢...0:End a Split cases

The last ... in this structure implies the possibility of more : Case ENumXo... code snippets. Furthermore,
asinthe : Select control structure, : CaselList and : E Ise segments may be used here too.

For a summary of the : Ho 1d statement, see multi-threading in Module13.

>33 sk for the next module on OLE Servers

39

&

ROBERTSON

Module6: In-Process OLE Servers

§ 6.1 Creating an OLE Server in a DLL

§§ 6.1.1 The 0 LEServer Object

Obiject Linking and Embedding (OLE), released in 1991, was the result of the evolution of Dynamic Data
Exchange (DDE) that Microsoft developed for early versions of Windows. DDE was implemented in an
early version of Dyalog APL through shared variable syntax. OLE is more powerful than DDE and can
handle compound documents containing text, graphics, video, and sound.

This new Microsoft platform for software components evolved to become an architecture known as the
Component Object Model (COM), and later Distributed COM (DCOM). COM has been called, "The centre
of the Microsoft universe™ although the name was not emphasized until 1997. Introduced in 1993, COM is
used to enable interprocess communication and dynamic object creation via any programming language that
supports the technology. The term COM is often used in the software development world as an umbrella
term that encompasses OLE, OLE Automation, ActiveX, COM+ and DCOM technologies.

In particular, OLE allows objects from one application to be embedded within another.

L1110 a clear ws, create an object called SvrAdd of Type 0LEServer. Rename the ws to SvrAdd.
§§ 6.1.2 Exporting Variables and Functions as Properties and Methods

61211 space Svr4dd, write a monadic, result-returning function, add, such as that below, or, perhaps, a
more meaningful example.

im SvrAdd.add
File Edit WYiew

Dptions

[0l
[11]
[2]
[3]

Functian

[eadd A_B:A:BE

A BeA_B

:If B=CHEAT ¢ A~-A ¢ :End
ReA+B

TMPES13:10y01... Pos: 0,1

2 #.SvrAdd.add - Properties

Right click on the function add and select

Tope [Modifier

[Properties][COM Properties]. Check the
Exported check box then click on Param1 and hit
the down arrow key. Set all types to
VT_VARIANT, or any more specific type. The
properties box should then look like that in the
adjacent property page:

The Method radio button should be checked by
default. Select OK to set the function argument
and result type information as defined in your

property page.

40

WT_WARIANT

=l

WT_WARIANT
WT_WARIANT

]
B

Help

[Exported

& Method O PropGet © Prop Set

o[

Cancel

N

= Module6: In-Process OLE Servers oy

0122Create a variable called cHE AT with value A|7.5vihdd CHEAT - Properties)]
zilde (s). Right click on the variable name and et ;"E'g"“ff"”??”‘?iﬂl S
select [Properties] [COM Properties]. Check the I R E

Exported check box. Change the type of the
result to VT_VARIANT and hit OK to set the
variable type information.

§§ 6.1.3 Saving and registering your OLEServer

@ Status

6131Check the menu item [File][Make OCX/DLL B gptons

on)SAVE] (in version 9) and save the workspace. Processing OLEServers. ..

This returns a status information box if T e o o 10 G e LosatSurfiad. Lk
[Tools][AutoStatus] is checked. Erportod variabis CHEAT

Done swrAdd
Finished processing OLEServers

At this point, Dyalog APL automatically updates

the Windows registry and type libraries with all of Fegisterins In process Server
the information needed to make your object
accessible via COM. SvrAdd.TLB should be Close

stored in a suitable directory.

Note that [File][Make OCX/DLL on)SAVE] has been replaced with [File][Export...] in versions 10&11.
(From version 10, in-process OLE Servers and ActiveX Controls may be bound with either the development
or runtime Dyalog APL DLL.)

§ 6.2 Variable type Information
§§ 6.2.1 Setting Method Information

Assuming OwXu 1 , the above steps for exporting functions as methods could have been achieved under
program control by
ExportedFns<c'add'
SetFnInfo(c'add'),c(''" '"VT_VARIANT')d
('Parami' 'VT_VARIANT')('Param2' 'VT_VARIANT')T
Note that the names of optional parameters are surrounded by brackets, eqg (' [Param2]"'...)

§§ 6.2.2 Setting Property Information
Similarly, variables can be exported as properties under program control.

CHEAT<#®

ExportedVars<c'CHEAT'
SetVarInfo'CHEAT' 'VI_VARIANT'

41

Q Day1: Third Generation Dyalog APL - Objects ot

§§ 6.2.3 Exploring the Registry Entry

The Root has a property called 0 LEServers which lists the OLE Servers registered on your personal
computer.
a<+#.0LEServers

File Edit View

dF 1
eldFormat. 2

£

Mested Array Shape: 3545x2 (Depth: 2) Paos: 22,33

This list gives the unique class ID of each server. Looking in the registry at the classes under key
HKEY_CLASSES ROOT\CLSID reveals, amongst other things, the name of the DLL in which your server
Is stored.

i Registry Editor |Z||E|fg|
Eile Edit Wew Favorites Help

D {c8b522d1-5cf3-11ce-adeS-00aa0044 7734} A Marne Tvpe Data

=1 {Coz6E962-6075-4FDA-B57E-EL199C91 336F 9} (Default) REG_5Z CtiDvalogaiSvradd.dl

[Z1 DvalogDispInkerface
23 DvalogEventInterface

[:I ProgID B
[Z3 Programmable
23 TypeLib
D {C962ABCS-162E-1101-80CE-00ADC9ZES00F}
D {96401 CC-0E17-1103-3356-00C04FF2CF L7
D {96401 CF-0E17-11D3-3356-00C04F72C717F v
< | > <

|

|l1 Computer\HKEY_CLASSES_ROOTICLSID|{C926E62-6D78-4FDA-BSTE -E193C91 336F 3 InProcServer 32

The server may be unregistered and reregistered in a DOS box as required.

CAWINDOWS\System32\command.com

Microsoft(R> Windows DO3
CCOCopyright Microszoft Corp 19960-2001 .

C:s2regzurd? Au cihdyalog?@ssvradd.dll

C:s2regsurd? cohdyalog?@svradd.dll

Cosr

Note that Svradd.dll calls the dynamic link library version of Dyalog APL when it starts and Dyalog.dll
must be visible to REGSVR32.EXE when the server is registered. In Dyalog version 10.0, DYALOG.DLL
may be distributed free of charge as part of an application.

§ 6.3 Using your OLE Server
§§ 6.3.1 The 0OLEC I ient Object

In a clear workspace, create an 0LEC I ient object with the ¢ 1assName property set to dyalog.SvrAdd.
cs 'SVR'UWC'OLEClient' 'dyalog.SvrAdd'

N

¥ Module6: In-Process OLE Servers o

The object contains no functions or variables but add is reported as a method and CHEAT is on the list of

properties.
)fns
)vars
)methods
add

63117ty out your exported server method using various arguments. Set CHEAT to 5 and try add again.
®312Check the results of Get Met hodTnfo'add' and Get PropertyInfo' CHEAT'.

%3131nvestigate the workspaces CFILES.DWS and LOAN.DWS in conjunction with the explanations in the
Dyalog APL Interface Guide and related sections of www.dyalog.com

§§ 6.3.2 Examining Type Libraries

The calling information regarding exported methods may be found by right-clicking on add and selecting
[Properties][Calling Information].

#.5VR.add - Properties @‘El
Propetties | Caling mformanan‘}
add:
add
Help String
HelpID OxFFFFAFFF
Result WT_WARIANT
Arguments:
Parami WT_WARIANT
Param? WT_WARTANT
L >

Or the same information may be obtained from the 0LEC I ient method GetMet hodInfo (see also
GetPropertyInfo).

DISPLAY GetMethodInfo'add'

P - — — —
| e ——— B - |
| | .e. .o-——mmmmo- e R N e R ol
| | | | |VT_VARIANT| | | |Parami| |VT_VARIANT| | | |Param2| |VT_VARIANT| | |
| | T ! e e e - - 1 | | 1 - = 1 ! e e e e e - — 1 | | | 1 e e e e e - - = 1 | |
| 1 €E—-——————————————— = 1 1 €E-———— e — —— — — 1 1 €E—-———— e ——— ——— = 1 |
1 S 1
Or the information may be obtained from the TypeL.ibs section of the workspace explorer.

B Exploring CLEAR WS [#.SVR] - Dyalog APLAW E”EE\

v::ks:; TZZW b Contents of Typelibsiloaded Libraries\Dyalng svradd Objects)Ghjectsi3vraddDispiMethods) add

BN [

> & U8
t EJDSE . HelpID [
= 4% Typel ibs

= ﬂ Loaded Libraries Result WT_VARIANT
=28 Dvyalug suradd DObjects Srquments:
+40 Object CoClasses Paraml WT_UARIANT
=&l Objects Paramz YT_VARIANT
=49 SurAddDisp
= # Hethods
4
= Properties
=4 Event Sets
=43 OLE Automation
4% Registered Libraries

43

http://www.dyalog.com/

Q Day1: Third Generation Dyalog APL - Objects Q

Note that Int32[] would be a more precise, and therefore more efficient, alternative to VT_VARIANT for
these arguments and result.

§§ 6.3.3 Calling an OLE Server from VB

Given the files SvrAdd.DLL, Dyalog.DLL and SvrAdd.TLB, any language that can access OLE servers
from DLLs may be used to run your new in-process OLE server.

First the server has to be registered on the relevant machine, eg in an APL program or by the command line
C:\>regsvr32 c:\dyalog90\svradd.dli

Then an instance of the SvrAdd object must be created and the add function called.

In VB a reference to the object is obtained using the CreateObject function
Set oDyalogSvr = CreateObject("dyalog.SvrAdd")

then the add method may be called using VB dot syntax
vResult = oDyalogSvr.add (24, 5)

In the following example, the result, for want of a better idea, is placed on the caption of a form.

w5 Project1 - Microsoft ¥isual Basic [design] |Z||E‘rz|
File Edit Yiew Project Format Debug Run Query Diagram Tools Add-Ins Window Help

B-H-T&d # | o > HEEERESL >

EBebk%ae EE8 =2 4 ER=E

i

&
ﬂ |Loa(|
= @ Project1 (Project1)
Private Sub Form Load() = -1 Forms
Dim oDyalogSrv L= Obhject I— | 3 Form1 (Form1)

Dim vResult As Variant

Set oDlyalogirv = Createlbject ("dyalog.3rvidd™) Properties - Forml ﬂ
|Form1 Form j
wResult = oDyalog3rv.idd (24, 5)
Caption

Me.Caption = C3tr (vResult)
End Zub

Form Layout x|

B-ia-7 =& #| o 3 HEIERED sl 3
Flalb®ae =6 M0 =2 ¢ MR
f— =] o 5
@ "Private Sub Form Load() = &
L3 ' Dim aDyalogSrv is Chisct = 535 Projectl (Project1)
Dim vResult As Variant =3 Forms
A [l B Formi (Form1)
W I Set oDyalogSry = CreateCbject ("dyalog. Srvadd™)
Vo wResult = oDyalogSrv.idd(24, S5)
. Me.Caption = C¥tr(vResult)
=g "End Sk
) Private Sub form load()
44y Dim obyalogScy As DyalogSrviddLib.Srvadd Properties - Form1l x|
|é| = Dim vResult As Variant ,ml
= Dim vLeft(1 To 5) As Variant
B Dim vright (1 To §) is Variant Alphabetic lCategDrlzedl
&~ _ (Hame) Formi ~
Set oDyalogSrv = CreateChject ("dyalog.Srvidd") Appearance 1-30 =
[_ AutoRedraw False
- For i=1To 35 BackColor [e+e000000F
i viefr(i) = 1 + 1 Borderstyle 2 - Sizable v
wright(i] = 1 * 3
Next i Caption

Returns/sets the kext displayed in an
object's title bar or below an object's

[Form Layout
For i =0 To 4

1blOutput.Caption = lblOutput.Caption & wResult (i) & vhCrLf
Next i E
End Sub

2| IDI[|

vResult = oDyalogSrv.lidd (vLeft, vright)

i

N

ROBERTSON

Module6: In-Process OLE Servers

N

ROBERTSON

The following example is based on two simple APL functions in a namespace called # . Express, and a
third function to turn the namespace into Ty pe OLEServer.

This little example allows one to type a line of APL code into the first cell of an Excel spreadsheet and have
a button on the spreadsheet execute the line. The result is placed on the ensuing lines of the spreadsheet.

. Editor. - [Express.e... |Z| |E| g|

JDEle Edt iew Window _ & X

Hat«execute Line
Matetl ine
IF " 'eeHat
MatehHat
HateCCPHatd, 1IPH
tEnd
(IF O=ppHat
Hat«l 1rHat
Elself 1=prHat
Hate(1,pHatIPHat
:End

Bb Fle Edit view window
at

= =

‘ Editor, - [Express. Ex... |Z||E|E|

.9

Mat+«Express Line
Trap O

Hat+execute Line
(Elze

Hat«3 1rODH
:End

IMndiFied Function ... Pos: 5,0

IMDdiFied Function | @r... Pos: 6,1

@ Editor, - [Express.Ma... |Z||E|E|

Fh Bl Edt view Windw - 5 %
HakelLEServer
'#.Express'OHC"OLE=Server”
FExportedFns

Function Gra.., Posiopl

The exported functions need to have their Result and Param1 types set to VT_VARIANT before)SAVE.

The function # . Express .Express above is called by Visual Basic code behind Excel and the result is
written to the cells of Excel in two different ways (below).

‘& Microsoft Visual Basic - EXPRESS - [ThisDocument (Code)]

Fle Edt View Insert Format Debug Ru

n Ioals Add-Ins Window Help

yonom b & E Y)

|Comman(IButton1

=] [ctiek =l

miE-= 4
=]

+-B% DocBuilderSDK

+-%4 Normal

= B Project (EXPRESS)
=5 Microsoft Word Objects
ThisDocument
=5 Modules
& MewMacros
+- [References

Properties - ThisDocument m

End

Frivate Sub CormandBurtonl Clicki()

'Call Clear

Dim ex hs Chject

Dim res As Variant

Zet ex = CreateChject ("dyalog.Express")

Line = ActiveDocuwent.Paragraphs(l) .Range

res = ex.ExpressilLine)

For £ = 0 To UBoundires, 1)

ActiveDocument . Paragraphs (r) .Range (res(r))
Next r

Sub

| ThisDocumen! Docurent_+ |

Alphabetic } Categorized | ke

ThisDocument 4

Clear ()
For r = 0 To 20
For c = 0 To 20

AutoHyphenatic False — Cellsir + 2, ¢ + 1].Value = "r
ConsecutiveHyp Next c

DefaulkTabStop 36 Next r

EmbedTrueTypeFalse End Sub

FarEastlineBres -

‘all Microsoft Visual Basic - EXPRESS.XLS - [Sheet1 (Code)]

@1 File Edit Yew Insert Format Debug Run Iools Add-Ins Window Help —15 x|
3-8 B2 & v om b MEE T Q) B
projeet - VEARGIEct [x] [commandButtont | [k -
afl=)
EE 5 Private Sub CommandButtonl _Click() =
&% ¥BAProject (EXPRESS.XL! Call Clear

=45 Micrasoft Excel Obfects Dim ex As Object

sheet1 {sheet1)
SheetZ (Shestz)
sheet {sheet3)
& Thsworkbook

< |

Dim res s Variant
Set ex = CreateObject ("dyalog.Express")
Line = Cells(l, 1).Value
res = ex.Express(Line)
For r = 0 To Uboundires, 1)
For ¢ = 0 To UBoundires, 2)
Cells(r + 2, © + 1).Value = resir,

cl

— 2 Next o
Properties - Sheet1 x| Next r
Sheetl workshest - End Sub
Alphabetic ICatEgunzedl Sub Clear (]

For £ = 0 To z0

(hame) Shest1 ~
E| For ¢ = 0 To 20

DisplayPageBre: False
DisplayRight Tol | False
EnableAutoFike! False
EnableCalculatic True
Enabledutining False
Enablepivot Tabl False

EnableSelection 0 - xMoRestric * || | =|= <

Next o
— Next r
End Sub

Cellsir + 2, © + 1) .Value = "7

Note that later versions of Excel (from Excel 2000) use Value2 in place of Value in the VB code above.

6331 sk for the next module on OLE Clients

45

| &

ROBERTSON ROBERTSON

Module7: OLE Clients

OLE Clients drive OLE Servers via Object Linking and Embedding. This provides the means for very
powerful connections between applications; such as one between Dyalog APL and Microsoft Office.

§ 7.1 Inside Microsoft Word
§§ 7.1.1 Registry Entries, Object Models and Type Libraries

If Microsoft Office is installed on your computer, then Word.Application will appear in the list
#.0LEServers. The corresponding class ID refers to that in the registry under
HKEY_CLASSES_ROOT\Word.Application\CLSID. There the registry entry points to the most up-to-date
version of Word currently installed, such as Word.Application.9.

The registry may be investigated further to find, for example, that HKEY_CLASSES_ROOT\CLSID contains
key {000209FF-0000-0000-C000-000000000046 }\LocalServer32 which contains the name of the
program actually used for OLE automation:

C:\PROGRA~1\MICROS~2\Office\WINWORD.EXE /Automation

The Word program is vastly more complicated than our server of Module 6, and understanding its object
structure and contents is a major challenge. The Word 9.0 VBA help file (VBAWRD9.CHM) is most helpful
in this respect. The Word VBA help file is particularly geared to programmers wishing to call Word object
methods and properties from different application environments such as VB or APL.

The Word object model reveals all the potential object hierarchies in a Word application. The properties
and methods associated with each type of object are described in the help file, often with an example VBA
call. This VBA code is close enough to an APL equivalent to be very useful as a starting template when
programming Word-linked APL applications.

E? Microsoft Word Help g@@
I A~
Contents lﬁearch] [Application |
"= @ Geting Slarte H Addins (Addin) | HKeysBoundT o [KeyBinding] |
= Q@ Microsoft wor 7 T T
AnswerWizard KeyBindings [KeyBindin
What's Me ﬁ | % ¥ 9 Koy 9) |
Microzaft’ 4 Assistant | % Languages [Language] |
+ @ Events - - |_(e - —
- @ Methods ﬂAuloCaptlons [AutoCaption) | Dictionaries [Dictionary] |
+ @ Objects: al 4Aulo[ﬁollecl | ’ % LanguageSettings |
+ @ Properties . - -
o @ Microsoft Offic ﬂBmwser | ﬂLlleallenes [ListGallery) |
+ @ Micrazoft Fom 4EaptiunLaheIs [CaptionLabel] | ListT emplates [LiztT emplate] |
H COMAddins [COMAddin) | |—{ ListLevels [ListLevel) |
4 CommandBars [CommandBar] | % Mailingl abel |
Co dBarControls [CommandB arControl) | |—{I:u:;lumLal:uals [Customl abel) |
4 Defaultweblptions | % MailMessage |
ﬂ Dialogs [Dialog) | ﬂ Ophons |
4 Dictionaries [Dictionary)] | % RecentFiles [RecentFile] |
3 n ﬂ Documents [Document] | 3 ﬂ Selection | 3 “
< >

To access an OLE server, you create a namespace of Ty pe 0LEC I ient as an instance of the OLE server.
The ¢ lassName property of the 0LEC 1 ient identifies the server and has to be set at create time. It takes
the value "Word.Application"' inthe case of Microsoft Word.

46

Q Module7: OLE Clients Q

ROBERTSON ROBERTSON

"11Create an 0LEC 1 ient object with ClassName setto 'Word.Application'. Open the
workspace explorer and browse the loaded type libraries. For example, explore the Microsoft Word Object
Library and look at Objects\Documents\Methods\Open. Relate this to MS Word [File][Open].

B1 Exploring CLEAR WS [#] FEX
Fle Edt View Tools
wiorkspace Tree Contents of TypeLibs\Loaded Libraries|Micrasoft Word 9.0 Object Library\Objects\DocumentsiMethodstpen
=43 Dictionaries ~ [[
=43 Dictionary :E‘mest_ Open
” elp String
- Df':w”e”ts HelplD 0x096c000fF
=8 Methods
% add Result Document
1 Add01d
. Arguments:
i Close Filhame WT_PTR to YT_YARIANT [in]
i Ttem ConfrmConversions WT_PTR to VT_VARIANT [Optional],(in]
o (i1 Readonly WT_PTR to VT_VARIANT [Optional], i
& Doon1d addToRecentFies WT_PTR. to VT_VARIANT [Option:
I Upen PasswordDocument WT_PTR to YT_VARIANT [Option
i Save PasswordTemplate WT_PTR. to VT_VARIANT [Option:
+-2%) Properties Revert WT_PTR to VT_VARIANT [Opti
f WrtePasswordDocument T _PTR to VT_VARIANT [Optional],[in]
£ Droplap WritePasswordTemplats WT_PTR to VT_VARIANT [Optional],[in]
%48 DropDown Format WT_PTR to VT_VARIANT [Optional] [in]
2 .
w48 Email Encoding WT_PTR to VT_VARIANT [Optional],[in]
- &Y EmailAuthor v | visible WT_PTR. to VT_VARIANT [Optional],in]
< »

"112Change into the 0 LEC 1 ient space, and compare the above with the result of
tDocuments.GetMethodInfo'Open'
Thus there are a number of ways to find out the calling syntax and argument types for methods in Word.

§§ 7.1.2 Digging into Word

"1211n a clear workspace, start Word as an OLE Client and change space into the Word application.
OCS'WRD'OWC'OLEClient' 'Word.Application'
Setthe visible property to 1. Write a function called vshowv which displays its Rarg in the session.
Set the Event property for all events to vs howv.
Event<'All' 'show'
Look at the Event L ist property and try to fire an event that will ‘show’ in the session. In Word, select
[File][Exit] and note the Qu i t event in the session.

1221 3 clear workspace, trace the function below and identify the methods and properties being used.

V WordExample ;WRD

[1] :With '"WRD'OWC'OLECIlient' 'Word.Application'
(2] Visible<«1

[3] :With Documents

(u] tWith Add @

[5] :With Content

[6] Text<«, (50 50p04),320TC
(7] : End

[8] Saveds'c:\myword.doc'

(9] : End

(10] : End

[11] Quit 6

[12] :End v

At each change of space, check the name of the current namespace and the methods and properties available
in that space. Right click on methods save, SaveAs and Qu it to view their calling information. In the
workspace explorer, investigate the # . wRD object and its children.

Notice that some of the reported namespace names are surrounded by brackets, eg

)ns
#.WRD.[Documents].[_Document]

47

Q Day1: Third Generation Dyalog APL - Objects Q

The brackets indicate that these namespaces have not actually been given any name at create time.
Document s is a property that returns a reference to a collection object. This reference is sufficient for
:W it hto be able to deal with the collection, which is essentially a vector of objects (see Modulell on
Arrays of Objects). 4Add is a method that returns a reference to a new Document object. The result could
be assigned to a name if a name was required.

Information about properties in the current space may be found using Get PropertyInfo method of
OLEClient objects; eginthe Documents collection, Get PropertyInfo'Count'uVT_TIk.

§§ 7.1.3 Demonstrating the Power of OLE
"1311n a clear workspace, create an 0 LEC 1 ient for the OLE server Word.Application. Enter the
Document s collection and 0pen file C:\myword.doc. Make Word visible.

"132Enter the Document s collection and Add a new document. Trace the following function snippet
which adds, fills and coloursa 7ab] e.

:With Tables
:With Add(#.WRD.Selection.Range,3,5)
:For x :In 13
:For y :In 15
(Cell(x,y)).Range.InsertAfter'Cell(',(%x),"',"',(3y),")"
:EndFor
:EndFor
Columns.AutoFit
:With Rows
:With Item 1
Select
Alignment<1
:With #.WRD.Selection.Font
Bold«1
Color<«256 256 2561¢255 127 0 a Orange :-)
:End a font
:End o row
:End a rows collection
:End a table
:End a tables collection

L33\ hile still within the new Document, enter some text after the table using something like the
following snippet, noting the parentheses and the reduced number of : i ¢ As.

:With Paragraphs.(Item Count)
Range.Text«1000p100420+[JAV
:End o paragraph

7134 hile still within the Document, add some suitable text to the first cell in the Tahb e and convert the
textintoa Table (withina Tab le) as in the following snippet:

:With Range(0,0)
Text<,(s(% 110),'#',710 2p% 130),3>0TC
Select o this selects all
DefaultTableSeparator<'#'
ConvertToTable'#'

iQ Module7: OLE Clients Q

OBERTSON

:With Tables
:With Item 1
:With Columns
:With Item 1

Select
:With #.WORD.Selection.Font

Bold<«1

Color<256 256 256160 0 255a Blue
:End o font

:End o column
:End a columns collection
:End a table
:End a tables collection
:End o range

Tip: A useful way of constructing such code, apart from valuable help from VBAWRD*.CHM, is to record a macro in Word
which takes the steps that you want your program to take, and then use Alt+F11 to examine the macro VBA code.

Tip2: You might find that, after creating and destroying (erasing or expunging) an 0LEC I ient and saving the WS, the size

of the WS has grown considerably. This happens because the TypeL.ibs visible in WS Explorer have been saved too. They

may be removed before saving by running the combination of Root methods
#.DeleteTypelib > "#.ListTypelLibs

§ 7.2 Manipulating Microsoft Excel from the Inside
§§ 7.2.1 Recognising the Object Model

The object model for Excel is very similar in appearance to that of Word. The model for Excel 9.0 is
documented in help file VBAXL9.CHM. Clearly it is advisable to use the correct version of this help file for
your particular Excel version.

As with Word, the registry entries for the Excel.Application C IassName can be investigated. More
particularly, from the point of view of writing APL-Excel OLE applications, the TypeLibs in WS Explorer,
or GetMethodInfo,GetPropertyInfo,GetEventInfoand GetTypelInfo,shouldbeemployed
to obtain information about Excel functionality.

§§ 7.2.2 Digging into Excel

"221Create an 0LEC 1 ient with ¢ lassName Excel.Application. Make the application Visible. Set
the application Capt ion to eg '‘My Excel'. Look at the values of the application properties MemoryFree,
MemoryUser,MemoryTotal, LibraryPath, TemplatesPath, Path, Name,UserName,Value,
Version,Height,Widthandw1ndow5tate

"222\Njjth the Wor kbooks collection, 4dd a new workbook and look at the values of properties Aut hor,
Path,Name,FullName and UserStatus. Run GetMet hodInfo on methods Saveds and Close.
Save the file as something like 'C:\myexcel.xls" and run the method ¢ lose. Then Qu i ¢ the application.

"223Write a function that will start Excel (visibly), enter the Workbooks collection and 0 pen the
workbook 'C:\myexcel.xlIs'. In the application space, assign the Range between Al and B2 in the
Act iveSheet to a name for this reference object and then assign the va lue (or latterly va lue?2)
property of the ref to a suitable matrix.

224Gjven the alternative style of programming below, trace the function and explore the references.

49

Q Day1: Third Generation Dyalog APL - Objects Q

V OLFExcel?2;XL

(1] dcs'#.XL'OWC'OLECLIENT' 'Excel.Application'
[2] Visible<«1

(3] Wkb<Workbooks.Open'c:\myexcel.xls'

(4] Wks<«Wkb.Worksheets.Item 1

[5] Rng<Wks.Range'A1:B10'

(6] Rng.Value2<«?210 2p100

(7] Ch«Charts.Add &

(8] Ch.ChartType<xIColumnClustered

(9] Ch.SetSourceData #.XL.Rng

[10] v

§§ 7.2.3 Gaining full Control of Excel

Like Word, Excel is a very big program with many dark corners. Thankfully, the task of learning how to
use the OLE interface mirrors quite closely the task of learning how to use Excel itself. (The task of
learning WORDBASIC, used with the APL shared variable approach to DDE communication with Word,
was closely tied to the menus of Word, but now, with OLE, much more of the detailed functionality of
Word is exposed.) Each little feature in Excel that is incorporated into an APL program is a stepping stone
for ever more ambitious and detailed communications with Excel.

The Word document version of the Dyalog APL Object Reference manual itself embodies an example of
Word-APL OLE. Each description of an object in the manual opens with a section containing Purpose,
Parents, .., Methods. The contents of these sections are mustered and positioned in the Word document via
OLE from within an APL workspace, thanks to the fruitful efforts of Peter Donnelly.

"23\\rite a function v putMat rixv which takes a matrix Rarg and an optional 0f fset Larg and places
the matrix in an Excel worksheet, offset by the given number of rows and columns.

Tip: 04, (,040.,04),(,04-.,040.,04) generates the names of the first 18278 column
names in an Excel worksheet (see a generalised version in the DFns Module12 ©).

§ 7.3 Linking to other Servers
§§ 7.3.1 Outlook

If Outlook.Application is in your list of 0 LEServers, then you can create an 0LEC I ient with this
ClassName. Inthat space you will find a method called CreateItem. This method returns an object
whose type is determined by the Rarg. Available types are to be found in the list of Enums in the WS
Explorer TypeLibs Loaded Libraries from the Microsoft Outlook 9.0 Object Library. The Enums section
has an entry called 0 I TtemTy pe. This contains a list of possible types and the Enum appropriate for each
case. For example, to create a mail item use Enum o I1Ma i 1T tem which has value zero. Thus the
Createltem method cantakeaRargofOorolMailltem. (olMailItemisan invisible keyword in

the WS, not listed under)VARS or) PROPS and with JNC "o IMailItem'0)

"311Enter the following two lines and assign the properties sub ject and Body to suitable values. The
Body of a message is a character string, as may be deduced from the result of
GetPropertyInfo'Body'. Eachnew line inthe Body should be terminated with a linefeed character.
If FOML<3then fOTC[1+07101=04v[2+0107 and this is the linefeed character needed.
(CcS'Outlook'IWC'OLECIient' 'Outlook.Application'
(0CS Createltem olMailltem

iQ Module7: OLE Clients Q

OBERTSON ORERTSON

The current namespace contains a property that returns a Rec i pients collection. As usual, in this

collection space there is an 4dd method that returns an object of appropriate type. The 4dd method type

library calling information describes the Rarg of Add as VT_BSTR. Itis in fact an enclosed character string

which corresponds to an entry in your Outlook address book or a raw email address. For example
Recipients.Addc'Karen Shaw'

will check your address book and resolve the entry, if possible. If you are lucky, it might be resolved to

karen.shaw@monadic.com or possibly briony.williams@dyadic.com or even to pauline.brand@triadic.com.

Or you could add the recipient's email address directly as
Recipients.Addc'karen.shaw@dyadic.com'

Any number of recipients may be added in this way.

You can tell if a name was resolved successfully from the result of the niladic method; ResoIve. If it does
not get resolved properly and }~Reso 1ve then the message may be removed by means of the Remove

method inthe Rec ipients collection. The Rarg of this method is the item number of the recipient object
in the collection. If there is only one recipient object in there, then Rarg is 1.

At this point the Ty pe of the message may be changed. (Note the Ty pe keyword conflict and its
resolution.) The default Recipeients.Typeisl, or o1To, but it could be any of a number of Ty pes,
their Enums being those in the group 0 I¥ai IRecipientType. (Double clicking on these key words in
the APL session displays their contents.)

The names of those to whom the message will be addressed is returned by the 7o property in the unnamed
[_Mailltem] namespace. If some of the recipients were of Ty pe o 1BcC then the property BCC returns that
list of names to be blind carbon copied (see VBAOUTL*.CHM).

At this point all that needs to be done is to run the niladic, non-result returning method Send.

312The mail item namespace contains a property called 4t t ac hment s that returns a collection of
attachment objects. Attach a file to an email by calling the 4dd method of this collection, after checking
the method's calling information using the property sheet obtained by right-clicking on the method name in
the session, or by way of the WS Explorer.

Attachments.Add'C:\myword.doc'

§§ 7.3.2 Microsoft Internet Explorer

Have you ever wanted an APL function that takes a url as its argument and returns the retrieved html text as
its result? The InternetExplorer.Application may be used for this, as Tommy Johansen has adeptly shown to
the dyalogusers@yahoogroups.com mailbox group.

"321gtart Internet Explorer as an OLEServer by

OCS'IE'OWC'OLECIient' 'InternetExplorer.Application'
Your program might need a delay (ODL) of a few seconds at this point to give time for the server to
initialise properly. There isa Busy property in the application that should be queried after each significant
action and a short delay included in the program :While Busy. Visible may besetto 1 if you wish to
see the IE application activity.

7322Take any Internet address of interest and Nav igat e to that address, eg
Navigate'http://www.simcorp.com'

or
Navigate'http://finance.yahoo.com/q/ecn?s=IBM'

51

mailto:karen.shaw@monadic.com
mailto:briony.williams@dyadic.com
mailto:pauline.brand@triadic.com
mailto:dyalogusers@yahoogroups.com

Q Day1: Third Generation Dyalog APL - Objects Q

or
Navigate'http://finance.yahoo.com/p?v&k=pf_ 1"
or
Navigate' http://news.bbc.co.uk/1/hi/business/7206270.stm'

3231n order to obtain the body section of the resulting html, first get the DispHTMIDocument object
returned by the Document property and then get the DispHTMLBody object returned by the document's
body property. Note the lower case spelling of body and of many of the object's other properties and
methods. The outerHTML property of the DispHTMILBody object contains the <BODY>..</BODY>
character string.

§§ 7.3.3 Beyond

It is possible, through OLE, to link to any of the servers listed by the Root property, # . 0LEServers. For
example, if you have DAO.dbEngine installed then it is possible to read data from Microsoft Access files
directly into an APL workspace. Or if you have CrystalReports installed you can communicate directly
with that application. All sorts of applications, from computer-animated synthespians (examples of which
may be downloaded from http://www.microsoft.com/msagent/downloads/developer.aspx) to music and
radio players, may be incorporated into your APL applications by object linking and embedding.

As a final simple example, the call to Jc¥D to open Notepad
OCMD'Notepad' '

may now be replaced by
'"WSS'OWC'OLEClient' 'WScript.Shell'
WSS.Run'Notepad'

or
WSS.Exec'Notepad'

Remember to clean up the workspace by
#.DeleteTypeLib > "#.ListTypeLibs
before saving if you don't want to save all the TypeLibrary information in the workspace.

7331 sk for the next module on ActiveX Controls

http://www.microsoft.com/msagent/downloads/developer.aspx

N N

TS ROBERTSON

Module8: ActiveX Controls

In 1996, Microsoft renamed the OLE 2.0 technology to ActiveX. An ActiveX Control is like an OLE
Server but it is stored inside an OCX file rather than a DLL file. The significant new feature is that an
ActiveX Control may be instantiated as a GUI object inside another GUI application.

§ 8.1 Creating an ActiveX Control in an OCX
§§8.1.1 The Act iveXxControl Object

Since an ActiveX control is intended to be the child of another GUI object, the Dyalog APL
ActiveXControl object, unlike the 0 LEServer object, cannot be created as a child of the Root. It
must be created as the child of a Form. This Form object is the notional container object for the ActiveX.
When the Act iveXControl is created within another application, the Form will be replaced by the
relevant GUI parent from within the application. (Some details about the actual container object involved in
any particular environment may be found fromthe Act iveXContainer object that is returned by the
Container property of the 4ctiveXControl.)

8111Create a Formwithan Act iveXContro child object.
"F'OWC'Form' ('BCol' 120 20 230)
OCS'AXC'F.OWC'ActiveXControl'

The ¢ 1assID property contains a unique identifier for this control. Container.BCo 1 should return the
Form BCol.

§§ 8.1.2 The create Callback

An ActiveXControl is created whenever it is first used. A function is usually required in order to
initialise a control. This function may, for example, create the children of the ActiveX as soon as the
ActiveX exists. Two events are supplied for initialisation code, Create and PreCreate.

8121 nssign the onCreat e property of . 4XC to function vcresy, where

vV cres
[1] 'c'OwcC'Calendar!

This will create a Ca lendar child of the Act ivexControl. Experiment with a more complicated
callback such as:

V cre8;BB
(1] :With 'BB'OWC'BrowseBox'
[2] StartIn<«'C:\"
[3] onFileBox0OK onFileBoxCancel<«1
(4] Caption<'Resource Brower'
[5] HasEdit<1
(6] Msg<[DQ "'
(7] :If 'FileBox0OK'=2o5Msg ¢ Dir<Target
[8] :Else o Dir<«'' o :EndIf
[9] :EndWith
v

53

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 8.1.3 Creating the OCX on) SAVE

With the above ActiveX we have not introduced any functions to be exported as methods (or properties),
nor any variables to be exported as properties. If we had functions or variables to be exported for use by the
external application then we may set their calling structure using Act iveXControl methods
SetFnInfoor SetVarInfo underprogram control. An external event may also be declared using
SetEventInfo. Alternatively, the entire control might be constructed manually and the calling
information set in the property sheets obtained by right-clicking on the name and selecting
[Properties][COM Properties].

8131Check that [File][Make OCX/DLL on)SAVE] is checked and) sS4V E the workspace as MyAXC.DWS.
This generates type information in a TLB file, just as is done foran 0 LEServer. The OCX Control thus
created is registered in the Windows registry in a similar way to an OLE Server.

n Status g @ EJ
File Options

t
Processing OLEServers. ..
Saving tupe information in CivDualog30-HuAXC.tlh
Saving tupe information for AXC
Done AXC
Finizshed processing OLEServers
Fegistering OCX Control
Fegistered 0CH Control v

Cloze

There now exists a MyAXC.OCX file as well as the MyAXC.DWS file, and there is a new entry in the list
of OLEControls:
a<s+#.0LEControls

File Edit Wiew Options

ol
ontrol
trol
= Mime Editor

£1d: 0-11d1-:

rip Control 6.0] 1 6536-857C-1101
=g) C4-1101

{2173C503-EBFF-11CF-Ba

Modified Charact. .. Pos: 0,0

This list of controls contains the unique identifier found in the ¢ 1as s 1D property of the
ActiveXControl. This ClassID resides in the Registry.

8132Run REGEDIT.EXE and find details of Dyalog.MyAXC.MyAXCCtrl.1 under key
\HKEY_CLASSES_ROOT\Dyalog.My AXC.MyAXCCtrl.1\CLSID
In particular, notice mention of the file MyAXC.OCX under key InProcServer32.

8133\Write an ActiveX control which reads and writes a character matrix in component 2 of an APL
component file (component 1 should always be reserved for some sort of a description). Create the file if it
doesn’t exist. Display the component for editing in a multi-line Ed i t object.

An OCX file represents a set of ActiveX controls that are ready to run when supplied with the particular
Dyalog APL Dynamic Link Library DYALOG.DLL that was in use when the OCX file was saved.

f& Module8: ActiveX Controls Q

OBERTSON ROBERTSON

§ 8.2 Using your ActiveX Control
§§ 8.2 1 Creating an Instance from an 0CxClass

The way that you use an ActiveX control in Dyalog APL is by way of an 0cxC Iass object. An

0CXC lass object is created from some registered control by setting the ¢ lassName of the 0CxClass at
create time to the name of the control precisely as given by # . 0LEControls. The name given to the
0CXC lass object is then the name of a new Ty pe of object, instances of which may be created in the usual
way as children of appropriate parents.

82111n a CLEAR WS create a new class (Ty pe) of object and an instance of this new class on a Form.
'MyAXC'OwC'0CXClass' 'Dyalog AXC Control'
'"Frm'OWC'Form'
'"Frm.Inst'OWC'MyAXC'

Change some of the properties of this instance.

This control may be called from any OLE-aware application via a suitable language such as VBA or
JavaScript.

8212) 0ad the supplied DUALBASE workspace and follow the instructions in chapter 14 of the Dyalog APL
Interface Guide (which may be freely downloaded from www.dyalog.com [Download zone]). Further
instructions on the Dyalog Dual Control can be found in the APL98 course notes in APL980OCX.ZIP which
may also be downloaded from [Products][Dyalog for Windows][Writing ActiveXControls].

§§ 8.2 2 Using Controls in IE 6.0
ActiveX controls can be incorporated into HTML pages by reference to the classid of the control.

8221Create a native file called MyAXC.HTM containing the HTML string in the window below, using the
C lassID of your object. The squish-quad represents carriage return/linefeed, ie JAV[3 2+0710].

File Edit Yiew Options

19247F" width="300" height="40

Character Yectar Pos: 0,0

The source and display look something like:

<htmli>
<head>
<title>My Active X Control</title>
</head>
<body>
<h2 align="center">
A X C
</h2>
<p align="center">
<object
classid="17468DA7-60B0-4149-A877-E8A64419247F"
width="300" height="400">
</object>
</p>
</body>
</htmi>

55

http://www.dyalog.com/

Q Day1: Third Generation Dyalog APL - Objects Q

A My ActiveX in HTML - Micrasoft Inter.... [2|[B]X]
I
L)

Fle Edt Wew Favortes Tools Help

Oni- O 1@ G| P ° More information on how to do this is to be found
T - > E R in http://support.microsoft.com/kb/q159923/
My ActiveX in HTML where licensing of controls is also discussed.

[« | Jamuary 2006
Mon Tue Wed Thu Fri Sat

2 3 4 5 &6 7
8 10 11 12 13 14

16 17 18 @B 20 21

&] Dane 4 My Computer

§§ 8.2 3 Using Controls in Visual Basic and VBA

In APL9S8OCX.RTF and in chapter 14 of the Dyalog APL Interface Guide you will find explanations of how
to call the Dual Control example from VB, VBScript and IE.

§ 8.3 Browsing registered OLE Controls
§§ 8.3.1 Having a quick Look

A snippet from a function by Dick Bowman shows how you might go about investigating the controls in
your, possibly very large, listof #.0LEControls.

:For Item :In = '.'OWG'OLEControls'
Item
'Inst'OWC'0OCXClass'Item
'"F'OWC'Form'!
'F.X'OWC'Inst'
:Trap 11

2 ONQ'F.X' 'ShowHelp' 'Type'

: End

: End

§§ 8.3.2 Having a deeper Look

For a deeper look into the registered controls on your list, the supplied workspace OCXBROWS.DWS may be
used to investigate available controls.

8321% LOAD the workspace OCXBROWS.DWS and trace the 12X, vCLASSES.LISTCLASSESv. Skip
over line [17] and trace into line [18]. Select 'Dyalog MyAXC Control' and hit [Details]. Trace into and
examine line [41].

Hint: Normalise 7 orm to continue beyond line SHOWCLASS[15].

Alexander Balako has kindly donated his workspace OLEBROWS.DWS as a free download in
www.dyalog.com [Download Zone]..[OLEBROWS]. This workspace enables exploration of both the
ActiveX controls in your list # . 0OLEControls, and the OLE servers in your list #.0LEServers.

8322In OLEBROWS.DWS, attempt to trace the JLX , vOLEBrowser . MAINv, and note the use of the
Create Event on line [1].
Hint; Puta 0sToP on line [4] and run the function past line [3].

http://support.microsoft.com/kb/q159923/
http://www.dyalog.com/

Q Module8: ActiveX Controls Q

A4 OLE Browser[OLEControls]

Wiew OLE Properties OLEHelp Settings About
Al paa | [Dyalogaxce... |

adbanner Class =

gotobar Class El Dyalog AXC Control

ped_ProgressB ar pedProgressBar + PropList

ActionBwr Class 3B MethodList

ActivebdovieControl Object .)

tctivebFlugin Object 5B Evertlist A% OLE Browser[OLEServers]

ActoBvr Class TypeList View OLE Properties OLE Help Settings About

Adobe Acrobat Contral for Activer

Application D ata Control e 2dd

AuPrf Control bidispl. bidirequestcontainer -

ColorBvr Class bidispl. bidirequestcontainer. 1 = dyalog.Svridd

COMMON DIALOBS CONTROL EE?SD:'EE?IE?UESU B o
idispl.bidisp < ;

COMNSYiew Class bidispl bidispl. 1 P MethodList

CTreetiew Contral cfw.chil = % add
device A YT VARIANT

Dcloa Do Cortr B el A Paraml YT _VARIANT

Dyalog DualDzmo Cortrol KN Januay2o0s DN RS A Param2 VT_VARIANT

Dyalog Mysi<C Control Mon Tue ‘wed Thu Fri Sat Sun ﬁ| R % EventList

Dyalog MyCantrol Cantrol 1 fRecardingT erminal FileR ecording T em TypeList

Dyalog MyR esourceBrower Contral 2 3 4 5 g 7 o N . . N

o fRecardingT erminal FileR ecording T em

palog OLECHT Contral 9 10 11 12 13 14 15 i
DHTML Edit Cortrol for IES e
DHTML Edi - 16 17 @E® 19 20 21 2 hitrrifile
it Cantrol Safe far Scripting 21 24 25 25 27 8 29 .)

D5DisplayPanel Class htmlfile_Full/indawE mbed

DSStatusBar Class 0@ igfxcfg DataObject

EffectBivr Class = 3 Today: 18/01/2006 igfxcfg. Datalbject. 1

FPMewSuhH Mass A infucfa. ShellExt A/

< ¥ 4 4

§§ 8.3.3 Trying some Examples

The Dyalog APL 4ctiveXControl objectallows you to package an application as an ActiveX control.
The application then comprises at least two files; your OCX file and the Dyalog APL dynamic link library
file, DYALOG.DLL, to which your OCX was linked when created. Both files have to be visible when the
OCX is registered. Also the full path name of the OCX is recorded in the registry so it cannot be moved
around easily. It is conventional to place OCX and DLL files in the ..\Windows\System32\ directory.

Let us call some controls from an APL workspace. If you have the VideoSoft FlexArray control on your list
then you can start it with:

'"FAC'OWC'0CXClass' ':-) VideoSoft FlexArray Control'

'"Frm'OWC'Form'

'"Frm.Flex'OWC'FAC'

8331y 0u probably have Windows Media Player on your list. Create an instance of this control on a Form
and examine the instantiated object from the inside. Researchthe FileName and QueueEvents
properties of the class. In Dyalog APL version 10, the ¢Gr id object can have controls inside cells. Run the
following lines of code and explore the possibility of playing 25 tunes at once!

'"WMP'(OWC'0CXClass' 'Windows Media Player'
'"F'OWC'Form' ('Coord' 'Pixel')

H W«(F.Size-4)+5

'"F.G'OWC'Grid'(5 5p"'")(0 0)
F.G.CellHeights<H o F.G.CellWidths<W
F.G.Size<F.Size

F.G.ShowInput<1

F.G.TitleHeight<0 o F.G.TitleWidth<O
'"F.G.WMP'OWC'WMP'

F.G.Input<'F.G.WMP'

57

K

o Day1: Third Generation Dyalog APL - Objects

N

ROBERTSON

The Google search bar, donated by Norbert Jurkiewicz, as mentioned in Module4, can be summarised, in
essence, in the following function which takes any Google search string as its Rarg. The function creates

the Microsoft Web Browser 15w B class object and an instance of the class on a suitably sized Form. The

DocumentComplete eventissetto 1 in order to terminate the ensuing 0DQ when the entire document

has been obtained. Then come the crucial lines. We invoke the objects Nav i gate method with a carefully

crafted argument:

http://www.google.com/search?ie=UTF-880e=UTF-8&sourceid=deskbar&q=",XXX

The x XX is a character string that contains a search request string such as one would type into Google. The

rest is the URL-specific command line suitable for a general Google search.

V searchFor XXX:;To

[1] '"MSWB'OWC'0CXClass' 'Microsoft Web Browser' ('QueueEvents'
[2] '"F'OWC'Form' ('Coord' 'Pixel')('OnTop' 1)('Border' 0)

[3] F.Size<400 600

(4] F.EdgeStyle<'Recess'

[5] '"F.IE'OWC'MSWB'!

(6] F.IE.Posn<«0 0

(7] F.IE.Coord<'"Prop' A MUST USE PROP to look ok

[8] F.IE.Size<100 100

(9] F.IE.onDocumentComplete<1 a exit [DQ when finished

[10] To<«'http://www.google.com/search?'

(11] To,«'1e=UTF-8&0e=UTF-8&sourceid=deskbar&qg=",XXX

[12] F.IE.Navigate To

[13] UDQ'F'!

(1u] F.IE.Refresh a MUST REFRESH to look ok
v

0)

8332Explore the possibility of viewing 25 Internet sites simultaneously ina5 by 5 ¢rid.

8333p|ease ask for the next module on O 4

R N

(OBERTSON ROBERTSON

Module9: C Function Access

Pre-.NET Dynamic Link Libraries (DLLS) are libraries of compiled functions. These functions may be
accessed and run from within an APL workspace by means of the system function O~ 4. Details may be
found in the Dyalog APL Language Reference.

§ 9.1 Declaring “dataTypes” of Arguments and Results
§§ 9.1.1 Quick View of DLLs and their Contents

The main sources of useful compiled C functions for general APL applications are to be found in the files
advapi32.dll, gdi32.dll, kernel32.dll and user32.dll. These files reside in the ..\windows\system32\ directory
under Windows XP. The Windows utility QuickView which used to be bundled with the Accessories of
Windows 98 is no longer supplied in later versions of Windows. This facility was very useful as it allowed
one to find out what functions are included in any given DLL.

However, a full list of usable Windows functions is given in the MSDN library, at
http://msdn.microsoft.com/library/, under [Win32 and COM Development][Development Guides][Windows
API][Windows API][Windows API Reference], where functions from various DLLSs are listed by name or
by category. As is often the case with Microsoft documentation, unless you know what you are looking for,
the volume of practically unnavigable technical information can be disheartening. Nevertheless there are
numerous other sources of this information in books, such as Microsoft Windows 32 APl Programming
Reference, Volumes 1 and 2 from Microsoft Press, and in various places on the Internet.

§§ 9.1.2 The Meaning of the right Argument of 0N 4

ONA CVec n Fixes function as defined by CVec

The character vector Rarg to [J¥ 4 contains a number of distinct parts. Essentially, there are 4 separate parts
in the string.

1. The first describes the variable dataType of the result. This element may be elided if there is no
result from the C function, or if none is required.

2. The second part is the name of the file containing the compiled C function. This may be the full
path name if the DLL is not in a visible directory such as ..\system32\.

3. The third part, separated from the second by a bar (|), is the name of the function to be called from
the DLL.

4. The fourth, and most complicated part, contains the specification of the variable dataTypes of the
elements of the (right) argument to be supplied to the function after it has been fixed from the DLL.

For example, the following CVec refers to a function called SystemParametersinfoA which is found in
library User32.dlI.

'T4 User32|SystemParametersInfodA I4 I4 >{I4 I4 T4 Tuy Iy
The basic function result is a 4 byte integer and the argument to be supplied has 4 elements. The first,
second and last are 4 byte integers and the third consists of a string of 4 byte integers which are to be used to
capture the memory contents of a useful set of data indicated by C code pointers.

9L21Eix the function SystemParametersInfoA in a clear workspace and display the result of the call
SystemParametersInfod 48 0 (0 0 0 0) O

59

http://msdn.microsoft.com/library/

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 9.1.3 Discovering C Function Syntax

Let us start with a very simple, but very useful, example. The function GetSystemMetrics takes an integer
argument and returns an integer result. The meaning of the argument and result can be found in
http://msdn.microsoft.com/en-us/library/ms724385.aspx .

According to this documentation, "the GetSystemMetrics function retrieves various system metrics (widths
and heights of display elements) and system configuration settings. All dimensions retrieved by
GetSystemMetrics are in pixels." The calling syntax is given as:

int GetSystemMetrics(
int nIndex

);

and the single parameter argument, nIindex is defined as "the system metric or configuration setting to
retrieve.” There then follows a table of possible values and their meaning. Int isa 32 bit signed integer.

%131Define function Get SystemMet rics in your workspace and determine the meanings of the first 20
calls.

ONA'I4 user32|GetSystemMetrics Iu'

GetSystemMetrics 120

1024 17 17 26 1 1 3 3 17 17 32 32 32 32 20 1280 968 0 1 17
Hint: See function # .WDesign.GetSystemMetrics in the supplied workspace
WDESIGN.DWS for a good short explanation of each metric.

§ 9.2 Examples of C Function Calls
§§ 9.2.1 Simple Examples

Another simple useful example of an API call is the function GetCurrentDirectory which retrieves the
current directory for the current process. Its syntax is documented as:

DWORD GetCurrentDirectory(
DWORD nBufferLength,
LPTSTR /pBuffer

)i

In this case there is a result described as a DWORD, and a 2-parameter argument described as a DWORD
and an LPTSTR. The meanings of these parameters are defined as "the length of the buffer for the current
directory string..." and "a pointer to the buffer that receives the current directory string..."

This translates to
(ONA'kernel32|GetCurrentDirectoryA U4 >0T'

because a DWORD is defined (see below) as a 32 bit (4 byte) unsigned integer, which translates to 4, and
LPTSTR is a pointer to a null-terminated character string, which translate to >o7 in N4 syntax. The >
indicates that the contents of the pointed memory location assumed by the template argument will be used
and overwritten by pointer-type output from the C function. The zero implies a null-terminated string, and
the T means char - an 8-bit Windows (ANSI) character. GetCurrentDirectoryA is the ANSI version of the
function and GetCurrentDirectoryW is the Unicode version.

So a call such as
GetCurrentDirectoryA 100 200
C:\Dyalog9o0

http://msdn.microsoft.com/en-us/library/ms724385.asp

Q Module9: C Function Access Q

fills in an output buffer at pointer position 200 with an ANSI string of up to 100 characters long, the last
character being a terminating null character.

3 Windows Data Types - Microsoft Internet Explorer E‘@‘E
file Edit wew Favortes Tools Help i

@Eatk] IiLI |EL‘ £ /r]SEar(h ¢ Favorites (@ e 2) - & -
cless] http:ffmsdn. microsoftcom/library/def ault aspurl=flbraryfen-us/winprogfwinprogiwindows_apl_start_pa Beo |uk

msﬁg

MSDN Home Developer Centers | Library | Downloads | Howts Buy | Subscribers | Worldwide

typedsf DUORD COLORREF;

CONST Wariable whose value is to remain constant dur
uows zen o 0 execu tion

A Generic Sample npplicaA
Using the Windows Heade
[windows API Reference O ERER Gmmss
3 wincons Data Types]
[Large Integers

Large Integer Refsre
O] Functions by Catagory This type is declared in WinDef.h as fallows:

This type is declared in WinDef.h as fallows:

DWORD 32-bit unsigned integer,

Functions in alphabetic.
Functions by Release
Compatibility with 16-b
[settisment Frogram Interfac DWORDLONG 6e-bit unsigned integer,
Book Excerpt This type is declared in WinNT.h a5 follows:
O Code Samples
Microsaft Layer for Unicade on G B DITEEES

Wwindows Driver Kit

typedef unsigned long DWORD;

@rapiites e ([Hod DWORD_PTR Unsigned long type for pointer precision. Use w

E
a pointer to a long type to perform painter arith
also commonly used for general 32-bit parami

Messaging and Collaboration b

(&) Windows Data Types ® Internet

There are 8 bits in a byte (and, not coincidentally, 8 wires in the keyboard cable). Each bitcanbe a1
(voltage ON) or a 0 (voltage OFF) so there are 2 8256 possible combinations of bits in a byte.

4 ol [l [} [o) [e] [t] [

8 bits = 1 byte

ASCII characters use only 7 bits, giving 2«71 28 combinations. This used to be sufficient space for all
the common letters and symbols on telex and teletype terminal keyboards. The 8™ bit was often used in
communications for a parity check. ANSI characters use all 8 bits and therefore allow 256 distinct
characters to be defined (hence the length of 047V). Unicode characters generally take 16 bits (2 bytes),

giving 2+ 16165536 distinct combinations. Therefore Unicode allows at least 65,536 different characters
to be defined.

If interpreted as a number, then 2 bytes can represent any number between 0 and 65535 for (unsigned) v 2,
or any number between 32768 and 32767 for (signed) I 2 in which the first bit is used for the sign.

(16p2)T(2%15)-1 na Biggest positive number
6111111111111 111
(2x15)-1532767

(16p2)T2%15 a Smallest negative number (2's complement)
1 0 00 0OO OOOO0OOO0OO0OO0OO0OO

-2%15L 32768

The GetCurrentDirectoryA function returns the current working directory as a string via a pointer reference.

Be sure to allocate enough space for the string or you might get a GPF! Incorrect coding of O~ 4 function
argument parameters is the most common cause of SysError 999 crashes in Dyalog APL.

61

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 9.2.2 More complex Examples

We shall look at 3 functions in the ADVAPI32.DLL library, which together give read and write ability to and
from the Windows Registry. They are therefore very useful in many APL applications. The functions are
RegCreateKeyEXA, which returns a handle to a given registry key, creating it if it does not already exist,
RegQueryValueEXA, which "retrieves the type and data for a specified value name associated with an open
registry key", and RegSetValueExA, which "sets the data and type of a specified value under a registry
key."

These three functions, and others, are well described in a workspace kindly supplied by Alex Kornilovski, to
be found in the [Download][AKUTILS] section of www.dyalog.com, or in the very large collection
generously provided by Ray Cannon to be found in [Download Zone][Pocket Dyalog][padlls.dws].

The GetEnvironment method of Root with argument ' TniFile' returns, by default, the Dyalog
registry subkey of the HKEY_ CURRENT_USER key.

#.GetEnvironment'IniFile's'SOFTWARE\Dyalog\Dyalog APL/W 11.0'

RegCreateKeyEXA takes this key and returns a handle to it for use with the other 2 functions. The function
syntax is described as:

LONG RegCreateKeyEx(
HKEY hKey,
LPCTSTR /pSubKey,
DWORD Reserved,
LPTSTR /pClass,
DWORD dwOptions,
REGSAM sambDesired,
LPSECURITY_ATTRIBUTES /pSecurityAttributes,
PHKEY phkResult,
LPDWORD /pdwDisposition

);

which we may implement as
ONA'ADVAPI32.d11|RegCreateKeyExA U <0T I <0T I I I >U U'

Notice T and U, without a numeric qualifier, implies width 2 for 16-bit DLLs or width 4 for 32-bit DLLs.

Key<«2147483649 a HEX 0x80000001 = HKEY CURRENT_USER
SubKey<«#.GetEnvironment'IniFile'

Access<983103 a HEX O0xFO0O3F = KEY ALL ACCESS
Rarg«<Key SubKey 0 '' 0 Access 0 0 O

FRegCreateKeyExA Rargs600

Read this as "it happens to be true that RegCreatekeyEx A applied to the above (enumeration) key and
subkey returns the handle 600." We need to use 600 for the next function call. (The special numbers
quoted above are slightly more meaningful in their HEX representation.)

%221Ccompare Rarg with the C function syntax above and the description of the parameters in
http://msdn2.microsoft.com/en-us/library/ms724844.aspx .

Symbol < indicates a pointer pointing at input to the DLL function.

http://www.dyalog.com/
http://msdn2.microsoft.com/en-us/library/ms724844.aspx

iQ Module9: C Function Access Q

OBERTSON

The RegQueryValueEx function retrieves the type and data for a specified value name associated with an
open registry key, identified by its handle.

LONG RegQueryValueEx(
HKEY hKey,
LPCTSTR /pValueName,
LPDWORD /pReserved,
LPDWORD /pType,
LPBYTE /pData,
LPDWORD /pcbData

)i

This syntax may be translated to
ONA'I ADVAPI32.dll|RegQueryValueExA U <O0T I =I >0T =I4'

The result is a LONG which we can identify as integer 7 or 4. The key is an unsigned integer, U. The
name of the value of interest is to be input and is interpreted as a null-teminated character string.
Key<600 a Handle
ValueName<«'log_file'
DataType<1 a String data type (REG_SZ)

Given the 0N 4 specification above we expect RegQueryValueExA to return a 4 element vector
representing the result (1), the dataType (=), the data (> 07) and the number of bytes used (=7u4). Note
that the equals sign (=) is used to specify parameters which are both input (<) and output (>) pointers.

DISPLAY RegQueryValueExA Key SubKey 0 DatalType 255 255

| 0 1 [C:\Dyalog90\default.dIlf| 24 |

If we were not concerned with anything but the data value, we might use the specification
ONA'ADVAPI32.d1l|RegQueryValueExA U <0T I <I >0T <Iu'
but it is obviously not advisable to completely ignore error flags.

The complementary function, RegSetValueEX, sets the data and type of a specified value under a registry
key. The C function has syntax declared as:

LONG RegSetValueEx(
HKEY hKey,
LPCTSTR /pValueName,
DWORD Reserved,
DWORD dwType,
const BYTE* /pData,
DWORD cbData

)i

This may be translated as
ONA'I ADVAPI32.d1l|RegSetValueExA U <O0T I I <OT Iy

9222¢all functions RegCreateKeyExA, RegQueryValueEx4 and RegSetValueExA with suitable
arguments to access, replace and create some registry entries.

63

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 9.2.3 Other API Calls

The workspace SQAPL residing in the WS directory of your Dyalog APL installation is a very useful
example of a system written in C and linked to APL via O~ 4. The system allows access to ODBC data
sources and is described in chapter 16 of the Dyalog APL Interface Guide.

%2311n library User32.DLL there is a function called SetCursorPos which moves the cursor to the specified
(X,Y) screen coordinates, in pixels. The C function syntax is specified as

BOOL SetCursorPos(int X, int Y);

Define this function in you workspace and check that it works as expected.

%2321n library User32.DLL there is a function called FindWindowA. This function can determine if
another application is currently running on your system. It accepts two string arguments, one for the class
name of the application, and another for the window title bar caption. The result is an unsigned integer
giving the handle to a window. The first argument is also an unsigned integer that can be given the value
zero. The second argument is a null-terminated string containing the caption of the window. Define this
function in your workspace. Create a Form in the workspace with some specific Capt ion. Look at the
Hand le property of this 7orm and compare that with the result of the function FindWindowA.

9233 ns demonstrated by Thomas Gustaffson, the function WinExec in Kernel32.DLL runs a specified
application and may be used to replace a call such as

OCMD'Notepad' '
The first parameter argument of WinExec is a pointer to a null-terminated character string that contains the
command line for the application, the second argument is an integer such that 1 means "show window".
Define this function and use it to replace the [Jc ¥D command above. Note that, as in the c¥D case, the
first parameter must be surrounded by double-quotes if there are any spaces in the string.

There are a number of working examples in the supplied workspaces QUADNA.DWS, NTUTILS.DWS and
WDESIGN.DWS. QUADNA contains a particularly interesting example, ChooseColor, which requires a
pointer to a structure which itself contains a pointer to an array. Notice that this workspace makes calls to
the library DYALOG32.DLL. There are many other examples of (v 4 calls in freely available workspaces
such as those kindly supplied by Alex Kornilovski and Ray Cannon.

Sometimes the main difficulty with utilizing external functions is not in the construction of dataType
specifications but in the interpretation of the final result. For example, GetVersion should be defined as
taking no arguments and returning an integer result. To decipher the meaning of this result requires
appropriate documentation, as can be seen from the code snippet below:

code<«GetVersion
code<«(32p2)Tcode
code<«(ocode) (21 8+code)
:Select code
:CaselList (0,73 4 5)

R«'Windows NT/2000/XP'
:Case 1 4

R«'Windows 95/98'
:Case 1 3

R«'Win32s with Windows 3.1'
:Else

R<'21
: End

& &

= Module9: C Function Access oy

GetVersion has been superseded by GetVersionExA in the same library. The new function returns a
more complex structure and may be fixed by
UNA'I kernel32|GetVersionExA ={I4 I4 T4 T4 Ty T[128]}'

§ 9.3 Harnessing large C Libraries
§§ 9.3.1 Fastest Fourier Transform in the World

FFTW is a free C subroutine library for computing the discrete Fourier transform in one or more
dimensions, of arbitrary input size, and of both real and complex data, as describes in the owner’s web site
http://www.fftw.org/.

The C function DFT.C below has been written on top of some of the principle calls to FFTW in order to
create a function with relatively straight-forward arguments for a (v 4 call. It is therefore probably not still
the Fastest Fourier Transform in the World, but it is nevertheless a very useful addendum to Dyalog APL.

DFT.C
/* dft.c discrete fourier transform */

#include <fftw.h>
__declspec(dllexport) void dft(int *rank, const int *shape, double *data)

fftwnd_plan plan;

plan = fftwnd_create_plan(*rank, shape, FFTW_FORWARD, FFTW_IN_PLACE);
fftwnd_one(plan, (void*)data, 0);

fftwnd_destroy_plan(plan);

bs

This function and the inverse function IDFT.C are to be found in the supplied file FFTW.DLL.

9311Gjven the above C function header, compose the right argument of (57 4 and compare with line [15] in
the function below.

& Fourjer.DFT
File Edit Wiew Options

[0l KijkZ2«DFT HijkZ:shape:rank:datazarg:res
[1] f Discrete Fourier Transformation

[2] A by graeme@duadic.com

[3] If o verepKigk20=T0 10,100,201 1201 22
[4] A pass through scalar

[5] kKijk2«xijk2

[a] =0

[7] :End

[a] H EEE R S 1%

[9] HijkZet 2R jk2 A complenifyu
[10] :End

[11] ranks l+ppiijkz Aol

[12] shape« llrpHijkZ A o<I40]

[13] data«,"ijk2 A =FaLC]

[141]

[15] arg«'<I4 <1401 =FEC]"

[1la]

[17] OWA'fftwldft ',arg

[13] res«dft(rank shape datal

[13] KijkZelshape,2lrres

[20] KijkZel20. 5% sshapel=ki jk2 2] Normalizd

Modified Function | Last saved by: Graeme Robertson:26/11/2002 |Pos: 20,42

65

http://www.fftw.org/

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 9.3.2 Open Graphics Library

The OpenGL graphics library is an interesting application for O~ 4. OpenGL is described in
http://www.opengl.org/documentation/.

Alexander Skomorokhov, Alexei Zalivin and Alexander Kornilovski have kindly provided code that covers
many of the OpenGL calls. Their workspace, DEMOGL.DWS, may be downloaded from the public
download section of www.dyalog.com. It contains a number of static and dynamic examples.

Demo version of OpenGL +DyalogAPL/W

Help: Press 1,2 for rotate

Alexander Kornilovski has supplied a further workspace, GLAUX.DWS - also downloadable, and with
some more complex examples.

A% Demo version of OpenGL+DyalogAPL/W v 1.1 E@E A5 Demo version of OpenGL+DyalogAPL/W ¥ 1.1 _ (O}
File Help File Help

/

|Ht:I|J: Use cursor keys to rotate [Shift to move] o

9321explore these workspaces, paying particular attention to the arguments of the 200 or so (5 4 calls.

§§ 9.3.3 Linear Algebra Package

There are many other freely available sources of code that can be accessed via v 4. Some are single
functions and some are large and complex applications, such as PetSc, the Portable, Extensible Toolkit for
Scientific Computation, downloadable from http://www-unix.mcs.anl.gov/petsc/petsc-2/.

As a final example we consider LAPACK, the Linear Algebra Package which is downloadable free from
http://www.netlib.org/lapack/ (under GNU license agreement).

http://www.opengl.org/documentation/
http://www.dyalog.com/
http://www-unix.mcs.anl.gov/petsc/petsc-2/
http://www.netlib.org/lapack/

iQ Module9: C Function Access Q

OBERTSON ORERTSON

LAPACK contains hundreds of C functions for real and complex matrix manipulation. Most of these
functions are defined in order to support 2 major goals. The main goal is general computation of
eigenvectors and eigenvalues from real or complex square matrices. The other is the equivalent of monadic
and dyadic domino (f) for real and complex matrices.

A subset of these functions has been carefully chosen to cover the essentials of these two goals and thus

provide the basis of two proposed new APL primitive functions which we denote & and [\l
See APL81 Proceedings for first mention of symbol N for this purpose.

Monadic @ is complex matrix inverse and dyadic @ is complex matrix divide. These functions are
modelled by the ambivalent APL function, Domino, to be found in supplied workspace MATH.DWS. The
convention adopted here is that complex numbers are represented by enclosed 2 element vectors.

The primary purpose of LAPACK is the calculation of monadic [l (eigen) - the computation of the
eigenvectors and eigenvalues of real or complex square matrices. This function is implemented in the APL
function £ i gen to be found in MATH.DWS. Complex numbers are again represented as enclosed 2
element vectors.

Given some complex square i by i matrix, 4;;, an eigenvector of 4, is a vector whose direction is
unchanged by the application (matrix multiplication) of 4;,. The corresponding eigenvalue is the scaling
factor, which may be complex. In other words, given
E;j<NA;;
then
F(Aii+.x 1 OvEji)=fuzz(i ipEjil[1;])x 1 OVEji
where x represents complex multiplication
V R«4 x W;Sign
(1] Sign«2 2p1 "1 1 1
(2] R«+/85ignx0 1e(2t4)o.x24W V
and fuzz is a fuzzy operator to cope with a little algorithm inexactitude.
V R<A(f fuzz)W;CT
(1] OCT<«2%"32 a=2.328E 10
(2] R<(A+01)f W+o1 v
Of particular scientific interest are Hermitian matrices (4), defined by |z=¢&H , where ¢ (or perhaps €)
might be defined as the complex conjugation primitive function. Hermitian matrices are important because
their eigenvalues are real numbers, as are the results of all quantitative measurements. Thus Hermitian
matrices are actually used to represent measurement operations in modern physics.

At this point let us consider an operator of a different character — a monistic niladic operator - that takes a
matrix left operand and returns a related matrix result. These operators are intended to generalise to
matrices of functions as outlined in § 11.3.

Arrg—ArrlT A Transpose array Arr,

1

Arr,<Arr,” a Inverse ofarray Arr,

Arr,«<Arr,’ a Complex conjugate of array Arr,

67

Q Day1: Third Generation Dyalog APL - Objects Q

.'.

Arr,<Arr, a Complex transpose of Arr,

The function vEV v below is a canonical version of the function vEigenv in MATH.DWS. Line [11] calls
function vZHEEV v.

. Eigen.EV |Z| |E| E|

File Edit Wiew Options
Lol EjiZ«EU AiiZ A EigenvaluessEigenvectors of Aii
[11] A by graeme@dyadic.com
[2] I real ALiZ2
[3] If summetric ALiZ
[4] ARdIF Z#==2pARiiZ
[5] Eji2«DEYEL ALiZ A real summetric
[l :El=ze
[?] Eji2«DGEEL AiiZ @ real non-summetric
[B1 tEndIf
[3] El=ze
[10] (1 hermitiam AiiZ
[111] EjiZz«ZHEEL AiiZ A complex hermitian
[121] iElse
[13] EjiZ2«ZGEEL AiiZ A complex non-hermitian
[14] (EndIf
[15] EndIf
Maodified Function | Last saved by: Dyadic:06 August 1999 11:04:26 Paos: 0,8

vZHEEV v is a cover function for the LAPACK function zheev_ which is fixed from the supplied
LAPACK.DLL on line [19] of vZHEEEV v and called on line [22].

. Eigen.ZHEEY

File Edit Wiew Options
[0l Ejiz«ZHEEM AiiZ:arg:res:EiiEiiirepair
[1] A complex hermitian matrix eigenvaluessvectors
[2] A Alj Ejk = Ek Ejk A Ek £ Real
[3] A ALl +.x Eik = Ek =[2] Eik A i=j=k=1..HM
[4] O3HADOW® JOBZ UFLO M A LDA W HORE LWORK RHORE IMFO"
[51]
[&] JOBZ«"11" Al <C1
[7] UPLO="L" a2 <01
[5] Me=pR1iZ a3 <14
[3] Ae,2 1 JmAiiZ A4 =FEL1]
[10] LOA+N A <14
[11] Hepl ag »FEL]
[12] HORK « 2= (2= I=1mZ=LHORK &7 »>F8L]
[13] LHORK+ C2=pI-1 A3 <14
[14] RHORK« C3xM1-2 A3 :FELC]
[15] [MFD«0 ALl »14
[16]
[17] tIF 0=0NHC' zheesu_ '
[181] arge'<Cl <Cl <14 =FBC] <I4 :F8C] »F8L] «<I4 »FSLT »14"
[139] OMA*lapack.dll lzheeuw_ ",arg
[Z0] ‘End
[21] Trap 11
[22] res«zheew_(JOBZ UPLO M A LDA W HORK LHORE RHORE IWFO2
[23] :Elze
[24] C'unknown error®JOSIGHAL 11 A+ truy ZGEEL
[25] :End
[26] (If 0= 1tres
[27] C'error ',F 1TresIOSIGEMAL 11
[Z8] ‘End
[23] Ei«t21", 2ares
[30] Eii+«2 1 Smh N Zpl=res
[31] Ejiz«Ei-Eii
Modified Function | Last saved by Graeme Robertson; 26 November 2002 12:10:25 Pos: 1,45

iQ Module9: C Function Access Q

OBERTSON

ROBERTSON

9331Compare the 0N A call in vZHEEV[19 1v with the snippet of C code in file ZHEEV.C below taken from
the corresponding uncompiled LAPACK function zheev_.

ZHEEV.C
#include "f2c.h"

/* Subroutine */ int zheev_(char *jobz, char *uplo, integer *n, doublecomplex
*a, integer *Ida, doublereal *w, doublecomplex *work, integer *lwork,
doublereal *rwork, integer *info)

{

/* -- LAPACK driver routine (version 2.0) --

Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994

Specification of the right argument to O~ 4 can be arbitrarily complex. Errors in the specification can cause
Dyalog APL to crash with a System Error 999 and therefore care should be taken when constructing O~ 4
calls, although version 11 has significantly improved the error reports from On A.

Without a left argument [~ 4 fixes a function whose name is that of the C function involved. Alternatively,
O 4 can take a left argument of a character string containing any legal user-defined name for the function to
be fixed in the workspace.

9332 psk for the next module on runtime applications

69

R N

OBERTSON ROBERTSON

Module10: Stand-Alone Applications

You have written your Dyalog APL application and all you want to do now is dish it out. "HOW DO YOU
DO THAT?"

§ 10.1 Building GUI Applications
§§ 10.1.1 The bare Minimum

Your application code may be in a workspace and the interpreter may be the runtime executable,
Dyalogrt.exe. For details of this outdated scenario, see the document "Run-Time Applications in Dyalog
APL/W Versions 7 and 8" which is available from the DyalogUsers yahoo repository. This document also
applies, essentially unchanged, to version 9.

From version 10 onwards, the smallest possible packaged Dyalog APL application requires two files, an
executable (EXE) file containing your code and the Dyalog APL dynamic link library, Dyalog10rt.DLL, to
which it is bound. Together, these two files can constitute a complete application whose only reference to
APL is the name of the Dyalog DLL. The application may use its own registry section and an application
icon can be incorporated into the executable. This is explained in §10.2.

The program should trap all errors, but just in case the program should exit before JoFF, the configuration
parameters RunTimeTitle and RunTimeError ought to be given appropriate entries in your registry file.
This registry file will be described in §810.2.2.

In this section we prepare an application for export. The runtime application agreement with Dyalog
Limited clearly precludes the possibility of writing a Session-replacement cover for the Dyalog APL

language kernel such as 0LX » F «keypress that executes () raw APL code below.

 keypress
File Edit Wiew Options
File Edit Wiew Options (01 ESEENSSN Msg:T:T1
[1] 1F "ER'=3=Hsg
[0] L¥:F & My Session | [21 Trap 0)
ica 1 1 [3] T1«0FHT&,T 1TLT«(=H=sgJ.
[1] IF ElHlfI: FDrl“m o o . [4] Flse
2] F.ED'OHC Edit'C"=tule Hulti'd [51 T1<70DH
L4 +IREHPPESSI E?% '|:'EIE$(J-TJ 713" "
i - . -
[4] DDQ F [a1 C=H=gd. «
[31 C=2H=gl. «2p=(2pPT 1,0
[10] tEnd
Modified Function TMPB&13:24/01 /2006 Pos: 0,19 Function Last saved by: TMPEB13:24/01/2006 |Pos: 0,1

So we need an jIDEA! for an application of our own. To assist in the quest we provide a small starter
application that you might adopt and adapt to your liking.

10111 oad workspace AddrBk.DWS and try using the address book. Add a new entry by dragging the
TrackBar to the far right and entering a name. Drag the Trac kBar back to the appropriate letter to view
your new entry. Edit the entry at will.

Note: Remove mention of ShowSIP, OKButton and SIPResize torunonaPC.

Two of your friends and associates might be:”

70

o Module10: Stand-Alone Applications

A Address Book g@@| A+ Address Book

M anne:; |EaptainJ Sparrow I arne:; |Luke Skywalker
E -mnail; |James.5parruw@|g.com E -mail; |Luke@sky.com
10 Redwood Common 10 Darth Vader Avenue
Flyrnouth &, Planet

Devon Far Far Aweay

E=12TT

Tel: 01234 56783 Mob: +44[01123123123
Mob: Faw: +34[0123123124

Last meeting 15/411/2010

A R A R

: 0

§§ 10.1.2 Completing the Address Book Application
You might have noticed that your entries are lost as soon as you exit the workspace ®.

1012110 order to make this little application useful, replace the functions vaddrbk.GetMyStorev and
vaddrbk.PutMyStorev with APL component file read and write/create storage functions.

§§ 10.1.3 Enhancing your Address Book
There are many other ways that you might wish to personalise and improve the Address Book application:

e Use a different extension (eg .AB) rather than .DCF for your component file name.
e Include ~FileBox in [File][Open] to select a different address book.
e AddOTRAP - ErrorLog to deal with errors. (Start ErrorLogl[1] withJTRAP<0 'S'.)
e And/or email errors to your HQ (see §87.3.1) with information such as..
0AN 0OAI Obm 0SI 0xSI OTs OFNAMES OWA OTID ..,butnote FOwSID="'" inanEXE.
e Create a Help file and add a [Help][Help] menu item.
e Add [Help][About] to identify yourself and your product.

e Change the system I con defined in vaddrbk.Icons32v to your own design.
Tip: Consider using supplied workspace BMED.DWS.

e Make the left and right arrow keys move the Trac kBar Thumb left and right. Etc...

§ 10.2: Making runtime Executables

Up until version 10, you could build free stand-alone applications with Dyalog APL. (In version 11 the run-
time interpreter is not free.) An important practical difference between version 10 and previous versions is
that you can completely avoid the difficulties involved in correctly specifying the command line required to
initialise a version 9 (and prior) run-time system.

§§ 10.2.1 Files to Include

The only files that you have to include with a minimal runtime application in versions 10 and 11 are the
application executable and the bound Dyalog runtime DLL. There is no need to include input (.DIN),
output (.DOT) or APL font files, unless the application is explicitly going to use APL characters.

It is, however, often mandatory to include a registry (.REG) file, described in the next section.

71

Q Day1: Third Generation Dyalog APL - Objects Q

Various other files are often necessary:

e APL component files or native files for data storage,
e the application’s help file,
o application-specific bitmaps and icons.

An example version 10.0 run-time application called varChar is included in this APL3&4 course. The files
involved in this application are shown below. Char.exe with Dyalog10rt.dll is the core of the system.
There are registry files and corresponding keyboard files for Danish and UK users. There is a demo DCF
file and a help file. There are odd font, bitmap and icon files.

'l}l

File Edit Wew Favorites Tools Help
O Back - > ir 7/) Search = Falders m'
Address |[[5) CAGDR\ZY L warChar 4 a Go
Folders s Mame Size | Type Diate Modified 5
+ () Product V. . char.exe 345KE Application 13/10/2005 16:26
=20 @) CHAR HLP 2,311 KE Help File 13102005 20:20
El R CHARDEMO.DCF 1,505KE DCF File 24/11/2004 01:06
9 varchar @charDK.reg 1KE Registration Entries 1311002005 11:49
#0052 @charUK.reg 1KE Registration Entries 1311002005 20:39
35 ,ﬂ dlogttal ttF 45 KE TrueType Font file 09/07/2004 09:57
[BMTOOLS ,ﬂ dlogtkst. ktf 71KE TrueType Fontk file 09/07/2004 09:55
=) Inkel ,3 dyaloglort.dil 2,996 KB Application Exkension 01/08/2005 15:28
+ (3 ExtremeGraphics | Greetcha,bmp 675 KE EBitmap Image 13/10/2005 10:25
) M . gricol6.ico ZKB Icon 1511172004 14:57
2) mrk . grico32.ico 3KB Icon 1511112004 14:56
[Personal Commurications E] readme. txt LKB Text Document 13/10/2005 17:03
(T3 Program Files |4 Stop. brp ZKB Bitmap Image 13/10/2005 09:08
[recycler warChar ZKB Shortcut 1311002005 22:40
[3) SQLLIB win.dot 13KB Microsoft Word Template 10/03/2003 12:21
[StrtFldr] winDK. din Z3KE DINFile 13{10/2005 16:32
B P arn V| [®] winlk. din 16KE DIM File 17/06/2005 13:57
£ > w

Tip: If your keyboard is other than Danish or UK then you should copy and rename your keyboard (.DIN) file to be
winUK.din and copy it over the one in varChar.

§§ 10.2.2 Inifiles and the Windows Registry

The Inifile parameter refers to a registry subkey in the HKEY _CURRENT_USER section of the Windows
Registry. The default subkey in version 10.0 is \Software\Dyadic\Dyalog APL/W 10.0 but you can choose
your own names to put under the \Software\ section.

REG files, which are simple text files and can therefore be edited in Notepad, should begin with REGEDIT4
(or windows Registry Editor Version 5.00) to identify the file as containing registry information. The next
line identifies the section into which the information to follow should be added. If this section does not
exist then it will be created. The name of the section typically contains the company name and the
application name, eg [HKEY_CURRENT_USER\Software\MyCompany\MyApplication]

10221 yse REGEDIT.EXE [File][Export] to export a small section of your registry. View the resulting file
in Notepad. Note that names and values of string entries (of type REG_SZ) are surrounded by double-
quotes. Note also that backslash characters (\) have to be doubled up (\\) inside quotes.

o Module10: Stand-Alone Applications o

B charUK.reg - Notepad E@E‘
File Edit Format Yiew Help
REGEDIT4 5

[HKEY_CURRENT_USERMSoftware“Rober tsonsChor]
VAR LKY =Yy i nlUK . din®

YAp LKeys! =v. v

PARLTY=YWin. dot!

VAR LTrans! =4, v

"MexeWSY="100000"

"ChorPosn"="271 333"

"ChorSize"="477 710"

"ChorState"="0"

"Defoult_WXY=Yq1Y
"Stdlndex”="1"
w=ugn

"FmtNewl ine”="1"

UFmtSizah =gl

YGreet Bitmop” =" . \\Greetcha. bmp"
YProper t¥yExposeRoot"="1"
"RuntimeTitle" ="Rokertson Char!
"RuntimgError”="Non-recoveradble error. Robertson Char will be gborted. For support, emdil
"BtnSize"="710"

VBtnIndex” =4V

"BtnNewl ine”="1"

"TriSize"="710"

"TrikIndex”="z"

< >

To install information from a REG file into the registry, you simply need to double-click on the file in
Windows Explorer. Alternatively you can run command

regedit c:\myapp\myapp.reg

in the command prompt. Or you can run the command

regedit /s c:\myapp\myapp.reg
to silently install the entry (without the popup message boxes). (The /d switch deletes a key.)
This can be done in APL under program control using 0c D (or WinExec), first making a call to

#.GetEnvironment'Inifile' tocheck whether some particular registry entry already exists. This
can make the whole process of establishing a registry entry completely transparent to the user.

the MAXWS parameter used to be one of the most significant entries in the registry file. MAXWS determined
the maximum size of the workspace and often had to be set to a large value for big applications. However,
the DLL now dynamically allocates more memory as required and so this parameter is less important from
version 10 onwards. (Also note that Ow.SID is empty in a .EXE file.)

One simple but nevertheless valuable parameter is greet_bitmap. If this parameter is set to the name of a
bitmap file (eg "greet_bitmap"="c:\\myapp\\mybmp.bmp") then that bitmap will be displayed while the
workspace is loading, and until the statement # . GreetBitmap 0 isexecuted in your [JLx after

everything has been initialised and your application is ready for user activity. Sometimes this is too quick!

10222\ ake a 200 by 400 pixel bitmap (using the 7 i IeWr i t e method of a B i t map object) and make a 32
by 32 pixel icon (using the i e r i t e method of an Tcon object.)

10223Create a personalised registry file with the greet_bitmap parameter set to your product bitmap file.

10224ndd OcMD ' RegEdit /s ...' tothe Address Book OLX, to be run if and only if
|-'C:\..\MyBitmap.bmp'aé#.GetEnVironment'greet_bitmap'

10225Add the statement # . GreetBitmap o tothe Address Book [JZx at a suitable point.

73

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 10.2.3 The [File][Export] Menultem

10231 |_oad your Address Book workspace in Dyalog version 10. Run [File][Export...]. Uncheck [Use
Microsoft .Net Framework]. Enter your icon file name under Icon file and Inifile under Command line.

Create bound file E]
Savein [() AFLEL ~| o E3-
()ASP.MET
’J (Sete
Recent |[HET
Cirelnotes
@ Shserver
o
Desktop
My Document s
My Computer
Dyalog APL/W
.& Fils pame: [ab2aiant = Save
My Metwork, Save as ype |Bound Executabls [* exe) | Cancel -
Places) - |) File: C:\GDRYAPL3&4 ab24Jan6, exe successfully created,
¥ Buntime application |~ Console application [Use Microsoft Net Framework
Ion il CAGDRYPEDAEralica Browse
Command i [infle="Scltware\Dyadic\Dyalog AFL/W 10.07

On Save you have an executable program bound to a dynamic link library. 1f the DLL is placed in the
\Windows\System32\ directory then it should always be visible to the executable, otherwise it should be
copied and moved around with the EXE file (that was your workspace).

10232Test your product and sell it to your friends ;-)

§ 10.3 Aspects of Pocket APL
§§ 10.3.1 Pocket Platforms

Dyalog Pocket APL runs under Microsoft Pocket PC 2002 and 2003 operating systems which run on a
number of Personal Digital Assistants (PDAs) including Toshiba e740 and HP Jordana 560 Series.

Microsoft MSN Pocket Excel

Reader Messenger

M =

Pocket Terminal
Word Services

€Toshiba e740 €HP Jornada 560 Series

For a current list of suitable devices, see http://www.dyalog.com/ [Products][Pocket Dyalog]. The Dyalog
web site and Dyalog APL Object Reference are the primary sources of documentation for Pocket APL.

http://www.dyalog.com/

iQ Module10: Stand-Alone Applications Q

OBERTSON

Often it is most practical to do most of the programming E

of a new pocket PC application on a ‘big’ PC and make clear s -
the executable on the PDA during final stages of # Morigage calculation B
development. intsed 6 9:100<12 A monthly rates

prds<10 15 20 2512 A repay periods
amts+10000 20000 A loan amounts

You can buy an add-on keyboard for your PDA to autse
facilitate direct programming although a special APL
keyboard input panel is provided to enable entry of APL
expressions and user-defined functions. The APL
keyboard (shown here with Ctrl pressed down) can be

A Jm]

_)) s [=[<[<[=[2] > [=[v][A]x]+]ew
displayed or hidden. The presence of the keyboard is ﬂ? [wlelrl~[t4]]o]=]<]>
controlled by a tab on the screen or by the new o[r[L]_[+[o]-]"[O]¢]7]

shift[c[=[nfu]o][r]i]m][=[=]TC
ShowSIP method of a Form and Root (#). eg ctl I]t [<]=]

File Edit Action Windows Tools H

#.ShowSIP 1

ShowSIP Bool a Displays or hides the Input Panel

Three new properties of a Form have been introduced in Pocket APL to facilitate some of the special
characteristics of the device. They have no effect on other platforms.

SIPMode a Boolean determining automatic Input Panel display

If Fs1PMode then the Input Panel is displayed when a character input GUI object receives the focus.

SIPResize a Whether mode change generates a Configure event

If fsTPrResizethenaconfigure event is generated when the state of the Input Panel changes. The
default behaviour of this event is to resize the Form to fit the available space.

OKButton a Whether an OK button appears in the title bar

If FokButton then an OK button like this - ¥ - replaces the X button at the top right of the

Form. Clicking this button has the effect of pressing the But t on (on the Form) that has |'Defaul t.

If no Button has |-Defau 1t thena Close eventis generated. The 0KBut ton property may only be set
at Owc time.

Pocket APL 10.0.4 is almost identical to Dyalog APL 10.0.4 for the PC, but without the DDE interface and
Form docking facilities, and without the 4nimat ion, BrowseBox, ComboEx, MDIClient,
Metafileand SysTrayItemobjects. (Notice that in all versions of Dyalog, the runtime executable
EXE is almost identical to the development version EXE.)

A number of supporting workspaces are freely available from www.dyalog.com [Download Zone][Pocket
Dyalog], including an APL tutorial, sample functions and useful applications.

75

http://www.dyalog.com/

Q Day1: Third Generation Dyalog APL - Objects Q

§§ 10.3.2 Creating the executable Program

The Address Book GUI was built using the WDESIGN workspace. You might like to modify the Address
Book GUI using WDESIGN. To do this you should follow the instructions in the Dyalog APL User Guide
where a brief description of the distributed WDESIGN workspace is given.

10321pemove the comment symbols on lines [1] and [3] of vaddr bk . RUNv and save the workspace.

10322 |_oad the workspace in Pocket APL on your iPAQ and select [File][Make Executable] to create an
executable file. Tick the [Runtime Executable] checkbox and untick the [Evaluation Executable] checkbox
to create a basic product.

§§ 10.3.3 Building a distributable Application

A pocket APL runtime application requires the Pocket APL Runtime Engine, Dyalog10.DLL, which should
be installed in the PDA Windows directory. This Pocket APL Runtime Engine must be purchased by the
user of your application from www.handango.com for around $5.

Instructions as to how you can package and distribute an application yourself through www.handango.com
is give in www.dyalog.com [Products][Pocket Dyalog].

Apart from the APL runtime DLL, all that you need to distribute is the system executable (plus any other
extraneous files required by your application, such as supporting APL component files).

Note if you are an individual holding personal information only for domestic reasons (eg an address book or Christmas card
list) then you are not required to comply with the UK Data Protection Act 1998. Phew! ©.

10331Consider joining the pocketapl@dyalog.com mailbox group. That is the end of Day 1. Please come
back for more tomorrow.

http://www.handango.com/
http://www.handango.com/
http://www.dyalog.com/
mailto:pocketapl@dyalog.com

ROBERTSON

@

Module11: Advanced Dot Syntax

§ 11.1 Object Variables

§§ 11.1.1 Stranding Object Properties
§8§§ 11.1.1.1 Stranded Vectors

Since the advent of floating array second generation APLs, which we have described generically as APL 2
in APL1&2.PDF, variables (and unnamed parenthesised expressions) may be stranded together to form
nested vectors of enclosed elements simply by juxtaposing array expressions.

Strand (Vector) Notation: A series of two or more adjacent array expressions results in a vector whose
elements are the enclosed arrays resulting from each expression. (See Language Reference p12.)

Aside: In fixed array second generation APLs, pioneered by Ken Iverson in SharpAPL and J, strand notation is entirely
avoided. Instead a new canonical primitive function, link (;), is introduced which encloses the Larg and catenates the result to
Rarg, enclosing Rarg if it isn't already a vector of enclosed elements. In fixed notation, enclosing a scalar is possible.

Given three variables f for first, s for second and ¢ for third,
f<4 3564 o Numeric scalar (NumSc)

s«'sdgg' 'sg' 'sgsg' a Vector of character vectors (VecCharVec)
t<3 3p1 @ Numeric matrix (NumMat)
r st a Strand (VecEncArr)
43564 sdgg Ssg Sgsg 111
111
111

Strand notation has been generalised to strand assignment. The above 3 assignments can be achieved in one
single statement:
f s t<«u4356u4('sdgg' 'sg' 'sgsg')(3 3p1l)

DISPLAY f s t a Display view of strand

B e i e
| i R
| 43564 | .»>---. .>-. .>-——-. | ¥1 1 1] |
I | Isdggl Isgl Isgsgl | 1 1 1] |
| et ekl N e S R B B
| ' |
1

The varChar view of this strand is:

7 Display Dyalog APL Arrays - [f s t]

E File Edit Wiew Format Tools wWindow Help
=&k

[DyaloaStd 7T ¥|[17 o] ———————

Enter APL expression:

st -

77

Q Day2: Fourth Generation Dyalog APL - The Internet Q

The resulting display shows clearly that the strand f s ¢ results in a three element nested vector of which
the first element is a simple numeric scalar, the second element is a vector of character vectors and the third
element is a simple numeric matrix.

11111produce the example below in varChar and describe the elements of the six element stranded vector.
Experiment with other strands.

Enter APL expression:

[===,F3(3 3) 5 (2 2f50t (19 =

(ccc,f)(9 9 9)s(2 2p5)t(19)

7 Display Dyalog APL Arrays - [{==>,f1(9 9 9) s (2 2155}t [49)]
ﬁ File Edit Wew Format Tools Window Help
OE S
Dpalog St TT =|[17 > ——————}—————— 1m [&=

Hint:

Since object properties are essentially variables residing in the object’s space, we should be able to strand
these into vectors of properties, and indeed we can.

1112Create a Form, F, and enter F-space. List its properties. Strand some of its properties, eg
pl«Accelerator AcceptFiles Active AlphaBlend AutoConf
00 0 1 256 3
5
Assign anew Posn and Size in asingle expression.

It often happens, especially in a C code environment, such as in O~ 4 function calls, that arguments to and
results of functions consist of amorphous strands of disparate variables. This general scenario is such a
common occurrence in application code that, as of Dyalog version 10.1, it is possible to use extended
function header syntax. With this syntax, the header line of a function may use strands of variable names
in place of single names for arguments and results. For example a function that takes a date Rarg and
returns the next day's date could have header line:

v(Day Month Year)<nextDay(Day Month Year)v

§88§ 11.1.1.2 Vectors of .. Vectors of Stranded Name Vectors

§'Yes" arr a Assigns nested array s"-" Arr to a compatible strand

Assignment is extended to pervade nested strands of names (§"-") to the left of the arrow. This allows

multiple naming of parts of a structure in a single assignment. This name structure (§"-") is entirely
constructed of lists of names. The depth of the overall vector structure (v..v) is determined by the placing

iQ Module11: Advanced Dot Syntax Q

OBERTSON ORERTSON

of parentheses. We give this new form of name-structure the generic symbol, §”-7, to indicate it is a vector-
name-strand structure of arbitrary depth.

The conformability rules are similar to those for scalar (pervasive) dyadic primitive functions such as ‘+’. If
a b c and d are stranded names to left of an assignment arrow then the data on the right of the assignment
arrow must either be a scalar, in which case it is extended to conform to the stranded structure, or a vector
whose structure reflects the stranded structure of the names on the left.

((a b)(c d))<«(1 2)(3 4)= ((a«1)(b«2))((c«3)(d«k))

((Oio UOml)vec)<«0 Hav = ((Hio<0)(Oml<0)) (vec<~Uav)

(a(b(c d)e)f g)«1(2(3 4)5)6 7 = a b c d e f g«17

(a(b(c d)e)f g)«1(2((3 3)(4 4))(<3 3p5))6 7

If a simple scalar is encountered at an earlier stage in the correspondence, then that scalar is extended to
cover the structure beneath it, as is the case below:
(a b)(c(d(e £)))«1 (3)
This is a way of creating named arrays from a structure corresponding to vectors of .. vectors of names.
((first last) sex (street city country))<«DATA

Each name in the structure may be space-qualified so we can step from
(first last)<«'Star' 'Chakahwata'

to
(A.first A.last)<'Star' 'Chakahwata'

where

A.firstus'Star!

A.last w'Chakahwata'
This is another step in the logic behind the extension of second to third generation APL notation.

§8§ 11.1.1.3 Name Strands in : For Loops
The : For loop control structure allows multiple control variables using distributed assignment.

:For §- :In veceS'-YArro.§...o:End a Do.§...forelementc of veces'- Arr

In this case the :For statement loops round once for each of the C elements of vec.s"-"4rr. C symbolises
the notional loop counter. (vec.s'-"Arr is ravelled if it is not already a vector.) The structure of each
element (s"-" Arr) should be compatible with the name strand structure §”-", in which the (v..v) indicates
an arbitrary depth vector of vectors .. of vectors. So the vector structure of names §"-" reflects the vector
structure of each element of vector Vec.s"-"Arr . The expression or expressions within the : For loop
will most probably make reference to some of the names from the nested structure of names §"-" and this
likely scenario is indicated symbolically by . §... .

For example,

:For a b ¢ :In (1 2 3)(3 4 5)(5 6 7)(7 8 9) a In this case C=Uu4
a b c a on first loop fa b c=1 2 3

:EndFor

or

:For a(b(c d)) :In (1(2(3 4)))(5(6(7 8)))(15(16(17(2 2p18)))) a C=3
abcd a on first loop fa b c d=1 2 3 4
: End

79

K

ROBERTSON

Day2: Fourth Generation Dyalog APL - The Internet

Alternatively,

:For §"7 :Inkach S"-'VeccArr o.8§...0:End

a Do.§...foreachcins"-"veccArr

In this case, on the C™ loop a strand consisting of the C™ element of each of the vectors in s"-"veccArr

should have a structure compatible with the structure of the vector of vectors .. of vectors of names in §"-".
(In this version of the : For loop, each element in the data vector is more likely to have a uniform

structure.)

:For a b c
a b c
:EndFor

:InFach (1 3 5 7)(2 4 6 8)(3 5 7 9) =a In this case C=4
a on first loop fa b c=1 2 3

Formally, the alternatives may be presented as a table:

:For § :In VeccArr
:For §’ :In VeceS Arr
:For §".r :In VeceS' - Arr
:For § :InFach VeccArr
:For §’ :InEFach S'VecqArr
:For §".r :InFach S"'veccArr

A corresponding table of examples may be written:

:For aa :In A, A, .. = aa<A,;on i™loop round
:For aa bb :In (A; By) (4, By) ... = aa bb<A; B;
:For aa(bb cc) | :In (A1 (By C1)) (A42(B; C3))

:For aa :InEach Ay 4, ... = aa<A;on it loop round
:For aa bb :InFach (A 4, ...)(B;y B, ...) = aa bb<A; B;
:For aa(bb cc) | :InEach ((A4y Ay ...)((By By)(Cy Cy)...))

where aa bb and cc are valid variable names and 4, B, etc.. are arrays to be assigned.

WLI3L1f 25 bb cc are replaced by Posn, Size and Capt ion properties of a 7orm, compare the data
requiredin : Tnand : TnEac h loops.

§§ 11.1.2 Stranding Objects
§8§ 11.1.2.1 Pure Vectors of Namespace Objects

GUI objects are namespaces but namespaces are not necessarily GUI objects. The term namespace, or
space, covers both flavours. Spaces are like variables and can be arguments and/or results of functions.

In Dyalog APL there are numeric variables, character variables, and object variables. The strand

iQ Module11: Advanced Dot Syntax Q

OBERTSON

pd«# 0OSE
USE
2
exemplifies a simple 2 element pure vector of spaces. Notice that with the introduction of vectors of objects
naturally comes the subtle generalisation of the primitive function shape (p).

IntVec<«pRVec a Shape of vector containing references to spaces

1112110 eate a 3 element strand of GUI objects.

11L212\n/rite a dummy function such as
V enterMouse Msg

(1] Msg v
Attach this callback to the MouseEnter Event of a Form either by
Fvent<'onMouseEnter' 'enterMouse'

or, better, by
onMouseEnter<'enterMouse'
but not by superseded statements such as

'"F'OWS'Event' 'onMouseEnter' 'enterMouse'

'"F'OWS'Event' 'MouseEnter' 'enterMouse'
or

Event<'MouseEnter' 'enterMouse'

Verify by tracing into the callback that (-¥sg) is an object reference (of dataType RSc). Notice the
natural generalisation of pick (=) to apply to a vector containing refs.

RSc<«>RVec a Discloses first element (given HIML <2)

Use of the event prefix "on", as described in §82.2.2, causes the first element in the message (¥ sg), which
is automatically generated for the right argument to any callback, to be a ref to the object rather than a
character vector containing the name of the object.

The distinction between the name of an object and a ref to the object is clearly important. The distinction
between the name of an array and the array itself is also important in understanding the data representation
system function ODR. 0ODR applies to the array itself. A ref might or might not be named.

An object may have many named references to itself and so the real name of the object becomes a moot
point. The question is analogous to the Platonic question as to which is the ‘real’ number 1, A or B, in the
expression 4«<B<1. Indeed, is 4 numeric, or just a named reference to a number? Is a named ref less valid
than the name given to an object in Owc? We argue from simplicity that it should not be.

Notice that ¥ sg appears to be a normal APL 2 nested vector, but actually two out of three of its elements
are objects. (¥sg contains dataTypes RSc CVec RSc.) APL 3 vectors can be composed of numbers,
characters and refs. Henceforth we shall assume a named ref to be a proper name of an object.

The following lines place 100 But t ons on a Form, position them and set the individual Capt i ons.
"F'OWC'Form'
FV<«<e ('F',"(c'".B'),"s71100)0WC c'Button'
FV.Posn«,45x110 10
FV.Caption«+100 3p04

81

K

o Day2: Fourth Generation Dyalog APL - The Internet o

111213T3ke the following simple vector of Forms, RVec, given by
=RVec<«e [JAOWC 'c'Form'u1
and create a But t on on each. Assign a different Capt ion to each But ton. Delete all the Forms.

111214 ook up monadic (Jw ¢ in the Language Reference or in [Help][Language Help] and convert the
vector of namespaces, RV ec below, into a vector of Forms.
=RVec<«e [JAONS 'c''b1

§§§ 11.1.2.2 Mixed Vectors

111221Check that the expressions # 65 'a' and F'a'F'h'F'c ' are simple vectors. What happens if you
replace ' 5" with "5 '?
Tip: Use varChar to get it absolutely clear.

Now we have not just a single variety of (simple) mixed arrays in Dyalog APL, but the 1 original variety
(numeric scalars mixed with character scalars) plus 3 exotic varieties; numeric and object, object and
character, and all three - numeric, character and object. There are 3 ways of selecting 2 combinations from
3 basic types of array, and 1 way of selecting 3 combinations from 3 basic types. So the total number of
varieties is four since

+/2 3!3 b4

In fact there are now eleven varieties of mixed arrays in Dyalog APL because in version 10.0 a new scalar
Null item was introduced through the niladic system function, ONULL. ONULL returns a new type of scalar
item, display form [~u 117, which may be catenated to any simple APL vector to give another simple APL
vector. (Its principal use is in identifying certain empty cells in Excel.) This means that there are eleven
different varieties of simple mixed arrays in Dyalog APL version 10 because:

+/2 3 4'h u 11

Note that the 00 R of a function is a scalar, but, anomalously, it has depth 1 and therefore must be enclosed
before it can be catenated onto a simple vector. The resulting vector, v ec, is therefore necessarily, non-

simpleand k1< |=vec

The depth of the following vector is 1 implying that it is a simple vector.
=1E" 14 'A'(ONS'')#.4 #.4 ONULLu1

However the depth of the next example implies that this vector is thoroughly nested.
=71.797693135E308 'A'(<3 3p040NS"c" ') (2 2 2p0A0WC c'Form')u 4

§8§ 11.1.2.3 Control Structures with Objects
Monadic use of the [Jv.s system function with an empty Rarg returns a ref to a "vanilla" namespace.

RSc<«[NS() a Creates an empty ‘unnamed’ namespace. NB |=()=8

Note that the Rarg of monadic v s can be an array of names (or the JOR of a namespace), in which case
these objects are copied into the new unnamed namespace (ie a namespace with no preferred name).

Making a new ref to an unnamed namespace does not make a new copy but simply points to the original
one. However, one unnamed namespace is not the same space as another.

NS=NS<[ONS''u1 because ENS=NS<ONS' " and
(ONS' ') =0ONS' '50 because E(ONs'')z0ONS' !

iQ Module11: Advanced Dot Syntax Q

OBERTSON ORERTSON

111231 re the 3 spaces created by (ONS “3pc' ') 0 identical or just similar (isomorphic)?

The :w it h control structure accepts a ref, rRSc (which can be a collection), or a string, CvVec, containing
the name of a space. It also, therefore, accepts an unnamed namespace. This can be useful for localising
more or less complex lines of code.

:With ONS'!
CVec<«'This string 1s ephemeral.'
:End

: For also applies to collection objects as found, for example, in Word and Excel. Collection objects
encourage irregular syntax in VB because they always have an Item method and this method name may be
elided in VB code. Thus Application.Workbooks (1) in VBA works exactly the same as
Application.Workbooks.Item (1). This simplified syntax is emulated in : For as applied to a
collection wherein each Ttem in Count is automatically instantiated sequentially in the loop. (Dyalog
version 11.0 goes even further in incorporating this VB anomaly.)

o

:For 99, :In Documents a Documents is a Word Collection Object

3, . Name

: End

:For 3%, :In Sheets n Sheets 1is an Excel Collection Object

33, . Name
:End

§§ 11.1.3 Arrays of .. Arrays of Objects
§8§ 11.1.3.1 Reshaping Object Vectors

Generalisations of the APL primitive function pick (=) to select an object from a nested vector, or shape (p)
to obtain the shape of a vector of refs, are natural extensions that can go almost unnoticed.

Object spaces are essentially a new type of scalar since 'F'OWC'Form'oe=pFu1 (butONC ' F ' 9l).
We can now assign objects to names, ¢G<F , including strands, FGF<F G F,andthen ONC'FGF 'L 2
which is more comprehensible than name class 9.

NAME<RArr a Creates name for object reference array

Beware of the fact that assignment cannot change the class of an existing variable (although this is ameliorated in version 11).
Therefore if ¢ had already existed as a class 2 object then assignment G« above would have givena SYNTAX ERROR.

The extension of dyadic reshape (p) is harder to miss than that of monadic shape because it allows you to
generate matrices and higher rank arrays of objects. Indeed, you can make arbitrary nested arrays of arrays
of .. arrays of object spaces, numbers and characters.

RArr,«IVecpRArr, a Reshapes array containing references to spaces

For example, consider the matrix
FF<5 5pF G F # 3 'a' a Simple mixed RefArr

83

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

In varChar, FF displays as shown. Notice that 7 Display Dyalog APL Arrays
the display form of ¢ is # . F. This is the case Fle Edi Vew Format Tooks UGS Help
even after 7 has been erased. 7 and ¢ are =g

references to the same object. |Dyalog StATT ¥ |[17 x|

111311y creating a variable inside 7-space, and
examining the contents of ¢-space, demonstrate
that 7 and ¢ are not separate objects. Expunge
the 7orm by expunging all references to it.

B o o

Ped
vy
&
3
e
i

Aside: There could be 11 different colour codings for the
different types of mixtures. Currently, varChar just picks
the colour of the first element for exotic mixtures.

Dyadic 0~.s, with an empty right argument, returns the full path name of the new (or existing) space.

CVec,«CVec,;0NS() a Returns the full name of space, namedin cvec,

Note |= ()=
1113120 eate a rank 3 array of unnamed, and another of named, namespaces.

Unless an unnamed namespace (or array of unnamed namespaces such as 2 2p[NS "< ' ') is given a name
in some way then it evaporates to nothing on completion of the statement in which it was created. However,
if spaces are named by some reference on assignment, RA«<2 2p[NS <' ', or individually as in
2 2p'"ABCD'ONS"c!'!
#.A #.B
#.C #.D
then, like GUI spaces that are named on creation, as in for example,
p '"EFGH'OWC '<'Form's 3 3 3 3
they each do not evaporate until explicitly expunged by some particular action or mechanism.

§8§ 11.1.3.2 Generalised Primitives

A number of other primitive and system functions have been extended to handle space arrays. Where
appropriate, they take arguments of arrays containing spaces and return arrays containing spaces.

CMat<sRArr a Returns cmat of character display forms
RArr,«IArr>RArr, a Picks from array (depending on 010)
EncSc<«cRArr a Encloses an array containing references to spaces
VecEncRArr<BVeccRArr a Vector of enclosed arrays of refs (given FOML<3)
RArr,«<+RArr, a Mixes nested array to higher rank (given FOML<2)
RArr,«IntVec+RArr, a Takes (not yet overtakes) from array containing refs

Module11: Advanced Dot Syntax

For overtake, we would need an identity element, eg @, for the take function when applied to spaces.

RArr,«vRArr, a Splits nested array to lower rank
RArr,<IntVec+RArr, a Drops (not yet overdrops) from array containing refs
RArr,«¢RArr, a Reverses array containing references to spaces
RArr,«IArr$RArr, a Rotates according to simple integer array, TArr
RArr,«eRArr, a Reverses array RArr along first axis
RArr,«IArreRArr, a Rotates RArr along first axis accordingto TArr
RArr,«8RArr, a Transposes all axes of RArr,
RArr,«IVecQRArr, a Transposes RArr, according to axis positions IvVec

VecRArr< ,ArrRArr

Ravels arbitrarily nested array to nested vector

RArr;<«RArr,,RArry

Catenates conformable arrays along last axis

RArr;<RArr,RArr,

Catenates conformable arrays along first axis

ISc<=RArr

Depth of array containing references to spaces

BSc<~RArr,=RArr,

Whether arrays of refs all point to the same spaces

BSc<~RArr,2RArr,

Whether refs don't all point to the same spaces

BArr<RArr,=RArr,

Pervasive scalar equality of elements

BArr<RArr,#zRArr, a Pervasive scalar inequality of elements
RArr,«IVec/RArr, a Replicates array containing references to spaces
RArr,«IVec+RArr, a Replicates along first axis
RArr,«IVec\RArr, a Expands array containing references to spaces
RArr,«IVec\RArr, a Expands along first axis

RVec,«RVec,~RArr

A

RVec, without elementsin , RArr

The extension of APL primitive function without (~) is implemented in Dyalog APL version 11.

ITArr<RVec1RArr

A

Index of RArrin Rvec

85

Q Day2: Fourth Generation Dyalog APL - The Internet Q

BArr<ArreRArr a Finds Arrin RArr

RArr,«RArr ;[Index] a Elements from RArr, according to I ndex spec.

The T ndex specification may be simple indexing, choose indexing or reach indexing. The three
corresponding flavours of indexed assignment also apply to arrays containing references to objects.

The operators reduce (/), reduce first (+), scan (\), scan first (%), each ("), compose (), and the axis
operator ([1) have all been generalised to deal with arrays containing references to objects. It could be
argued (see 8§ 3.3 and New Foundations in Vector Vol.20 No.1 p132) that the product operator (.) has also
been generalised.

111321 v amine the structure of matrix (# OSE)o., (# #).

As with the introduction of nested arrays in APL 2, the introduction of arrays containing references to
objects is so natural that it is obvious how to generalise the definition of many primitive APL functions and
operators, especially the structural functions. There remain some candidate functions such as type (e w),
membership (o w), unique (vw), union (o v w) and intersection (o nw), which are not yet implemented but
which would seem to have natural generalised definitions too. There are others, such as take (o +w), drop
(o¥ w), without (a.~w) and find (o€ w), which have been partially generalised and are still to be fully
generalised.

§8§ 11.1.3.3 Generalised System Functions
A number of system functions have been generalised to accommodate object references.

CVec<«[ICS RSc a Changes to space RSc from space named in CvVec

MsgVec<«[IDQ RVec a Dequeues events associated with objects in RVec

Arr<IntScNQ RSc CVec .. Enqueues event or method in CVec of object RSc

kel

CMat<«[FMT RArr a Character matrix of display forms

RArr OFAPPEND Tie Appends RArr, which can include OOR of spaces

el

RArr OFREPLACE(Tie Cpt) a Replaces RArr, which caninclude OOR of spaces

Further generalisations of system functions and variables doubtless will appear in later versions of Dyalog.
For example, Ons, ONST and OPATH are candidates. Even JCT could be generalised to soften equality of
namespaces, for example by ignoring the contents of column 2 of the result of J4AT. And OwC is mortally
challenged by ONEW, to be described in Module20.

The question naturally arises as to how to make a deep copy of a space. Direct assignment only creates a
shallow copy, ie it creates a pointer or ref to the single copy. A deep copy of a namespace may be created
using a combination of JOR and OwcC.

Cvec, OwWC OOR CVec, a Clone space namedin CvVec, tonamein Cvec,

S«Q Module11: Advanced Dot Syntax Q

OBERTSON

For example, given

a<ns''o a.x<33 n Creates a namespace containing variable x
'b'wc Oor 'a' a Clones the namespace containing variable x
b.x-33 xinbis 33

a.x->33 asisxina

b.x<k a Assigns x In b to 4

a.x-33 xinaisstill 33

b.xuy4 but x in bis now u

111331y periment with some of the above generalisations on mixed and nested arrays containing refs.

§ 11. 2 Understanding (...). (...)

§§ 11.2.1 Expanding Array.Strand
§§§ 11.2.1.1 New Rules

Rule 4: Dots bind tighter than strands. (Strands bind tighter than indexing brackets...) (Indexing
brackets bind tighter than rational primitive functions...)...

Rule 4 helps one to interpret correctly the order of execution of 3" generation APL statements involving dot
syntax. The rule may be expressed simply as the order of precedence of dot binding w.r.t. strand binding.
APL 1 claimed no special hierarchy of binding strengths amongst functions, nor, separately, amongst
operators. There were, however, some anomalous cases like - . and [] brackets which should be
eliminated (see K.E.Iverson, Rationalised APL, IPSA Research Report No.1). Instead anomalous cases
have been replicated and others have been introduced, moving APL ever closer to standard multi-rule
traditional computer programming languages like FORTRAN, C, VB, VB.NET and C".

This rule allows one to take a next step and rewrite
A.first A.last<'"Andy' 'Shiers'
as
A.(first last)<'Andy' 'Shiers'
both of which imply that
FA.firstu'Andy!
b4a.lastu'Shiers'
This is another step in the logical extension of second to third generation APL notation. Rule 4 implies that
parentheses are required above because
A.first last<'Kai' 'Jaeger' n That other hero!
implies that
ba.firstu'kai
Flastu'Jaeger!
Therefore we do need parentheses around the name strand f irst¢ last if we mean to imply that both
variables be in namespace A.

Exactly the same applies to GUI objects and properties. According to Rule 4, dots bind tighter than strands
and therefore
F.Accelerator AcceptFilesu(F.Accelerator) (AcceptFiles)

which is probably not what we intend, in which case the parent of 7 probably does not contain an
AcceptFiles variable. Instead we must write

87

Q Day2: Fourth Generation Dyalog APL - The Internet Q

F.(Accelerator AcceptFiles)v(F.Accelerator)(F.AcceptFiles)
Then, for example,
F.(Accelerator AcceptFiles Active AlphaBlend AutoConf)
0 0 01 256 3

The syntax rules (ie parsing rules) of the APL language should be clearly distinguished from the semantics
(ie meaning) associated with specific tokens. The semantic details regarding execution of symbols
representing primitive functions and operators involve algorithms that define the meaning of the symbols.
This should be kept distinct from rules of grammar. We therefore define the rules for expanding the
various forms of dot syntax in terms akin to the definition of a new dualistic niladic dot operator.

SpS"- arr<i,.§"Y a Variable strand pervades deep space nesting

If to the left of the dot is an array of refs, 71, of arbitrary depth, D, and to the right is a stranded vector of
vectors .. of names, §”-7, then the name strand pervades the array of refs so that the structure of the result is

the structure of the array of refs (5,) and, within that, the structure of the name strand (s"-"), with the value
(4rr) of each name returned at that point in the nesting.

11.2111check that the structure of the result of ((# #)o., (# #)).Type is consistent with 71, . §.

Here is a final rule which helps one to read and write 3™ generation APL statements involving dot syntax
and which we have inadvertently assumed above.

Rule 5: The parenthesised expressionin F. (...) isexecuted in F-space.

As with strand notation, this rule seems natural in many circumstances, but it is extrato APL 1 & 2. Note
the exceptionthat | #.12#. (1).

The expression (...) might not return a result. This causesa VALUE ERROR in the case of a niladic
function such as F. (Detach). Inthis case the unnecessary error can be avoided by using 7. Detac h.

If dot had been treated as a dualistic niladic operator (with a valid right operand (...)), then Rules 4 and 5
might both have been unnecessary. See New Foundations in Vector Vol.20 No.1 for discussion of a rational
alternative. Henceforth we shall consider new issues involving the interpretation of execution of dot syntax
structures as intrinsic properties of the dot symbol rather than as new APL syntax rules.

Nevertheless, this new rule (Rule 5) is a valuable and profoundly useful addition to Rules 1 & 2. Itis very
useful to be able to execute arbitrary expressions in a distant space. For example;

OSE. (010 OML<1 0)

F(p"OSE. (OCRONL 3))=(12 40)(19 102)
and also an expression such as

#.FORM1 .GROUP2 .SUB3.SLP<#.FORM1.GROUP2.SUB3.GMP

iQ Module11: Advanced Dot Syntax Q

OBERTSON

simplifies to
#.FORM1.GROUP2.SUB3.(SLP<GMP)

GUI object properties and methods are just special cases of variables and functions and as such almost
everything that has been said about variables and monadic functions with respect to dot syntax applies
equally to properties and methods.

112112se varChar to examine the properties of a Ca lendar on a Form by way of expressions like
#.F.CAL.(CircleToday Border)andu 10p#.F.CAL.(¢ 'PropList).

The object to the left of the dot might not be a simple scalar object, but instead may be an arbitrary pure
(ie not mixed) array of objects. In this case the expression to the right of the dot pervades the nested
array of refs to its left. When an array of refs is dotted with a variable name or an object property name
then the name pervades the array.

(X v).0I0 » (x.010)(Y.010)
which is the symmetric complement of

X.(0Io Ocr) » (Xx.0I0)(Xx.0CT)
which itself follows from Rule 5.

(2 3pU V W X Y Z).0IO A matrix of space origins

p(F.(C D E)).Typeb3 A get 3-vector of object Types

(F1.(B1 B2) F2.(B3 B4)).Caption A get 4 Button Captions
France Germany Spain Portugal

When an array of refs is dotted with a strand of variable names (or a strand of object property names) then
the strand pervades the array. We need parentheses in order to strand the 2 variables v, and v, and then
this strand pervades x and v

(X Y). (Vg V)b (X (Vy V))(Y. (Vg Vo)) (X.Vy X.V)(Y.V, Y.V,)

112113Create two Forms F and G and examine the structure of the results of expressions such as
(2 2p#.F).(Type State)or ((F F)(G G G)).(Size (Posn Caption))
Aside: Might we have hoped that these would be outer products written S,5"-" Arr<ifi o .§"-"? Discuss.

§8§ 11.2.1.2 Parsing Rules

We are going far beyond the usual VB dot syntax, in the APL direction. But before we explore the full
generality of APL dot syntax, let us recapitulate the evolution of APL syntax as encapsulated in our list of
grammatical rules extracted from key language ingredients.

As was regrettably the case with strand notation and Rule 3 in APL 2, the simple grammar of APL 1 is
considerably complicated by the introduction of dot notation in APL 3. Beautifully simple formal syntax
rules such as Rule 1 relating to function parsing interpretation, and Rule 2 relating to operator parsing
interpretation, are supplemented by other ad hoc heuristic ‘rules of precedence’ defining the order of
execution of special new unclassified tokens in a line. The opportunity to completely obviate strand
notation caused a split in the APL community in the mid 1980's. An opportunity to rationalize APL dot
notation by way of a strict interpretation of dot as a dualistic niladic operator, which would reduce Rule 4 to
Rule 2, has also been lost, as have other opportunities to rationalize along the way. In this regard J from
Jsoftware is probably the most rational (and, unfortunately, most illegible) dialect of APL today.

89

& &

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

In seeking a rule-based view of APL, many irrational and extraneous features of APL have been ignored in
an attempt to present a simple unified view. Let us include in a long list some other rules that we might
consider to be essential APL 1-3.

Rule 0: System commands begin with a right parenthesis (as what else could?) and do their own
thing (but this is not APL proper...).

Rule 0.1: Enter numeric vectors by using standard number formats and spaces between elements,
or enter character vectors by surrounding a string in single quotes. This is the real beginning and
is very natural.

Rule 1: Function sequences execute from right to left. (This is the usual APL Rule and follows
advanced mathematics.)

Perhaps because Indo-European languages are read from left to right, most infix mathematical functions
(such as minus) are left-associative; that is, a series of functions of the same precedence is evaluated
from left to right. However, prefix functions (such as log and tan) are usually right-associative. APL
adopts right-associativity universally for all functions.

Rule 1.1: There are a number of rules for function header syntax (and for the del (v) or other
function editors...).

VNiladic VR<Niladic
VMonadic W VR<monadic W
VA dyadic W VR<A dyadic W

There are header rules for localising variables and shy results and ambivalence and name strands ...

Rule 1.2: There are rules for semicolon (;) indexing and indexed assignment (ameliorated by
squish-quad (0), the index function in IBM APL2 and Dyalog version 11)...

Rule 1.3: Indexing brackets bind tighter than rational primitive functions.

Hence 7 8[1]x2 L 1u andnota SYNTAX ERROR

Rule 1.4: Right arrow (-) can be used niladically and monadically. (This breaks the
metagrammatical rule that symbols may be employed both monadically and dyadically
(ambivalently), but not either of these and niladically.)

Otherwise for example ++7 would be ambiguous as the + on the left may be interpreted monadically
or niladically giving different results.

Rule 1.5: Labels are immediately followed by a colon (:). A label may be used at the beginning of
a line in a program to hold dynamically the line number as a class 1 variable.

Rule 1.6: Comments (o) at the end of a line may be used to hold arbitrary text (somewhat obviated
in SharpAPL by the introduction of lev (<) and dex (+) — see the Sharp APL Reference Manual).

Ken lverson himself seemed to enjoy using pure APL to add comments in the following manner (even
prior to lev):

3+4,0p'Here we add 3 to 4.'bL7

Rule 1.7: Diamonds can be used in a line (and in executable strings) to separate statements.

121217y expressions such as that below. This sort of trick can make APL even less compilable.
o[JAV[16p254 81 88 2u45] A FDIOzi

Module11: Advanced Dot Syntax Q

Rule 2: Operator sequences execute from left to right.

It is easy to find non-associative functions (eg |=((A-B)-C)#A-(B-C) where eg

A B C<«2p"1 2 3).
Non-associative operators are also possible. They reveal the default order of execution of operator
sequences.

|=(A(—.><).><C)¢A—.(><.><)C a e (-.x).xisnotthesameas -. (x.x) but,

|=(A(—.><).><C)EA—.><.><C A le(-.x).xisthesameas -. x.x

Rule 2.1: There is a special rule for outer product (- .) syntax. Rationalisation is compounded by
introduction of the jot (o) operator. (Jot could have been usefully defined as, for example, enclose
zilde in order to eliminate this rule.)

Rule 2.2: Symbols slash (/) and slope (\) can be both functions and operators. (This breaks the
second metagrammatical rule that symbols may be either functions or operators but not both.)

Rule 2.3: There are a number of rules for operator header syntax (and for the del (v) or other
editor...).

vV(f monisticMonadic) W VR<(f monisticMonadic) W
vA (f monisticDyadic) W VR<A (f monisticDyadic) W
V(f dualisticMonadic g) W VR« (f dualisticMonadic g) W
VA (f dualisticDyadic g) W VR<A (f dualisticDyadic g) W

And rules for shyness... Neither nihilistic operators nor operators that return niladic derived functions
figure in 1% or 2" generation APLs. (See APL Linguistics in Vector Vol.2 No.2 for a general
classification scheme.)

Rule 2.4: The axis operator has special rules, similar to bracket indexing (see Rules 1.2 and 1.3).

Rule 2.5: There are some individual rules surrounding the syntax for the (multiply-classified)
assignment arrow, including choose assignment, modified assignment and function assignment...

Rule 3: Strands bind tighter than indexing brackets.

Rule 3.1: There are different rules for different control structures, but all of them have to start
with a colon followed by a keyword, take an arbitrary number of lines, and end with an
:End(optionally immediately followed by the initial keyword).

Rule 3.2: Special uses of symbols "E0N+awan_oao; : v (@part from those mentioned above).

Rule 4: Dots bind tighter than strands.

Rule 4.1: There are a number of new rules associated with the definition of DFns and DOps in
Modulel2, including proliferation of paired symbols co. ww vv : : , @analogous to ## in §4.2.3.

Rule 5: The expression inside the parentheses in F. (...) Isexecuted in F-space.

Rule 5.1: There are new 'rules’ associated with the expansion of dotted structures.

91

R &

oneaTss Day2: Fourth Generation Dyalog APL - The Internet somemr

As rules proliferate their identification becomes harder. Ultimately it is the parser code that determines the
rules and therefore there should be a move to focus on the details of the Dyalog APL parser to identify
exactly what the rules are. In any event, we consider it to be very important to explicitly enunciate the
major rules of APL because the reader, not just the machine, has to be able to parse a line accurately if
(s)he is to understand it.
11212215 which spaces are &, I and m most likely to be found (ignoring 0P AT H) in the expression

#.A[k].B[1].C[m]
Compare the assumed locations of spaces 4 B ¢ and D in expressions

#.A.B C.D

#.A.B C[2]

#.A.(B C).D

§88§ 11.2.1.3 Generalised Strand Assignment

Assignment into an array of refs dotted with a variable name (or object property name) requires either a
scalar argument, which experiences scalar extension, or an array of conformable shape and structure to the
shape and structure of the array of refs. Assignment is pervasive.

(X v).010+0 L (X.0I0«0)(Y.0I0<«0)

(X Y).0I0«0 1 & (X.0I0<0)(Y.0I0<«1)

(F1 F2).Caption«'F1' 'F2' n Set both Form Captions.

Assignment into an array of refs dotted with a stranded structure of variable names (or object property
names) requires either a scalar argument, which experiences scalar extension, or an array of conformable
shape and structure to the shape and structure of the array of refs dotted with the strand. The whole strand
structure pervades each element of the ref array. Strand assignment is totally pervasive.

F.(Caption OnTop)<«'The End' 1

(X Y).(first last)<«('Sgren' 'Kierkegaard')('Dan' 'Baronet')
Scalar extension can occur at various levels depending on the structure of the data array.

(X Y).(OIo OML)<0 a Scalar extension of scalar O.

(X ¥Y).(O0I0 OML)<«c0O O a Scalar extension of scalar <0 O.
(X Y).(0I1o OML)<«2p<0 O a No scalar extension required.
ip.§" - <sps" - arr a Strand assignment pervades deep space nesting

If an array of refs, 7i,, is to the left of a dot and a stranded vector of names, §"-', is to the right then the
name strand pervades the array of refs. Data assigned to the expanded set of names given by 7i,.8§"-" must
have a structure that mirrors the structure of (v..v) within an outer structure of depth p, s,5"-"... Each
element within this container structure may be any arbitrary enclosed array. So the structure of the data,
Sps’-" arr, has the structure of the array of refs i, and within that the structure of the name strand §"-,

with the value of each name assigned to the corresponding arbitrary data array Arr in S,s’-" Arr at that

point. If a scalar is encountered in the data at an earlier stage in the correspondence, then that scalar is
extended to cover the structure beneath it, as is the case in an ordinary strand assignment without ref arrays:
(a b)(c(d(e £)))«1 (3)

Note there is no resulting difference between the following two assignments
Fi1.(Posn Size)<(55 40)(25 58)
Fi1.(Posn Size< (55 40)(25 58))

However, a significant general difference between 7i,.8§"-"<.§...and 7i,. (§"-"<..§...) lies in the space
location, or locations, of names (§) in expression ..§... .

Q Module11: Advanced Dot Syntax

The following 8 distinct spaces
((8+04)0NS"c8)s #.4 #.B #.C #.D #.E #.F #.G #.H
can be organised using strand notation in an arbitrarily complex nested vector structure, for example
=RArr<(A(B C(D E)))

3

Scalar assignment RArr.v<99 pervades the nested array of refs. It has the effect of
(A(B C(D E))).V»99(99 99(99 99))
We can assign a set of numbers having this structure
(A(B C(D E))).V«(99(1 2(55 66)))
(A(B C(D E))).Vu(99(1 2(55 66)))
Or each element in the data structure can be an enclosed array.
(A(B C(D E))).V«(99(1 2((2 4p55) (5 1p66))))
D.V
55 55 55 55
55 55 55 55

112131Create a 3 by 4 array 4 consisting of 3 distinct unnamed namespaces. Assign variable 4. a
to some numbers. Assign B to a matrix with elements containing 4. Check out B. a.

112132Create an object vector of 26 Forms, each witha But t on;
RVec<«¢ 'JA OWC ' c'Form'
(04, <'".B")OWC '<'Button'
(254RVec).Posn«50+20x,15 5
Change all the positions, sizes and captions in a single expression such as:
RVec.B.(Posn Size Caption)<26p((0 0)(20 20)'hello')d
((10 10)(20 20)'hello2')¥
Display c ¢ where
cc<RVec.B.(Posn(Size Caption))

26
2 P
e
= [1.(12 128

112133Modify (not rewrite) your address book application so that the STORE variable uses namespaces
such that data for the first individual in the list is found in

Persons[1].(Name Address Text)
Invert the design such that variables in the namespace become namespaces, and what was a namespace
becomes an element in a variable eg

(Names Addresses Text).Person[1]
Which design is better? Under what circumstances might both designs together be the best solution?

93

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet o

§§ 11.2.2 Expanding Array.Array
§8§ 11.2.2.1 Expansion Rule

Npy pr<Hpy .Ip; a Expand deep space arrays to depth D, within D,

Given a pure ref array 1i,, and another pure ref array i, of child objects of the corresponding elements of
the first array, the result of dotting them together 7i,, . iy, is a pure ref array of combined depth D, within
D, such that the number of elements of the result is the product of the number of elements in each (operand)
array.

1122110 eate a vector of references to 26 vanilla spaces.
RVecl<«e¢ JA ONS e
Then create a vector of references to 26 vanilla spaces in each of these.
RVec1l.(RVec2<«e 'JAONS c' ')
Use the WS Explorer to investigate the hierarchy. Notice the variable RVec2 in every space in RVec1.
Use varChar to assign and view the structure of the ref array expansion. For example, zoom out of
(5 5pRVec1).(5 5pRVec?2)

The space arrays on the left and right of the dot (the operands) may be replaced by expressions that return
space arrays. Therefore

F(e"vOnl 9).(e"v0Onl 9) = RVecl.RVec?2
because
IRVec1.(e v0Onl 9) = RVecl.RVec2
by Rule 5, and
IrRveci=e"40Onl 9
Notice that dot binds tighter than primitive function match (=), as one would expect of a dot operator.

Successive dot expansions follow Rule 2 as one would expect of an operator. The left-most expansion is
performed first, followed by the next left-most expansion, etc... Thus the final number of spaces in
expression RArri.RArr2 .RArr3 isthe product of the number of refs at each level.

For example, the expression
(¢”¥ONL 9).(e " YONL 9).(RVec3<«e [JAONS 'c'")
involves 26 x3517576 spaces. And therefore

p>,/>,/RVecl.RVec2.RVec3517576

122120 hat is the result of p>,/>,/>,/RVect.RVec2.RVec3. (0I0 0CT)
or, using enlist (¢), peRVec1.RVec2.RVec3. ([0I0 [CT) assuming HIML>1

§6§ 11.2.2.2 New Idioms

We are now able to perform, using APL primitives, many new structural and data manipulations of arrays of
spaces. We can, for example, set properties of arrays of GUI objects in succinct expressions such as
(F1 F2).(B1 B2).Caption«c'0OK' 'Cancel'a Set 4 Button Captions
or we can dynamically create objects and manipulate their properties in the single expression:
(e "ABCD'OWC ' c'Form').(e 'AAAC'OWC 'c'Group')d
.(e""abcd'OWC c'Button').Dragable«1¥
Notice the wrapping (<,7)
Having created these spaces and sub-spaces, we can construct arbitrary space structures like that produced
by expression (3 1p4 B C).(2 2p4 A).(a b ¢ (<<,d)) from which we find

Q Module11: Advanced Dot Syntax Q

07 T (3 1p4 B C).(2 204 A).(a b ¢ (cc,d))
1 1
1 1
1 1
1 1
1 1
1 1

We can assign a value more than once - eager, as opposed to lazy evaluation defined in Wikipedia - to
variable v in every leaf space in
(A BCo.,BCD).(ABCo.,BCD).(abco.,bcd).Veu2

or
(3 1pA B C).(2 2p4A B).(a b c(cec,d)).X<3 1p9 7 U4
giving
(3 1pA B C).(2 2p4A B).(a b c(cc,d)).X
9 9 9 9 9 9 9 9
9 9 9 9 9 9 9 9
77 7 7 77 7 7
77 7 7 77 7 7
Loy oy 4 Loy oy 4
Loy oy 4 Loy oy 4

As seemed to be the case when APL 1 first appeared, and again when APL 2 first appeared, the new
possibilities for APL 3 seem endless. Two new idioms should be mentioned:

RSc<«(e[0CS'"") . ## a Returns scalar ref to parent space

RSc«@. ## a Returns scalar ref to current space

Remember F @=[Invs () where F ()=6.

11-2221Rewrite expression (# #).(# #).(# #) inb5 different ways without using dots.

§8§ 11.2.2.3 Generalised Modified Assignment
An arbitrary dotted variable (or stranded variable) structure may be used in a modified assignment.

5.8 f,<5,8" -V Arr a Modified strand assignment of dotted variable structure

In this case i,.8§"-" f,<5p8"-"arr = 1,.8"" « 7,.8"" £, sp8"-"Arr

If X1, Y1 and Z1 are variable names then an arbitrary name strand may be modified by a dyadic function
and a conformable array argument. For example,

(X1 Y1 Z1)+<«1 2 3 p X1+<«1 o Y1+<2 o Z1+<3

or
(X1(Y1 Z1))+<1 2 A X1+«1 o Y1+<2 o Z1+<2

If these names are in space N1, then Rule 5 suggests that it should be possible to write
N1.(X1(Y1 Z1))+«1 2 A N1.X1+«1 o N1.Y14<2 o N1.Z1+<2

from outside space n1. Generalising further, we would expect that
(N1 N2).(X1(Y1 Z1))+<1
should increment variables X1, Y1 and Z1 in both 1 and ~¥2 by 1, or that

95

K

ot Day2: Fourth Generation Dyalog APL - The Internet

NO.(N1 N2).(X1(Y1 Z1))+<(1(2 3))(4(5 6))
would be equivalent to
NO.N1.(X1 Y1 Z1)+<«1 2 3 o NO.N2.(X1 Y1 Z1)+<L4 5 6

This is indeed the case in Dyalog version 11.0. Further than this, selective modified assignment has been
partially extended in a natural way to selective modified assignment including objects.

Create 2 Forms each with 2 But t ons
(¢ '"FG'OWC 'c'Form'). (e 'B1' 'B2'OWC 'c'Button')
and in the space of each button create 2 variables, a and b, with some assigned values
(F G).(B1 B2).(a b)«¥+¥2 2 2p18
Then, selection can apply to the namespace references in access and assignment:
(1 0/F G).(0 1/B1 B2).(a b)b,c,c3 4
(1 0/F G).(0 1/B1 B2).(a b)<+,c,c9 10
(1 0/F G).(0 1/B1 B2).(a b)b,c,c9 10
The ref array may be any shape and structure,
zz<(1 1 1pF G).(1 1 1pB1 B2)

as long as the shapes and structures correspond with those of the assigned data,
(1 1 1pF G).(0 1/B1 B2).(a b)<«1 1 1pc,c33 34
(1 1 1pF G).(0 1/B1 B2).(a b)b1 1 1pc,c33 34
However, the Dyalog implementation is not yet complete for one would expect the following to work
X<(1 1 1pF G).(0 1/B1 B2).(a b)
(1 1 1pF G).(0 1/B1 B2).(a b)<X
(1 1 1pF G).(0 1/B1 B2).(a b)+<X
RANK ERROR
although modified assignment with scalar extension works already in version 11:
(1 1 1pF G).(0 1/B1 B2).(a b)+<«1
(1 1 1pF G).(0 1/B1 B2).(a b+<1)

11-2231pjscuss with your colleagues these and further generalisations of assignment and the appropriate
class of the APL primitive assignment arrow.

§§ 11.2.3 Expanding Array.Function
§§§ 11.2.3.1 Array.Niladic

A niladic function may be dotted with an array of object references, in which case the function is executed
in every leaf in the array of references.

For example, we can create a non-simple ref array from
"ABCDE'OWC '<'Form'
=RArr<(A(B C(D E)))uv 3
and execute niladic system function (w4 on each Form.
RArr.0OWA
100758844 100758556 100758540 100758368 100758352

Q Module11: Advanced Dot Syntax Q

or

(4 B).UWA = (A.OW4)(B.OWA4)
or

pRArr . (TS v 2

When such a structure (R4rr) is dotted with a variable name or niladic function, the variable name or
function name pervades the namespace structure and the structure of the result (eg of RArr. [Ow 4) reflects
the structure of the namespace array.

1.00?5‘!-155 & & 2
[100?53368 [100753352 [100?53580 100?53664

A function in a namespace executes within that namespace; and normally only sees other functions and
variables in that same namespace.

Rp<fp. fy a f, pervades nested structure i,

A nested array of namespace references, 7i, (depth D and dataType RArr) is pervaded by a niladic function
in an analogous way to the way in which primitive scalar functions pervade their nested arguments.

§§§ 11.2.3.2 Array.Monadic

A monadic function dotted with a space array pervades the space array structure in the same way as a
niladic function or an arbitrary array expression does. The arguments, on the other hand, are distributed to
spaces according to the space structure in the way that data is distributed to each space in the single name
assignment 7i,. §«<S,Arr where no strand expansion takes place.

Rp«fp.f; Wp a Run £, in space 11, with argument i,

In the general case of 7i,. (...) where (...) is a function expression that evaluates to a monadic function,
the items of its argument array(s) are distributed to each referenced function. The structure of the argument
W mirrors the namespace structure 7i, (and also reflects the argument rank of the function 7,). The
structure of the result &, also reflects the namespace structure 7i, (and the structure of the result when 7. is
applied to a typical argument — ie the result rank of 7).

For example, a monadic scalar function, dotted with a vector of refs, may take a vector argument. The
function is then applied to element I of the argument in element I of the space vector:

R1 R2<(N1 N2).f, W1 W2 = KR1=N1.f, Wi)A(R2=N2.f, W2)

Note that variables v, and R, are taken to exist in the covering space, whereas £, is assumed to exist in all
leaf spaces in 7i,. If the arguments and results are intended to exist in the leaf spaces, then the expression
fip. (R<f, W) could be used.

112321y amine the depth and structure of the results of
OSE.(cbbot cbtop mb popup tip NumEd).ONL 2
OSE.(cbbot cbtop mb popup tip NumEd).ONL 3
OSE. (cbbot cbtop mb popup tip NumEd).[NLc2 3
OSE.((cbbot cbtop mb)(popup tip NumEd)).[ONLcc2 3

97

R

v Day2: Fourth Generation Dyalog APL - The Internet somemr

OSE.(cbbot chtop mb popup tip NumEd).(ONL)c2 3
and

(#.F #.G).GetTextSize 'ab'

(#.F #.G).GetTextSize 'abc'

(#.F #.G).GetTextSizec'abc'
given that 7 and ¢ are GUI Forms in the Root space.

§§§ 11.2.3.3 Array.Dyadic

A dyadic function dotted with a space array pervades the space array structure in the same way as a niladic
function, a monadic function or an arbitrary array-expression does. The arguments, on the other hand, are
distributed to spaces according to the space structure in the way that data is distributed to each space in the
single name assignment 71, . §«<S,Ar - where no strand expansion takes place. This distribution takes place
for both left and right arguments.

Rp«Ap fp.f, Wp a Run £, in space 11, with arguments 4, and W,

In the general case of 7i,. (...) where (...) is a function expression that evaluates to a dyadic function, the
items of its argument array(s) are distributed to each referenced function. In the dyadic case, there is a 3-
way distribution amongst left argument, reference array (operand) and right argument.

For example, a dyadic scalar function, dotted with a vector of refs, may take vector arguments. The
function is then applied to element I of both arguments in element I of the space vector:

R1 R2<A1 A2(Ni1 N2).f, Wi W2 = F(R1=A1 N1i.f, Wi)A(R2=42 N2.f, W2)

112331consider 2 Forms ina CLEAR WS.
'"FG'OWC 'c'Form'
Create a But tonand a Labe I on each Form via a dyadic, space-qualified use of OwcC
"BL'(F G).OWC"c'Button' 'Label!
Setthe Capt ions on the child objects with space-qualified property assignment
(F G).(B L).Caption«('FB' 'FL')('GB' 'GL')
Change the positions of all the children using modified assignment
(F ¢).(B L).Posnx<~(.5 .4)(.3 .2)
Set the Dragable property on all leaf objects
(F ¢).(B L).Dragable<«1
Create 8 vanilla spaces in every leaf
(2pc2pcAVI17+18]1) (e " +vONL 9).(e +0ONL 9).(ONS")2pc2pc8pc!'!
Compare this with expression
(e"+0ONL 9).(e " +vONL 9).((0OAV[17+18])0NS "8pc8)

112332y neriment with dyadic 0¥ Z in place of plus (+) in expressions like
(1 2)3 W(W(X Y)Z).+1 2(3 u4)

using expressions like
"A'(W(X Y)Z).ONL 2 3
"Aa'(W(X Y)Z).ONL"2 3

in which the 0N L arguments have appropriate type, shape and rank.

iQ Module11: Advanced Dot Syntax Q

OBERTSON ROBERTSON

§ 11.3 Arrays of Programs
§§ 11.3.1 Interpreting ... (...) ... (..) . f3

We can now interpret an arbitrary dot-syntax expression. Having identified the dot-syntax sequence sub-
expression, starting from the right we consider the right-most token or parenthesised expressionin ... (...) .
This parenthesised name or expression preceded by a dot, is to be evaluated in the space preceding the dot.
So the token or parenthesised expression in ... (...) must evaluate to a scalar ref or an array of refs. If
there is a dot to the left of this then the token or parenthesised expressionin ... (...). must evaluate
to a ref array, and so on until the left-most token or parenthesised expression is encountered. Only now can
anything be evaluated. First the left-most term is evaluated in the current covering space to a space ref or
array of space refs. The next term is evaluated inside each of these spaces to give a set of sub-spaces, and
so on until the right-most term is revisited in the backward pass analysis. The right-most term can finally be
evaluated because the space or spaces in which it is to be evaluated are now known. The result of this final
term in the dot sequence may evaluate to a numeric, character, ref or mixed array if it is an array expression,
or a function if it is a function expression, or any type of named object if it is a single token.

This is rather similar to the VB analysis of the line ActiveSheet.Range'A1:A2'.Rows.Count
which is read left to right and where Range'A1:A2' returns an unnamed object reference. The APL
equivalent, however, requires parentheses round the Range expression from Rules 4 & 5, as in
ActiveSheet.(Range'A1:42"').Rows.Count
or
ActiveSheet.(Range'A1:42"').Cells.(Item 1).Value2
or
Documents.(Open'C:\MyWord.doc') .Activate

This procedural proscription in the analysis of a dotted sequence, together with the rules for expansion of
terms, is sufficient to obtain the (derived) result of the dot sequence. If the result is a function then the rules
for distribution of arguments must be applied in order to obtain the final (array) results of the entire (array)
expression.

1311 eate a ca lendar withina Group ona Form.
'"F' 'F.G' 'F.G.C'OWC 'Form' 'Group' 'Calendar'

Write a niladic function goo in F-space which returns a ref to the Grou p space, then trace the expression
F.goo.C.DateToIDN 3+0TS

Do the same for F and ¢ and check the order of execution of foo.goo.coo .

11312Create namespaces a b ¢ and d within 4 B ¢ and D within 4 B ¢ and D. Use varChar to zoom in and
view the structure of derived spaces such as
55(A B C).(A B).(a b c d)
or
(3 1p4 B C).(2 2p4 B).(a b c (cc,d))
Notice that this has a 3 by 1 outer shape, then a 2 by 2 inner shape, then a 4 vector structure, the last element

of which is doubly enclosed.

If, in particular, the final term in a dot-syntax expansion resolves to a monadic function then a function of
that name (if it has a name) is assumed to exist in every leaf namespace found to the left of the final dot.

99

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet Q

"33 nterpret, or otherwise explain, the following lines:

(A.+).x% A wrong
#.0 .+ .x
o.(+.x) a right
#.0 . +.x
3 4 n.(f,.g,) 5 6 o where f,«+ and g,+x In n-space
39
3 4(n.f,).g, 5 6 a should error
3 4 n.f,.g, 5 6 a should error

§§ 11.3.2 Arrays of .. Arrays of defined Functions

Motivation: Physics deals with arrays of functions. The position of a particle is a 3-vector. Generally the position is
a function of time — a 3-vector of functions r(t) = (x(t), y(t), z(t)). Even if the particle position is constant in one
frame of reference, it is not necessarily constant in a different frame of reference. Since the laws of physics have to
hold in all (inertial) frames of reference, the fundamental equations, eg E =m a (force equals mass times
acceleration), generally have to be expressed in terms of arrays of functions.

Dyalog APL does not have notation to represent arrays of functions directly. However, there are ways in
which arrays of functions can be represented. For example, functions can be represented as data via JOR.

Consider the function expressions
R<®od o rotation 90° anticlock

H<«e a reflection
then

OOR"'"RH!
§od o

These functions may be combined into a 2 by 2 matrix ¥ of (JoRs of) functions by snippet

M<2 2pc!'!

cFor r ¢ :In 1pM
o'M'",(sr),(%c),'«"'",('HR'[r]),"o'",'HR'[c]
M[{r;cl<«<OR'M',(3r),(%cC)

:End

which, in varChar, looks like:

This technique may be applied to canonical functions to produce arrays that can be indexed and individual
functions 07 xed and executed with appropriate arguments.

Alternatively, an array of functions may be implemented more directly using an array of namespaces each
of which contains a different function of the same name.

For example, if the position vector as a function of time t was given by r(t) = (t*, 2t, 3t?) then this could
be implemented as

Q Module11: Advanced Dot Syntax Q

S<[ONS "3pc'!
S[1].r<1o+
S[2].r<2ox
S[3].r«3oxo0(20(%x=))
then the positions at the first 5 time points are given by the vector function s . r acting on each time:

+S.r70, 1k
0 0 0
1 2 3
0.5 4 12
0.3333333333 6 27
0.25 8 48

11321\ ake a matrix function of a scalar angle w, Rot w, representing the rotation matrix in 2 dimensions:
(Cosw -Sin w)
\Sinw Cos w/

Use it to rotate the 2 element vector (2,3) clockwise through 7/2 radians.

If Dyalog APL is to be a language suitable for scientific programming then it needs complex numbers.
These can be modelled but would be better built into the interpreter as is done in APL2, SharpAPL and J.

Many other mathematical features could be built into the language, such as a monadic determinant function
of a matrix, for which Iverson has suggested notation - . x w, or the exponential function of a matrix defined
by the power series expansion

((pw)p(L1+2pw)41)+>>+/(+.x/ " (1a)p ccw)+!ra
by analogy with the usual scalar definition

14°5+/(x/ " (1a)p ccw)+!ira
where o is the number of terms in the power series and » is the square matrix to be exponentiated.

Aside: Really big steps in mathematics are from scalar arithmetic to vector algebra and from vector algebra to tensor
calculus. Linear vector spaces play a most fundamental role in mathematics, and in APL. If APL could efficiently
and neatly handle arrays of functions then this would be a really big step along the road of executable maths. For
example, scientists habitually deal on paper with the determinant of matrices of functions, such as the Jacobian
determinant, and even with the exponential of matrices of functions. With the new possibility of space-arrays of
functions, some of these higher mathematical constructs start to become expressible in raw APL.

§§ 11.3.3 Arrays of .. Arrays of defined Operators

The same technique as we used to model arrays of functions can be employed to model arrays of operators.
(In 3D vector analysis, the gradient and curl operators are vector operators. See New Foundations in
Vector Vol.20 No.1 for some more discussion of operators in APL.)

Consider the simple derivative operator that returns the gradient function /g, of a given function f(x). %y
could be approximated in APL as operator A where

f, A ((fy x+0CT)-f, x)+0CT
or better as
f, A ((fy x+1E76)-f, x-1E 6)+2x1E" 6

With this operator we can find the gradient function g(x)="/s of , for example, the function y=x> with
G120 (* =) A
and apply this function, which should be g(x)=2x, at the points x=1..9 to get

gl 19
2 4 6.000000001 8 10 12 14 15.99999999 17.99999999

101

& &

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

This operator (2) may be placed in 3 different spaces, with just a small adjustment in each, to yield a model
of a gradient vector operator that takes the partial derivatives in the X, y and z directions.

D<[ONS"3pc'!
Ocs #.D[1]
V R«(f A)W;dW
[1] dW<3+e'1E 6" a (dx 0 0)
[2] R«((f W+dW)-f W-dW)+2xe'1E 6" (0f/0x)
v
Ocs #.D[2]
V R«(f A)W;dW
(1] dW<«34 242'1E" 6" a (0 dy 0)
(2] R«((f W+dW)-f W-dW)+2xe'1E 6" (0f/0y)
v
gcs #.D[3]
V R<(f A)W;dW
[1] dW<"348'"1E 6" a (0 0 dz)
[2] R«((f W+dW)-f W-dW)+2xe'1E 6" (0f/0z)
\Y
gcs #

el

el

kel

11331Test this vector operator on a scalar function of a vector (x *+2y+3z°), ie £ n,
V R«fn W
(1] Re(+W[11)+(2xW[2])+3xW[3]x2
v
Show that the gradient function (fn D.a) at 3 vector points (X, y, z) gives the expected answer.
4fn D.A (1 2 3)(2 3 4)(4 5 6)
1 2.000000002 18
T0.2499999994 2.000000002 24
T0.06249999984 1.999999995 36.00000001
This simple approximation agrees well with the analytic solution (-x, 2, 6z) at (X, V, z).

11332p|ease ask for the next module on Dynamic Functions — it's shorter and easier ®!

Comment: If an operator can be dotted with an operator one might expect that +. x should be the equivalent of
#.o+#. . #.x, OF (#.+)(#..)(#.x), but these latter expressions, unsurprisingly, cause a SYNTAX ERROR
because # . . is hard to interpret even if operators can take operator operands. Actually, no primitive operators may
be space-qualified, but derived functions suchas # . (+.x), #. (o .x) andeven #. (/) canbe. This is nota
limiting factor as primitive operators (. o / \ etc) are identical in every space and so it should never matter from
which space they were called. User defined operators, on the other hand, may be space-qualified. (Perhaps a bold
version (,) of the relatively new and subtle addition JAV [94 +[I0], (-), should have been chosen instead of (.)
for dot syntax.)

R N

(OBERTSON ROBERTSON

Module12: Dynamic Programs

Dynamic Programming (of functions and operators) is an exciting alternative method of program
specification to canonical function definition. Dynamic Programs have advantages and also some
disadvantages with respect to the usual (canonical) form of programming. Advantages include; clarity for
short algorithms, dynamic creation of small localised programs for in-line application, and more direct
control over the power of pure APL notation. Disadvantages include decreased semantic density, missing
features (such as line labels, branching (=), control structures, DPATH, [0Cc S and O¥ONITOR), partially
implemented features (such as JSTACK, OSTATE, OREFS and JAT) and limited and less intuitive tracing
facilities. Some of the gaps narrow with each new version of Dyalog. An early (1985) amusing example of
“direct definition” may be found in An APL Dialogue in Vector Vol.1 No.3.

Limitations encountered in tracing code, particularly in programs that have been defined inside canonical
programs, or the inability to use DFns directly as callbacks or the difficulty of calling non-result returning
functions without causing a VALUE ERROR, particularly with GUI/OLE programming where one has no
control over the shyness of the supplied methods, are unfortunate. The latter can be circumvented using
execute with a dummy result, asin sink<e'foo rargo0' when foo itself returns no result.

§ 12.1 Direct Definition

In Dyalog APL it is possible to directly define an ambivalent function using function specification or direct
function assignment. Here a name is given to the result of a function expression via the assignment arrow
(«) with a function name (eg £) on its left and a function (eg +) on its right. This syntax implies that
assignment be classed as a dualistic niladic operator (where the right operand function may be ambivalent),
if assignment were to be formally classified.

f<++ a Session statement (1)
A monadic call to £ will apply the prefix function identity or conjugate (+) and return the Rarg.

f 5 5 5
A dyadic call to £ will add the left to the right argument via infix function plus (+).

3 f 5 L 8
Reference to left and right arguments may be totally elided in statement f<+ because the definition (+) is
ambivalent and unambiguous in its argument(s).

Some more complex function expressions can be expressed by means of operators. For example,
f<YoQot a Used monadically on a vector of vectors
However, if one wished to express an algorithm involving left and right arguments in arbitrary ways, then
the limitation of an assigned function expression to the form
{left arg} (function expression) right arg
IS too restrictive.

This restriction could be alleviated by invoking symbols o and w to represent implicit left and right
arguments to an assigned function. This interpretation of o and w originates from the models of direct
definition employed by I.P.Sharp in 2" generation SharpAPL and from earlier APL publications.

Then the ambivalent definition in statement (1) above could be accomplished by two specifications.

f<+tw n Overwrites any monadic fn definition
f«o+w n Overwrites any dyadic fn definition

103

R &

oneaTss Day2: Fourth Generation Dyalog APL - The Internet somemr

Subsequently, the dyadic form of 1 above could be replaced by some new dyadic function, say 'under'
f«wzo a Divide rarg by larg (cf larg over rarg)

And such a function could be called without having to give it an explicit name.
b(w+a)3 b 0.75

Bear in mind that any name given to an ambivalent function has to be sufficiently general a term as to be suitable for
both the monadic and the dyadic context. (The APL primitives actually change their names in the different contexts:

eg Fs=+5 isread as "it is necessarily true that five matches identity five" whereas F 8=3+5 is read as ".. eight
matches three plus five".) This highlights the value of pure symbols which should become available with Unicode.

The functions dyadic cat Row and monadic just Row could then be defined by direct function definition:
catRow<+(Ya),Yw a Catenate Rows
justRow<(-+/"" 'o=o0d"w)d w a Right Justify Rows

§§ 12.1.1 Programming DFns

Programming DFns (dynamic functions) is very like this, except that the essential function definition must
be surrounded by braces ({ }). Thus dynamic functions can be defined by:

catRow<{+(vya),vw} n Catenate Rows

justRow<{(-+/"" 'o=o0d¢"w)d w) n Right Justify Rows

121 1Define a square root DFn, sqrt, such that
sqrt 14 5 1 1.414213562 1.732050808 2

Consider the rank idiom - the shape of the shape of an array (ppArr). rr<pp givesa SYNTAX ERROR
because the left-most rho (p) cannot take a function Rarg — the right-most rho (p). However the token
string 3 o is consistent with a right-most rho (p) as in 3 p because jot is an operator.

We need to construct a genuine function so that function assignment can capture the derived rank idiom.
rr<pop n Assignment of a function expression

But function rr is ambivalent and involves a reshape of shape algorithm, so 1 1=2 rr , 3. Bycalling

pop ‘the rank idiom’ it is clear that the dyadic form has been completely overlooked.

The (monadic) rank idiom may be captured in the dynamic function
rr<{ppw} a Assignment of a monadic dynamic function
In this case there is, as yet, no dyadic form. We could define a dyadic form
rr<{appw) n Assignment of a dyadic dynamic function
But this overwrites the previous definition, which means there is now no monadic form. We clearly need a
mechanism for assigning an ambivalent function.

First note the following features of dynamic function definition.
0. Let w represent Rarg and o Larg.

1. Any number of diamondized expressions (segments) may be included within the braces
{..0.0..0..0... .

2. The first expression (from left to right) that explicitly returns a result will terminate the function at
that point and return that result.

N

ol Module12: Dynamic Programs oo

3. All variable names created inside expressions in segments on the way to the final result-bearing
segment are automatically shadowed prior to assignment.

4. A default left arg o. may be provided simply by assigning o to a suitable default value. This
assignment takes effect only if |(,0)=0NC ', ie if no left argument has been supplied.

Assignment of a default left arg by a<... provides a way to define an ambivalent function as long as a

default o can be found which will also furnish the appropriate monadic form. The dyadic function has to
have a natural monadic case such that the dyadic case with some specific Larg leads to the monadic case.
This is possible for a few primitive functions. For example divide and reciprocal are such that

3 {a<1oa+w} 4 b 0.75 and {a<1oa+w)} 4 & 0.25 ,andalsopower and exponential
{o<xt1oa*xw) 4 & 81 and {a<x1oaxw} 4 & 54.59815003 ,andlogand In
{oa«x1o0®w} 4 & 1.261859507 and {a<*loa®w} 4 L 51.386294361 ,and..
{oa<bippwoaluw} 4 & 4 and {oa<dippwoaiw) 4 & u ,and minus and negate
{a<00a-w} 4% & ~1 and {a<O0oa-w} 4 & ~4 ,and somewhat

{a<00a+w)y 4 & 7 and {a<0oa+w) 4 L L4 ,butmonadic identity actually applies to non-
numeric data too and therefore {a<0¢a+w}Arr could givea DOMATIN ERROR.

w W P w W

The beautiful design of the APL 1 primitive functions is an excellent model for the construction of user-
defined functions. Primitive functions apply to arguments of various types and various ranks in
meaningfully related ways, like much basic arithmetic notation applies unchanged in the complex domain.
Thus in Sharp APL, and now in Dyalog APL version 11, and () and or (v) have been generalised to Icm
and gcd because the Boolean cases follow as a natural consequence of the more general definitions of lowest
common multiple and greatest common divisor (or highest common factor). Furthermore, the monadic and
dyadic definitions of primitive functions are usually closely related in meaning, as in the classic case in
arithmetic of negate and minus (-).

The above 4-point scheme for defining dynamic functions is not yet general enough even to model
ambivalent primitive functions unless we explicitly use execute (¢) in a construct such as
cross<{e¢>(b,~b<«(,0)=0NC'a'")/"+w' 'o+w'}

Even if we add the following 5" point, this limitation is still present.

5. DFns may be nested within DFns in the same way as canonical functions may be nested. eg
unwrap<{ (w=z0Av[3+0I0]){o\a/w}w} a to replace <LF> with blanks

Without the ability to jump over diamondized segments, many algorithms become difficult to program.
Nevertheless we already have a useful new form of function definition that yields some new idioms.

{w} a Function (dex) which returns the right argument
{a} a Function (lev) which returns the left argument
{} a Function (sink) which does not return any result

Another useful function idiom for converting a niladic form to an ambivalent form is simply {niladic}.

105

Q Day2: Fourth Generation Dyalog APL - The Internet Q

Note that the two forms of function assignment — assignment of a function expression and assignment of a
DFn to a name — are not mutually exclusive and may be combined into hybrid function expressions

withoutA<{w~"4"'}" a to remove character 4 from each substring in a character array
{'"[",w,"]"}o3 o to bracket a number
{'$'",w,".00"} o3 a to dollarize integer dollars

{('"F.C",sw)OWC'Circle'(0 0)w('FCol'(23p255))} =« todraw circles of radii w
or

{_«0ONA'U4 kernel32|GetDriveTyped <0T' o w,GetDrivelTypedAcw,':\"'}"

Beware of unreadable code wherein meaning can be lost due to essentially nameless proliferation of «'s and
w's from different contexts. Beware of dense strings of tokens without any context-relevant variable names
— what Stephen Taylor has called semantic density. It is easy to loose the fundamental meaning of an
expression when there are no semantic clues in the form of well-chosen user-defined variable names.
{y224¢{a«04owtt,/, "o ,\([(pa)ew)pca}9860

In appropriate dozes, DFns can clarify meaning
vV Suggestions<«howtoSpell TheWord;WD;Words

(1] '"WD'OWC'OLECIlient' 'Word.Application'

(2] Words<WD.GetSpellingSuggestions TheWord

[3] Suggestions«{(Words.Item w).Name} Words.Count
v

howtoSpell'Helleo'
Hello Helle Helloes Heller Hellion Halloo Hellos Hallo Hej

121125how how the functions {wOFAPPEND 1} and {OFREAD 1 w} may be used to append or read
many file components in a single operation.

Simple idiomatic algorithms may be expressed neatly, for example in
sortVec<{wlAwl)}
getParent<«{(-1++/A\bwz"'.")vuw}
trimCVec<«{(~(A\" '"=w)v(da\' "=oéw))/w}
justifyLeft<«{(+/A\" '"=w)dw)
getPath«{'\"',=(-(dw)rv"'\")+w)

but more complex algorithms deserve more space. Consider, for example, the marvellous Box-Mueller
algorithm gleaned from Professor Tony O’Hagan. This deserves to be implemented as a new APL primitive
function plus or minus (+):

T{wpt ([(x/w)+2){(c("2x8a{(?0pw)+wlw)*x0.5)x 1 20 co2xa{(?apw)+wlw) 1+2x31)}
The dyadic form might be such that o+w » o++w , ie it might have the ambivalent definition

T<«{a<0 ¢ wpt([(x/w)+2){ .. } 1+2%31}

Clearly we need to break this line up if we want to be able to read and understand the function easily.

§§ 12.1.2 MultiLine DFns

In order to make a long complicated dynamic function definition more readable (and more writable) it is
necessary to break it into manageable comprehensible chunks.

6. You may break a line in a DFn at any diamond (¢), after a left brace ({) or before a right brace (}).

& &

omecr Module12: Dynamic Programs omersox

It is not possible to enter a multi-line DFn in the APL session (although Shift+Enter as opposed to Enter
could be defined as continue (<) as opposed to enter (7).) However, you may enter a multi-line DFn in the
editor as a stand-alone DFn, or as part of a larger canonical function.

For example, you could define a function to determine the mean value of a numeric vector in the session
mean<{(+/w)+pw) A arithmetic mean
or as a 1 line function within a canonical function
Vv Variation

(1] Nos<,[a input numbers

[2] mean<«{sum<«+/wonum<pwosum+num}y a arithmetic mean

[3] Nos-mean Nos n difference from average
v

or as a multi-line function within a canonical function
Vv Variation

[1] Nos<,l A Input numbers
[2] mean<{sum<+/uw a total
[3] num<pw @ number of numbers
(4] sum+num}y Q@ arithmetic mean
[5] Nos-mean Nos n difference from average
v
or as a stand-alone multi-line dynamic function
V mean<{sum<+/uw a total
[1] num<puw @ number of numbers
[2] sum+numy p arithmetic mean
v

Note that the final comment will be lost unless it is placed inside the outermost brace.

12121Trace each of the above functions, using some arbitrary set of numbers for input. Check for global
variables left in the workspace.

As well as completely empty lines or lines consisting entirely of diamonds or comments, it is also possible
to have lines containing nothing but a single left brace {, or a left brace followed by a right brace {, or a
single right brace }. The following function has a valid header line and a valid closing line:

V compress<{ A remove multiple blanks

(1] (=" 'ew)/w

(2] by
\

shown in OV R form. Alternatively, the function below is shown in JC R form:

to«{0I0+0 n Sequence o .. W

from step<«1l ~1x-\2ta,a+xw-o a step default is +/- 1.
from+stepx11+0[L (w-from)+step+step=0 @ o thru w inclusive.

b

12122Trace the line

Eigen 210 10p1000
where DFn vE igenv is to be found in the distributed workspace .\WS\MATH.DWS. Compare this
function with canonical function vEVv in 88 9.3.3

107

& &

o Day2: Fourth Generation Dyalog APL - The Internet o

§§ 12.1.3 Guards and Error Guards

Imagine that dyadic execute () was defined to take a Boolean Larg (B.Sc) and a character string Rarg
(cvec) whereby the character string was executed if the Boolean were 1, ie e<{a<10¢0a/w}, then thisis
something like a guard (BSc : Expr) in dynamic programs. A guard, signified by a single colon (:), is
neither a primitive function nor an operator but a new ungrammatical symbol, only available within a
dynamic program, with the following meaning:

BSc : ... :If BSc ¢ ... ¢ :End

An expression (returning BSc) to the left of the colon (:) does not need to be surrounded by parentheses
and an expression to the right is not surrounded by quotes, as would be the case with the execute model.

A DFn may then be written as a series of segments each with an opening guard that determines whether or
not the rest of the segment is executed. The first segment to be executed may then return the final result.
For example, by analogy with the (atypical) circle function (o), we could call functions by number:

vV fn<{
(1] a=1l:+w a Identity
[2] a=2:-w A negate
[3] a=3:xw A signum
(] a=W:+w an reciprocal
[5] a=5:%w n e to power
[6] a=6:8w a natural log
(7] b

v

5 fn 2 fn 3 b %x-3 L 0.04978706837

1213\Write a single line DFn which discloses (once) an array if it is scalar and enclosed.
Hint: .. rank zero and depth of magnitude greater than one.

Imagine 0T RAP had been defined dyadically with the error numbers on the left and the execute cutback
expression on its right: this is something like an error guard (¥Vec : : Expr) in dynamic programs.

A error guard, signified by a double colon (: :), is neither a primitive function nor an operator but a new
grammatical pair of symbols (going in an unfortunate J direction), only available within a dynamic
program and with the following meaning:

NVec :: ... :Trap NVec o ... ¢ :End

The expression (returning NV ec) to the left of the double colon (: :) does not need to be surrounded by
parentheses (making : : impossible to interpret even as a dualistic niladic operator) and the expression to
the right is not surrounded by quotes, as would be the case with the 0T R AP model.

7. Use guard (:) to replace branch (=) or : 7 £, and error guard (: :) to replace JTRAP Or : Trap

The expression to the left of an error guard evaluates to a vector of error numbers. The expression on the
right of the error guard is evaluated in the event that one of these errors is generated by subsequent lines (or
segments of a line). For example the following function will return ODx in the event of any error in the
second segment.

cover<«{0::+0DMoHw?}

cover 2?3 3p3

iQ Module12: Dynamic Programs Q

OBERTSON ROBERTSON

DOMAIN ERROR
cover[] cover<«{0::+0DM o Hw}

A
Note that the trap is unset when executing the expression immediately to the right of an error guard, making
trap loops less likely. As with JTRAP it is possible to have a hierarchy of traps set, or a series of traps
performing different functions. The following example attempts to tie a file, and depending on the error,
performs a different alternative, each alternative still being covered by the traps above.

open<{
0::0
22::w [JFCREATE O
24 25::w QFSTIE O
w OFTIE 0

s

In this case, the last line is the first to be evaluated. Ifa 7TLE NAME ERROR (22) occurs then an attempt
Is made to create the file. If any error occurs at this point then the function returns o.

§ 12.2 Extended direct Definition
§§ 12.2.1 Programming DOps

In canonical form, programming operators is very much like programming functions. Only the header line
is slightly different with parentheses round the effective derived function. Likewise, programming DOps is
similar to writing DFns but there is no header line to distinguish the two sub-classes. One clue as to the
program class when examining a dynamic program is given by the colour of the braces. It is possible to
select in [Options][Colours][Syntax][Element] either D-Op (dyadic) or D-Op (monadic) — what we call
dualistic and monistic to distinguish from functional form (see APL Linguistics in Vector Vol.2 No.2 p118).
Pairs of braces can take any of three different colours, one for DFn, one for monistic DOp and one for
dualistic DOp.

How does the interpreter know what class a program is? The left operand in a DOp is represented by the
double-symbol «.o. and the right operand in a dualistic DOp is represented by the double-symbol ww. If the
double-symbol »w exists within the braces (not counting its presence in sub-braces) then the program within
the braces must be a dualistic operator as only a dualistic operator has a right operand. If there is an oo but
no ww then the program must be a monistic operator, and if there is no o.c. then the program is class 3 (a
function), and the braces are coloured accordingly.

8. Use ao to represent the left operand and ww to represent the right operand of a dynamic operator.

So we could define the primitive monistic commute operator (=) to be
comm<{o<w © W OO0 O)
Firstly, if there is no left argument to the derived function then it is taken to be the same as the right

argument. (Try primitive commute, +=u4 & 8.) Then the function left operand («.«) is passed the

arguments o and w in the reverse order - o. becomes the right argument and w the left, exactly as required by
the definition of commutation.

4 -comm 3 b 4-=3 L 3-4 L "1

10 *comm 3 &% 10%=3 L 3x10 L 59049
Or we could cover the J grammatical concept of hook with the dualistic operator hook:

hook<{o<woo oo ww w}
4 xhook- 3 L U4*o-3 L Lx-3 L 0.015625

109

K

o Day2: Fourth Generation Dyalog APL - The Internet o

DOps can be multi-line, and they can have guards, just like functions.

pow<{ a Explicit function power.
a=0:1
r{wroao/(1a),cw
}

The derivative operator from elementary calculus takes a single monadic function and returns a monadic
derived function, the gradient function. So the operator is monistic and the derived function is monadic.
The derivative of a function, f(x) is f'(x) where f'(x)=df/dx ~(f(x+dx)-f(x))/dx, or to a better approximation
f'(x)=df/dx ~(f(x+dx)-f(x-dx))/2dx. This is clearly what we have on line [2] below. oo represents the
function operand f(x) and w represents the function argument (x). The operator a then models the derivative
operator d/dx.

Vv A<A{ a derivative operator
(1] dw<e'1E 6"
[2] ((aor w+dw)-oo w-dw)+2xdw
[3] b

v

The derivative of 3x* with respect to x is the function 12x3 for all x, for example for x=3, 4 and 5.
{3xw*4}IA 3 4 5 L {U4x3xw*x3}3 4 5 L 324 768 1500

Symbolically, one could write
{axw*n}y A b {axnxw*n-1}

You can see some other examples of dynamic operators in the .\WS\DFNS.DWS workspace. You can
download the latest version of this useful workspace, as well as an article DFNS.PDF by John Scholes, from
[Download Zone] of www.dyalog.com. You can also find examples in the Language Reference and in the
versions 7.3 or 8.1 new release Help files, downloadable from [Document Download Zone].

One particularly useful operator is memo which remembers the result of a function as applied to any
particular argument. If called again identically through memo then the result is not recalculated, but just
returned directly from memory. Functions without side-effects are suitable for memoization. Another
example of an operator created by Phil Last, who like John Scholes is a prolific author of fabulous ‘D’
programs, is else which, depending on Boolean o, applies the left operand or the right operand to the
derived function argument w.

else<«A{ n Condition f else g
o o0 W a True: apply left operand.
W W n False: apply right operand.
b

Join the Dyalog dynamic functions mailbox group dfns@dyalog.com for live examples and discussions of
issues relating to general dynamic programming, led by the main protagonists.

§§ 12.2.2 Idioms and Utilities

The entire Finnish APL Idioms list, with over 500 entries and maintained by Veli-Matti Jantunen, has been
rewritten in terms of dynamic programs. Every canonical idiom has a dynamic counterpart.

12221Gjve the following idioms meaningful names. Ask yourself if the word you have chosen reads well in
the context of its use. Add some more of your favourite phrases...

{w[OAVAw; 1Y

{w/1pw}

{(+/w)zpw}

http://www.dyalog.com/
mailto:dfns@dyalog.com

ol Module12: Dynamic Programs oo

{+(-1pw)t w)
{0AVL (OAViw)-u48xwedA]Y}

Beware of illegibility and consequent unintelligibility like

{mlr<¢é3pdww, 1 (aa<aa)/m<0

o<« (aa<{w})ocaa)/m<1

] r<-13yrl | {w+rx0o>wY(mlrlr<3p(ppw),ppa) [Ymx13]
raat(clI+1ppalo),[-0.1-11]clrtr1ppwlw}

or inscrutable (until §12.3) one-liners like
{"x'v.z(pw)t0«"*+"/=w{(a+.=w),a{+/>L/+/ (cva)e.="(azw)o/ o wiw):v w}

§§ 12.2.3 Object.Object. .. Object.Operator Rationale

DFns may be space qualified either by name, or without a name. For example, given function
plus<{oa+w}
then
3 #.plus 4 b 7
and
3 #.{oatw}r 4 v 7
In this respect DFns are just like user-defined functions, object methods or primitive functions. All of the
rules stated in Module 11 apply to DFns as they do to other functions.

The same rules also apply to space-qualified DOps. If we had a natural log DFn (1n) in #

In<{ew}
and a derivative operator a in # . 4. B, then whilst in any other space (see property SE .CurSpace) we
could find the derivative of In(x) at any points x, say at 6 and 7:

#.ln #.A.B.A 6 7 b %6 7 b 0.1666666667 0.1428571429
This all seems quite natural and useful.

h<f fp.0 a Operator(s) 0 in space(s) 71, with operand £

h«f fip.0 g a his space-array of derived functions...

The problem from the point of view of rational APL grammar is that any attempt to argue that the dot of dot
syntax should be considered to be an operator is now confronted with the situation where an operator has
an operator operand. This introduces entirely new APL grammar whose implications have been explored
in New Foundations in Vector Vol.20 No.1. Either you can accept the pragmatic rationale for
Object.Operator syntax given above or you may seek a deeper justification elsewhere. (Note that in
advanced mathematics, the first derivative operator (d/dx) applied to the first derivative operator (d/dx)
gives the second derivative operator (d%/dx?) so there is certainly a precedent in pure mathematics.)

§ 12.3 Recursion

§§ 12.3.1 Recursive Functions

Most problems that can be solved with iteration can also be solved with recursion. One advantage of
recursion is that the program often looks more like the original mathematical formula.

111

& &

o Day2: Fourth Generation Dyalog APL - The Internet o

It has always been possible to write recursive functions in APL by referring to the function itself within its
own definition. Thus niladic foo definedby Ofx'foo' 'foo' isinfinitely recursive, as is monadic
foo defined by foo<{foo [<«w}. The essential novelty in recursive DFns is the possibility of writing
unnamed recursive functions. This is implemented simply by using the symbol del (v) (function self) inside
a DFn to refer to the entire DFn itself. So the useless monadic infinitely recursive DFn f oo above may be
replaced by the equally useless { v w3} which may or may not be assigned an arbitrary name.

Many examples of useful recursive DFns are to be found in the supplied DFNS.DWS workspace. Here are
a few examples from that workspace.

Power, as in X where vy is a positive integer, is just repeated multiplication; x x x x .. x, y times. This can
clearly be written with a looping solution, or in APL without a loop:

x/4p3 b 81
Alternatively it may be written as a recursive DFn:

pow«{w=0:1 ¢ axa V w-1%}

3 pow 4 b 3x4 L 81

Factorial is a classic case of recursion where factorial of an integer, x, may be written as x(x-1)(x-2)..1
which translates directly into DFn

{w=0:1 ¢ wxvV w-1} b {lw}
with the added value of 1 for factorial zero which enables the function to end the recursion. An alternative
program for factorial may be written

{oa<«1 ¢ w=0:a ¢ (oxw)V w-1} b {!lw}
This 'tail-recursive' form turns out to be faster because the segment containing the function self returns the
result of self immediately as the result of the entire function whereas the first algorithm multiplies the result
of function self by w before returning a result as the result of the entire function, making certain internal
interpreter optimisations impossible. To be tail-recursive, the answer ultimately returned by the top-level
call to the function must be identical to the value returned by the very bottom level call. The ultimate
answer, 81, is not the same as the deepest level return value which was 1, so power is not a tail-recursive
function but the second (faster) form of factorial is tail-recursive.

There are many examples of beautiful mathematical functions with an elegant recursive definition. The
greatest common divisor may be programmed as

{w=0:aow V wlo} b {avw}
See also algorithms for prime factors or the ancient algorithm for identifying prime numbers first espoused
by Eratosthenes of Cyrene who lived around 275-195 BC.

One well known recursive algorithm is that for obtaining the determinant of a matrix. The essence of the
method is visible in the following multi-line DFn:

det<{0I0 OML<«0 a Determinant of matrix w.
14 @ Initial accumulator.
@ null matrix: finished.
@ accumulator vV sub-matrix.

0 O=pw:o
(oox2ow)Vv 1 1dw-wl;0]o.xwl[0;]sow
T w
¥

Notice how the system variables are automatically localised. Notice also how subtraction and multiplication
are at the core of the algorithm, prompting Iverson to propose that a dualistic monadic dot operator be
introduced such that { - . xw } be the determinant of a matrix argument. He further calls {+. xw} the
permanent function.

somemr Module12: Dynamic Programs oo

Nested arrays offer much scope for recursive functions. It was not a coincidence that the each operator was
introduced at the same time as nested arrays. For example, a recursive definition of enlist, which may be
expressed simply as {0ML«<10e w},isgivenin function enlist inthe DFNS workspace.

- enlist

File Edit ‘Wiew
[al enl ist«{OHL+0 f List o-leaves of nested arrad.
[1] <0 A default: list O-leaves.
[2] wr 1+ l=ul,u A all shallow leaves: finished.
[al Wt,sles220),0 = ,u & otherwise: concatenate sublists.
[4] b

Function Last saved by: Dyadic: 13 Ockober 2002 12:14 Pos: 0,1

123115dy the function re f s below (also to be found in the DENS workspace).

refs<{ n Vector of sub-space refs for w.
oa<8 ¢ (p,a)Yaf a default exclusion 1list.
lew=o:0 n already been here: quit.
w.(+vee~/¢d(ca,w),y0NL 9) a recursively traverse sub-spaces.
Jw n for given starting ref.
}

Load distributed workspace WDESIGN.DWS and trace refs # with the tracer in
[Options][Configure][Trace/Edit][Classic Dyalog mode]. Examples of use include:
(refs #).0wx
(refs #).0ONL 2
(refs [OSE).(po0CR3++0NL 3)

Aside: The functions Legendre, Hermite and Laguerre in the distributed MATH.DWS workspace represent
the sets of (function) solutions to three commonly applicable differential equations. See, for example,
http://www.efunda.com/math/Laguerre/index.cfm. These (infinite) sets of orthogonal functions are the
eigenfunctions of the corresponding differential operator. A ‘recurrence relation’ relates each function in a set to
neighbouring functions. Thus these three functions may be replaced by recursive definitions.

§§ 12.3.2 Recursive Operators

There are two distinct kinds of self-reference for recursive DOps. The symbol v may be used to refer to the
current derived function - the operator bound to its operand(s). When the operands are functions, this is the
most frequently used form of self-reference. However, if the operands are arrays, we often need a recursive
reference to the operator itself and there we must use the double symbol vv.

An example of the first type of recursion within a DOp is given by the wh i e operator. As long as the right
operand function ww acting on the argument w returns 1, apply the derived function again to the result of the
left operand function oo applied to w, otherwise return w.

while<{ a Conditional function power.
Ww w:V oo w @ While ww w: apply ao ao - - w.
W n Otherwise: finished.}

A fascinating example of the second type of recursive operator is given in function k¢ in .\DFNS.DWS.

The most general second type of operator recursion involves a situation whereby the function operands of
an operator change at each level of recursion. A simple example is given by

comp<A{
a=0:00 w
(a-1)aococao VV wl

113

http://www.efunda.com/math/Laguerre/index.cfm

K

oneaTss Day2: Fourth Generation Dyalog APL - The Internet Q

A potentially very useful example of operator recursion is given by the function determinant operator.
Imagine you had a 2 by 2 matrix of functions (whose APL representation is as yet undefined),
M(x) = (p(x) ()
\r(x) s(x)/

then the function determinant is defined mathematically as the function resulting from
det(M(x)) = p(x)s(x)-a(x)r(x)
where multiplication and subtraction are now operators like

times<«{ (oo w)x(ww w)l}

minus<{ (oo w)-(ww w)?
and the essential recursive APL operator would contain a line something like

(oo times oww)VVv 1 1yww minus wwl;0]e.times wwl0;] divide >sww
if ww was allowed to be a matrix of functions... For a larger size square matrix of functions, the recursive
determinant operator would take different function args at each level.

12321The determinant of the function matrix of problem 11.3.2.1 is clearly 1. Consider how you might
express this in executable notation.

§§ 12.3.3 Biological Beauties

Much of the beauty of nature rests on self-similarity - the fact that patterns may be repeated at different size
scales. All sorts of natural objects from crystals and sea shells to fern leaves and onions may be modelled
by recursive functions. (See Stephen Wolfram's New Kind of Science for an extensive and monumental
computational analysis of self-similarity.)

One of the first discoveries in this vast new subject was made by Gaston Julia in 1918 and developed and
visualised via computer by Benoit Mandelbrot around 1975. They found infinite depth in simple iterative
algorithms. We can capture in APL the Mandelbrot set using his algorithm, Z=zZ?+C. We can picture the
set of points on the complex plane whose modulus never exceeds 2 under this iteration. These points are

connected and produce a line on the plane whose dimension may be considered as not 1 but fractional.

The essential algorithm is in the second, third and last lines of the recursive DFn, square, defined below.
The second line calculates the square of a complex number and adds the position in the complex plane
under consideration. The third line determines whether the modulus is greater than 2 (in which case it will
diverge and is therefore outside the set). The last line applies the function recursively.

Mandelbrot;r;c;v;ADDR;BITS;Cu2;Zu2;x;y;0I0;cmap
0I0<1

Xmin« 2.5 ¢ Xmax<1.5 a set X coord limits

Ymin< 1.5 o Ymax<«1.5 a set Y coord limits

r c<300 400 @ number of rows and cols

V<rxc @ number of pixels

BITS<vpO @ initial colour black
x<Xmin+((Xmax-Xmin)+r-1)x0,1r-1 a X range

y«<Ymin+((Ymax-Ymin)+c-1)x0,1c-1 a Y range

Cu2«+t,xo0.,y @ rxc points (2 coords each) on complex plane
Zuz2<«v 2p0 @ zero Iinitial value of Z at each point
ADDR<1vVv a address in bits vector

cmap«®2 2 210,17
cmap<(127xcmap)~(255xcmap)
cmapl[8;]«192
"FRM'OWC'Form' ('Size'(r c))('Coord' 'Pixel')('Picture' 'BMP' 2)('OnTop' 1)
"BMP'OWC'Bitmap' ('Bits'(r cp0))('CMap'cmap)
1 ONQ'FRM' 'Flush'
square<«{Zu2 Cu2 ADDR BITS<w
Zu2<Cu2+((Zu2l;11x2)-Zu2l;21x2),[1.5]2xx/Zu2 A Z<C+Zx2

omecr Module12: Dynamic Programs omersox

O<+/~0UTu«~2<0.5x=(Zu2[;11*2)+(Zu2[;21%2) 2<|2

A/OUTu : all outside, QUIT
ADDR<OQUTu/ADDR remove outside addresses
Zu2<«0UTu+Zu? remove outside values
Cu2«0UTu#Cu2 remove outside points
0=pADDR: none to update, QUIT

increment effective counter
recalculate colour from depth
set new colours

recurr with subset

BITS[ADDR]<[<1+[/BITS

cbits<(r c)p256Lycmapl1+15]|,r cpBITS;]
<o '""'"BMP''[OWS''CBits''cbhitsoO0'

V Zu2 Cu2 ADDR BITS

» » » » ®» » D ®» ®» D

}
square Zu2 Cu2 ADDR BITS A go

The result is a picture, whose beauty is only limited by the graphical capability of the output medium.

This simple algorithm and the astonishing pictures that it can generate can be applied to the quaternionic (or
the octonionic) domain with an identical mathematical algorithm. Prizes have been awarded to some
fantastic 3D projections and 2D sections of quaternionic fractals. Many examples can be viewed on the
Internet, eg at http://www.lactamme.polytechnique.fr/Mosaic/images/JU.g2.0.16.D/display.html.

]

N N
Y Wi ¢ &

Such is the power and beauty of recursion by computer. From an examination of a number of recursive
models we can extract a fundamental form which is at the heart of many of them. This recursive operator
might be named c P4 from Critical Path Analysis wherein two distinct functions emerge from network
analysis. The first is 7P 4, Forward Path Analysis whereby the network is analysed in a forward (time)
direction. Then there is the BP4, Backward Path Analysis, stage wherein the network is analysed in the
opposite temporal order. These two analyses together build a comprehensive description of the network.

115

http://www.lactamme.polytechnique.fr/Mosaic/images/JU.g2.0.16.D/display.html

& &

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

Take a straightforward case of a canonical recursive function CP 4, such as that below, that first executes a
forward pass 7P A until a leaf is encountered, and then executes a backward pass BPA.

File Edit Mjew Opkions

Tree+ Trunk:trees: trunks
If O=prtrunks« Trunk
Tree«""' Trunk trunks
:Else
trees< - 2trunks
Tree<trees - | Trunk trunks
(EndIf

Funckion TMPD56: 26/03) 2005 Pos: 5,18

This may be rewritten, in a slightly simplified form, as a dynamic recursive operator,
CPA<{ a Tree<«(FPA CPA BPA) Trunk
O=ptrunks<oo w:''ww w
trees<(oo VV ww) trunks
trees ww w
b
It reapplies the same operands c.o. and ww at every level and so may be replaced with the simpler operator
CPA2«{ a Tree<«(FPA CPA BPA) Trunk
O=ptrunks<oo w:''ww w
trees<vV trunks
trees ww w
by
This operator can form the basis of the analysis of many nested structures in APL. FPA (or ao) is a
function that digs down one level into a structure, and BP4 (or ww) is a function that builds the final result,

going backwards one level at a time. We might even propose it be a new primitive APL operator (3).

So, for example, we could take 0w~ as the 7P 4 function which digs down into a GUI structure one level
and use the simple construction { (ca) , cw} for the BP4, backward pass synthesis. Thus

0" (OWN CPA{(ca),cw})'Ose’
9 8 9 2 6 11 9 16 0o 7

12331Consider the following 7P 4 candidates and attempt to run an example:

{0CMD'Dir ',w} n even better using VNtDirXv in NtUtils WS
{>"w} n to examine a nested array

OREFS a to examin a function calling tree

{w.ONL 9} ap to examine namespace structure.

By means of this simple-looking operator many diverse subjects may be investigated and pictured,
especially beautifully using OpenGL briefly discussed in Module 9. Valid realms of application include
project plans, road systems, real trees, lungs and other natural and idealized fractals of all varieties.

One of the many great things about APL is that it is often imagination and not the programming language
itself that is the limiting factor. “What we can conceive we can achieve!”

12332please ask for the next module on multi-threading

& |

ROBERTSON ROBERTSON

Module13: APL Threads

Windows divides its workload into tasks or processes. Each process is allocated virtual address space and
given control of some resources. A thread is the smallest kernel-level object of execution. When a process
is created, a primary thread is generated along with it. This thread is then scheduled to run on a processor.
After the primary thread has started, it can create other threads that share its address space and system
resources but have independent contexts. Threads, like processes, can time-slice a processor’s throughput
leading to the illusion of parallel processing on single-processor machines, which are, usually, most of the
time looping idly.

Dyalog APL runs in a C thread. When APL starts up it generates an APL thread, called the base thread or
root thread, which can create other APL threads, each with their own execution stack and state indicator.
Thus Dyalog supports parallel processing of APL code via multi-threading whereby more than one APL
expression can apparently run concurrently. This allows background calculations to run at the same time as
interactive tasks, which can greatly improve system responsiveness from a user's point of view.

§ 13.1 Spawning a new Thread
§§ 13.1.1 The Spawn Operator, &

An APL thread is initiated by an asynchronous call on a monadic or dyadic function using the new monistic
primitive operator spawn (&).

{TID}<«{a)}f&w a Runs function £ in a new thread with ID 717D

The (shy) result of the derived function £ & is the identity of the thread in which £ is being run. When the
(ambivalent) function 7 terminates, its result (if any) is, by default, returned in the session.

<3 x&U
12

£ b 1
The result returned by the derived function x & is not the result of the multiplication, but is the unique thread
number of the newly created thread — in this case }¢=1. We denote this behaviour by

3x&L4 L 2

12

The thread number is now 2, the next available positive integer.

An analogous situation arises in the case of executing a diamondized statement whereby the result of an
expression is not necessarily that which is displayed in session.

r<e¢'33o44055" L 55

33
Ly

Compare with

r<¢&'33o0440o55" L 3
33
by
55

which is run in thread number 3, or

+o[0dI1& 5 b U4
5.078

117

& &

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

which is run in thread number 4. Thread ID's are allocated sequentially from 0, the base thread ID, to
T142%31 b 2147483647, at which point, the sequence ‘wraps around’ and numbers are allocated from
1 again, avoiding any still in use. The counter may be resetto 0 by) RESET.

Functions that take a significant length of time to return their result may be run in the background if their
results are not immediately required.
#.0&'S«0OLEServers'
Niladic functions can be accommodated by way of execute, or with a monadic DFn:
2&'Niladic' n because Niladic& is syntactically incorrect
{Niladic}&0 a argument 0 Is discarded by monadic dfn

B3LI\What would happen if you run function {+v&w) on any argument?

A thread can spawn any number of new sub-threads. This implies a hierarchy of parent and child threads
whose ancestral root is ultimately base thread number 0. Children of a terminated parent thread are adopted
by the grandparent.

Many parallel threads can be initiated by using each (") in conjunction with spawn (&) because & is
equivalentto (£&) . Compare this with " [J& which is equivalent to (™) & which launches only one
new thread.

13112se the function vmakev to initiate a number of 0DQ'ed Forms in parallel.
Vv make W
[1] ('F',sW)OWC'Form' o ODQ'F', %W

In order to monitor and debug applications involving many threads a new threads tool has been introduced
in Dyalog version 10.1 (see Dyalog APL Version 10.1 Release Notes). The new tool may be opened from
the session menu by [Threads][Show Threads...] or from the pop-up menu [Threads...].

131130pen the threads tool and view the threads created using vmakev above. .

@ Threads

Tid Location State Flags
0 Cno stack) Session Mormal
1 makel11 C°F',sHI0OHC ' Form' « ODQ'F',%H ODQ Mormal
2 makel11 C("F',#HI0OHC'Form' <« ODQ'F',3H ODQ Marmal
3 makel11 C'F',FHIOWC'Form' < ODR'F',FH 0ODQ Mormal
4 makelll C°F',FHIOHC 'Form' « ODQ'F',sH ODQ Mormal
5 makel11 C°F',sHI0OHC ' Form' < ODQ'F',%H ODQ Mormal
[makel11 C"F',#HI0HC'Form' < ODQ'F',3H ODQ Marmal
7 makel11 C"F',#HI0OHC'Form' <« ODQ'F',sH ODQ Marmal
8 makel1] C°F',FHIOHC'Form' « ODQ'F',sH ODQ Mormal
| makel11 C°F',FHIOHC ' Form' « ODQ'F',5H ODQ Mormal
< >

Delete each Form and observe the corresponding thread disappear.

13L14Examine the function v ¢ Ardv which recurs until the Sl stack is 4 levels deep.
V thrd w a start with thrd 0 after)RESET

[1] :If (T1+p0SI)<3

[2] thrd&w,1 o previous,

[3] thrd&w, 2

(4] : End

(5] ODL 710 o threads are adopted when parent disappears

f«Q Module13: APL Threads Q

OBERTSON

Run the expression
thrd 0
and watch the threads disappear in the thread tool.

§§ 13.1.2 Thread Identity from 0T ID and OTNAME

Each thread has a positive integer ID. The ID of the current thread may be found by means of a system
command,

)TID a Reports identity of current thread

or by way of a system function inside an APL program,

TID<OTID a Current thread number

The result 71D is a simple positive integer scalar, of dataType ZSc. The base thread, which is always
present, has FOT7D=0. This identity assumes that the base thread is the current thread. Otherwise
)RESET

¢&'0TID" & 1

¢&'0TID" & 2
2

Each thread can also be given an arbitrary name, of dataType CVec, using the new system variable,

OTNAME a The name of the current thread

Initially, in a new thread FOTNAME="".

1312IModify the preceding function v¢ Ardv as below and create a global variable DI with a suitable delay
value, say 10 seconds
V thrd w a start with "thrd 0" after)RESET

[1] O«0TNAME< (s0OTID),':',(%w),'@level=",3 1+p[SI
[2] :If (T1+p0SI)<3
[3] thrd@w,1 e previous,
(4] thrd&w, 2
[5] : End
(6] ODL DL
\Y
Open the Threads tools, reset the Sl stack and dulhusce — L
trace t Ard o to line [5]. Right click on one of PN TETER, g
the threads in the Threads tool and select [Auto S e omes Db asi B e
Refresh] and [Switch to]. See new trace window 0 510 2 Tatevel=2 e DL DL M on DL Nermel
with new current thread in the caption. A star 7301 eleeis | hedi OOl el OOl Nemd
appears againgt this thread in the Threads tool gggi : QEE:EH frctn oL o A ol BoC Norma
10: 10:0 2 28level=2 thrd[7]1 ODL DL A o... ODL Normal
indicating that it is suspended. Use) TID to 1202021 el wdtm Ol OL e ol DL Nermd
verify that this is now the current thread. View I3 14102 2 owelsy Shedr) OO OL b ol DL Normal |}
the) ST stack. Reset and save the workspace.
p ,

When more than one thread is running, the) ST stack is a branching tree originating from the root (base)
thread. If a thread sustains an untrapped error then execution of the thread is suspended and all other
threads are paused. The session is attached to the suspended thread making is possible to examine local
variables and trace through the code. Error messages are prefixed with thread numbers. More information

119

Q Day2: Fourth Generation Dyalog APL - The Internet Q

on debugging threads can be found in the Dyalog version 10.1 Release Notes. In particular, the session
supports a number of new facilities for examining thread states.

Threads are flagged in the Threads tool as either normal or paused. A paused thread is one that has
temporarily been removed from the list of threads that are being scheduled by the thread scheduler. A
paused thread is effectively frozen. Runaway threads may be paused with the [Pause All] item in the
Thread Tool pop up menu.

It is possible to switch suspension to a different thread, but not to a pendent thread, using the system
command) 77D with a thread ID parameter.

)TID TID a Switch to suspension of thread number T 1D

This suspends a running thread and opens a new trace window on the thread, making it the current thread.

§§ 13.1.3 Thread Numbers with OTNUMS and OTCNUMS
drnums returns all the thread numbers corresponding to initialised threads.

TIDs<[OTNUMS a The numbers of all threads

The result of the niladic system function is a positive integer vector, dataType ZVec. FoeOTNUMS

Each thread may have child threads. The resulting hierarchy may be analysed using the system function
OTCcNUMS that reports only the child threads of the argument threads.

ChildTIDs<OTCNUMS ParentTIDs o The numbers of all child threads of given parents

ParentTIDs isasimple array of thread numbers (dataType ZArr), and Chi IdTIDs is a simple vector of
thread numbers (dataType ZVec), or zilde if there are none.

B31311n the function ¢ Ard above, set DL to 60 and trace into (Ctrl+Enter) ¢ Ard o. Hit Enter until you
reach line [5]. This will initiate 14 new threads and keep them alive for a minute. Explore the results of
OTNUMS and OTCNUMS.

It is possible to terminate threads, and optionally (and by default) their dependents, under program control
with system function JTK T LL:

{Terminated}<«{Descendents}JTKILL TIDs «a Terminate threads/familiesin TIDs

The Rarg is a simple array of thread IDs (ZArr), Larg is a Boolean determining the fate of descendents
(default is 1; terminate entire progeny). The result is a simple vector of actual terminations (ZVec).

Fe=0TKILL 0 » the base thread is always present.
If an intermediate thread is terminated then that thread's parent adopts the orphaned children.

13132add new line [2 1 to the function v ¢ Ardv and replace the delay with an infinite loop.

v thrd w
[1] U<0TNAME<(sUTID),':',(3w), '@level=",% 1+p0ST
[2] o0« '0" ,Z{0OML«1 o ew}(1+p0SI)pc'Utcnums™™'
[3] :If (T1+p0SI)<3
(4] thrd&w, 1
[5] thrd&w, 2
[6] :End
(7] I<0 a I is local to thread
[8] :While 1 m otherwise thread disappears->adoption

9] :If {(w+1000000)=lw+1000000}I mupdate showIree every 1E6

ROBERTSON

Q Module13: APL Threads Q

[10] updateTree w OTNAME I
[11] : End

[12] I«<I+1

[13] : Endv

where the function vupdateTreev is, using version 10 new header line syntax,
v updatelTree(W Name I);IDs;Ind

[1] IDs<++8®3 3 3 370 9,(11+16),20+16 a lIist possible IDs

[2] Ind<«IDsicltw a look for current ID

[3] IDs<F.TV.Items

[u] IDs[Indl<cName,' #',sI a build item label

[5] F.TV.Items<IDs

[6] {F.TV.Expanding w) 115 @ NB can't do 1 [ONQ... in thread
(7] v

Run the niladic function vshowTreev. Thissetsup a TreeV iew of the coming thread hierarchy.
v showTree

[1] '"F'OWC'Form' ('Posn' 70 75)('Size' 25 20)
[2] 'F.TV'OWC'TreeView' ('Size' 100 100)

[3] F.TV.Items<«15pc,'-"

(4] F.TV.Depth«<0 1 2 3 3 2 3 3 1 23 3 2 3 3
[5] F.TV.HasButtons<o0

(6] {F.TV.Expanding w} 115V

Open the Threads tool and check the [Auto Refresh] item. Run t hrd o aftera) RESET

{0:0iEleyel=1 BEROOOOOO |
1@level=2 #0 1:0 1 @level=2 $62000000
201 1=level=3 #0 201 1@level=3 #72000000
30711 1&Elevel=4 #0 3011 1@level=4 63000000
3:01 1 2@level=4 #0 9011 2@level=4 #76000000
701 2@level=3 #0 701 2i@level=3 $36000000
8:01 2 1&level=4 #0 801 21 @level=4 $E0000000
1207 2 2@ level=4 H0 13:01 2 2@@level=4 #77000000
50 21@lewvel=3 #0 50 2 1@level=3 #75000000
E:0217 1@level=4 #0 E:0 21 1@level=4 #73000000
12:0 21 2@level=4 #0 12:0 21 2@level=4 #71000000
100 2 2@level=3 #0 10:0 2 2@level=3 #64000000
11:02 2 1&level=4 #1000000 11:0 2 2 1@ level=4 #72000000
14:0 2 2 2@leval=4 #0 14:0 2 2 2@evel=4 $33000000
4:0 2@ lewel=2 H0 4:0 2@level=2 #E£1000000

& Threads (= (&)

Tid Location _ State Flags Treqg m

0: 0:0Elevel=1 thrd2012]1 :If {Cw+... Session Normal E

1: 1:0 1ldlevel=2 thrd2[12]1 :If <Cw+... Defi... HNormal 'i

2 2:0 1 1@level=3 thrd2012] :If <Cw+... Defi... MNormal

3: 3:0 11 lalevel=4 thrd2012] :If <Cw+... Defi... HNormal

4: 4:0 2elevel=2 thrd2013] :End Defi... Mormal

5: 5:0 2 l@level=3 thrd2012] :If <Cw+... Defi... Hormal

6: 6:0 2 1 ldlevel=4 thrd2012] :If {Cw+... Defi... HNormal

70 7:0 1 Zilevel=3 thrd2[12]1 :If <Cw+... Defi... MNormal

G: 8:0 1 2 lilevel=4 thrd2012]1 :If <Cw+... Defi... HNormal

9: 9:0 1 1 2dlevel=4 thrd2012] :If <Cw+... Defi... HNormal

10: 10:0 2 2elewel=3 thrd2012] :If <Cw+... Defi... HNormal

11: 11:0 2 2 lElevel=4 thrd2013] :End Defi... Mormal

12: 12:0 2 1 2elevel=4 thrd2012] :If <Cw+... Defi... HNormal

13: 13:0 1 2 2@level=4 thrd2012]1 :If {Cw+... Defi... HNormal |

14: 14:0 2 2 Z@lewvel=4 thrd2[12]1 :If <Cw+... Defi... HNormal ‘33
£

< | >

: 4l |
Watch the tree update every million counts. Notice the update order is not predictable. Hit Ctrl+Break in
the session. Notice the suspended thread is no longer updated. Break again. View the) ST stack.
Experiment with [Restart All], [Pause All], [Resume All], 0Tk I L L, [Strong Interrupt] in the System Tray
and [Action][Interrupt] in the Session.

121

K

oneaTss Day2: Fourth Generation Dyalog APL - The Internet somemr

§ 13.2 MultiThread Interactions
§§ 13.2.1 Thread Synchronisation with 0T synNC

Often it is necessary to wait for the result of a thread before another program can run. This situation is
managed using 0TSy NC, which takes an argument of a simple array of thread numbers. OTSYNC waits
until the thread initiating function has finished and all the results, if any, have been produced. It then
returns an array of the same outer shape as the argument, each thread result (if there is one) being an
enclosed element of the array in the corresponding position.

{ArrArry<{QTSYNC ZArr o Wait for and return results of all thread numbersin ZArr

If a thread is subject to an active 0T .SYNC, the thread result appears as the result of 07 .Sy NC rather than in
the session.

If one thread is waiting for another to finish and that one is waiting for another .. in a cyclic dependency
then a trappable DEADLOCK error (number 1008) is generated. This error is also generated if you attempt to
wait for the base thread to finish by J7.sync o.

§§ 13.2.2 Holding Tokens with : Ho 1d

When many threads wish to access the same resource then some method for synchronising and controlling
access is needed. Access is controlled by tokens, arbitrary character vectors identifying entry into critical
sections of code.

:Hold VecCVec ¢ ... ¢ :Else o ... o :EndHold o Attempttoacquire tokens

The control structure initiated by : Ho 1d blocks entry into the next segment of code until all the tokens in
the vector of character vectors (VecCVec) have been acquired. If no other : #o 1d has acquired a token
then it may be acquired by the current thread. The token is released on exit from the : Ho 1d structure.

If a : £ 1se clause has been included then execution proceeds into the : £ 1 se clause if all the tokens in
VecCVec are not available. Each token may only be held once in the workspace. Trailing blanks are
ignored. Holds may be nested in a cumulative fashion, which gives a further danger of DEADLOCK.

Thus the function below always results ina DEADLOCK. (Note DFns do not support controls structures.)

v foo
(1] :Hold 'iv|!' '7896' '#.#.#' '
[2] :Hold '"1v|'!
[3] A execution can never get here
(u] : End
(5] :Endv
foo
DEADLOCK

fool[2] :Hold '"w1v|'

A
A list of all tokens that have been acquired or requested by a : Ho 1d control structure can be displayed by
the system command) HOLDS.

YHOLDS a Reports all tokens acquired or requested by : Ho 1ds

This command displays all the tokens that have been acquired or requested, one per line. The token is
followed by a colon and then the number of the (one and only) thread that has acquired the token followed
by all the threads which are currently requesting it.

iQ Module13: APL Threads Q

OBERTSON

For example, given the DEADLOCK in force above,
¢&'foo' b 1

es&'foo' L 2

YHOLDS
: 0 1 2
#OH#H: 0 1 2
7896: 0 1 2
v 0 1 2

§§ 13.2.3 Pooling Tokens with 0T PUT and OTGET

Dyalog version 10.1 contains an alternative method for synchronising threads. A pool of tokens is
maintained from which tokens may be acquired, when available, and into which tokens may be deposited.

In this context, a token has a different meaning from that in section 13.2.2. Tokens are no longer character
strings. They are represented by a non-zero integer scalar ‘type’, and may optionally have an arbitrary array
‘value’.

The pool may containupto 2«31 » 2147483648 tokens. They are identified by their type and are
managed in a FIFO (first in first out) fashion and therefore do not have to be unique.

You can put a token, identified by its type and the sequential order in which it was deposited, into the pool
of tokens.

{TIDs}<«{Values}OTPUT Types a Puts token Ty pes in pool, freeing threads TIDs

Types (dataType ZVec) is a vector of token types. va lues (dataType VecArr) is an optional vector of
values associated with each corresponding token. The default value is the type itself. The result, if any, of
Od7rPUT is a vector of thread numbers that have been unblocked by the introduction of the new token(s) into
the pool.

Let us put two tokens both of type 29 into the pool:
¢=0TPUT 29 - 1
¢=0TPUT 29 - 1
The niladic system function 07 P00 L returns the type of every token in the pool.

Types<[OTPOOL a Returns Ty pes of tokens in the pool

Ty pes is asimple integer scalar or vector of token types, or zilde if empty. Thus
OrrPooL » 29 29

The ambivalent system function, OTGET, retrieves tokens from the pool and returns their values. Negative
tokens may be retrieved any number of times. Positive tokens are removed from the pool when they are
retrieved.

{Values}«{TimeOut}OTGET Types na Getstoken Types outof FIFO pool, when available

Ty pes is a simple integer scalar or vector that specifies one or more tokens. T imeOut isa maximum time
in seconds to wait for a response (dataType NSc). Va lues is an arbitrary array value in the case of a single
token, or a vector of array values in the case of more than one token being retrieved. OTGET returns only
when the tokens are available (or in the event of a timeout in which case zilde is returned).

123

K

onv Day2: Fourth Generation Dyalog APL - The Internet o

132311y to get token type 29 when the pool is empty.
OTGET& 29 a try to get token type 29
Note the appearance of a new thread in the Threads tool. Now place a token, type 29, in the pool.
dTPUT 29
Try again and this time give the token a value.
+o[JTGET& 29
04 OTPUT 29
ABCDEFGHIJKLMNOPQRSTUVWXYZ
The output came from the OTGET and there are now no tokens in the pool. If we had put a negative type in
the pool then it could be retrieved any number of times as a positive type without being removed from the
pool. But getting a negative type removes it from the pool.

All tokens can be removed from the pool by 07G¢GETOTPOOL. Note that ITGET o can only be stopped by a
[Strong Interrupt] (from the System Tray icon).

13232y periment with JAOTPUT 29, +0TGET&29 and +-(JTGET& ~29. Also experiment with a request
for two such tokens with, for example, +-0TGET&-29 29 and JAOAIOTPUT ~29.

Outstanding token requests from calls to OTGET in various threads can be found from the result of system
function JTREQ.

Types<UTREQ TIDs a Current token requests for all thread identities TIDs

0T REQ takes a vector (or scalar) Rarg of thread IDs, and returns a vector of all the requested token Ty pes
(ZVec or zilde) in all threads in TIDs (positive ZVec).

13233 RESET to clear the pool. Put 26 tokens into the pool, with values "4, "B, .. ' Z'. Note the
contents of the Token Pool, which can be docked in the Threads tool. In thread 1, get all the values of 8 5
12 12 15inasingle OTGET request. Use OTREQ to examine the outstanding token requests, or look in the
Treq column of the Threads tool. Put another token 12 with value ' = ' into the pool.

§ 13.3 General Thread Programming
§§ 13.3.1 Thread Switching

If you execute more than one Dyalog APL thread, a maximum of only one thread is actually running at any

instant; the others are paused. Each APL thread has its own State Indicator, or SI stack. When APL switches
from one thread to another, it saves the current stack (with all its local variables and function calls), restores
the new one, and then continues processing.

Execution may switch from one thread to another only at certain critical points in the code. Generally,
execution may not switch mid-line. But the interpreter may switch to a different APL thread

at the end of every line of code.

Therefore, one very useful way to ensure that two primitive expressions are executed sequentially without
interference from other threads is to place the two expressions on the same line, separated by a diamond
separator (o).

Global names set on one line of a function might not have the same value on the next line if other threads
access them.

Local names follow the same name scope rules within threads as they do without threads except that each
thread stack should be viewed as an independent program stack as far as visibility of local names is

iQ Module13: APL Threads Q

OBERTSON

concerned. Local names created at a point in the code after the thread has been spawned are visible to the
code in that thread thereafter, but are not visible to threads spawned at an earlier stage. (See, for example,
the unlocalised variable 1 in the function vt Ard[7 Jv above.)

If an intermediate thread is terminated, the grandparent adopts the child threads. This can cause names to
change scope and so, generally, all variables should be localised inside functions, especially in multi-thread
environments.

There are other times at which execution may switch from one thread to another. These are points at which
the interpreter is waiting in an idle state for input:

0pQ 0Opr OrFHorLD OED OSR 0O [:Hold.

Other times when the interpreter might execute code in other threads are: while waiting for input from the
OSE session, while waiting for a 0N 4 function call to finish, while waiting for an AP function to finish or
while waiting for an OLE function to terminate. Thread interjection can be controlled with : Ho 1d.

§§ 13.3.2 External Threads with v 4

Normally a O~ 4 call runs in the same C-thread as APL itself. In order to make the call run entirely in the
background it must be run in a separate C-thread. This can be done by placing an & after the name of the
function in the O~ 4 definition and when calling the external function, so defined, through the spawn
operator.

Consider the four different ways of running the external function, sleep.

1. Calling S Ieep in the normal way, for, say, 10 seconds (=10,000 milliseconds), causes the APL session
to completely cease responding for the duration:
ONA'kernel32|Sleep I4' o Sleep 10000 o EVERYTHING FREEZES

2. Calling s Ieep in a separate APL thread the normal way through the spawn operator, for, say, 10
seconds, also causes the APL session to stop responding for the duration and does not continue processing
code until the 10 seconds has elapsed:

ONA'kernel32|Sleep Iu4' o Sleep&10000 o EVERYTHING FREEZES

3. Calling s Ieep, having defined it in the O~ 4 with a trailing &, causes the APL session to be partially
active but again all further processing of APL code is frozen until the 10 seconds has elapsed:
(UNA'kernel32|Sleep& Iu' o Sleep 10000 a SOME MENUS ACTIVE

4. Calling S Ieep through the spawn operator, having defined it in O~ 4 with a trailing &, causes the APL
session to actively respond and further processing of APL code is enabled immediately:
(ONA'kernel32|Sleep& Iu4' o SIeep&10000 o ALL SESSION ACTIVE

It is not possible to thread the (D@ function directly.
0DQ& 'MSG'OWC'MsgBox'

DOMAIN ERROR

This is because (D@ can only be run on objects in the same thread. It can, however, be run under cover.
OFX'msg w' 'ODQ''MSG''OWC''MsgBox!'!''
msgé&1l

133.21Repeat this with a 7orm and note that APL is free to continue processing in the parent thread after the
Form has been 0DQ'ed in a separate thread.

125

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet Q

In the special case of a ¥sgBox object, and of other modal dialogue boxes suchasa Fi leBox, all
processing in other APL threads is suspended until the message box has been dismissed.

13322Define a message box external function vmbx 1 v in the normal manner, and a second function
vmbx 2 v that will run in a separate C thread.
"mbx1'[ONA'I user32|MessageBoxA I <0T <O0T I'
"mbx2'[ONA'I user32|MessageBoxA& I <0T <0T I'
Call the functions in the four different ways; for example,
mbx1 0 'call unthreaded' 'NA unthreaded' 1
and note the different responses. In particular note that this enables the special case of a message box to run
in a separate C-thread and free other APL-threads to continue processing.

One significant advantage of multi-threaded DLL calls that are run in separate C threads is the fact that they,
unlike APL threads, can take advantage of multiple processors, if the operating system allows it.

Once a C-thread has been started it is maintained in the APL-thread for subsequent use in that thread and is
discarded only when the APL thread finishes. [Jn 4 calls that are to be run concurrently in separate APL-
threads should be ‘thread-safe’. Note that standard Windows API functions are thread safe.

On 4 calls that interact with Dyalog GUI objects should generally be run in the same C-thread and therefore
should not be multi-threaded.

§§ 13.3.3 Threading callback Functions

All GUI objects are owned by the thread that created them. The Root object (#) and the Session objects
(OSE) are owned by the Base thread (0). If a thread is terminated then any objects that it owns become
owned by the parent thread.

All the events generated by an object are reported to the thread that owns the object and cannot be detected
by any other threads. The only exception to this rule relates to events associated with TCPSoc ket objects.
Because of the danger of losing TCP events, which should be processed immediately, events from
TCPSockets can be seen in every thread.

There is a special syntax associated with threading callback functions of GUI objects. Ampersand (&) is
simply appended to the name of the callback function when it is assigned to the object’s Event property, in
an analogous fashion to the mechanism used in threading [~ 4 calls. This syntax applies equally to niladic
callback functions.

13331Consider a Form with a niladic callback vdrawv that draws a Po 1y line on each MouseMove event.
The Form may be created by

w<«'Form'('Coord' 'Pixel')('BCol'" 0 0 0)

w,<('Size' 200 200)('Event' 'MouseMove' 'draw')

"FYOWC w
where the callback function is defined as

V draw;y1;x1;y2:;x2 a line, lenght 10, random angle
(1] ODL 0.1 n waste some time
[2] y1 x1«22p200 a random line origin
[3] x2«(221)-11 A 10 < x <10
(4] y2<«((10%2)-x2%x2)*0.5 a since r’=x’+y’ for a circle
(5] y2 x2+<«yl x1 a add random origin
(6] '"F.'OWC'Poly'('Points'(2 2pyl x1 y2 x2))('FCol'(?23p255))V

Q Module13: APL Threads Q

ROBERTSON

Using the mouse, drag your sprite over the Form and, at the same time, type in the session at the cursor

position. Note the response. Now define the Form with
'"F'OWS'Event' 'MouseMove' 'draw&'

Apply the same procedure again, perhaps with the
Threads tool open. Notice the difference in both
the drawing rate and the responsiveness of the
Session.

Callback functions may be processed by the default Session dequeue mechanism as invoked above.
Alternatively, callback functions may be processed explicitly using 0pQ. 0ODQ ' . * will process events from
any active visible object owned by the current thread or created by callbacks from these objects.

13332Give vdrawv a Rarg. This can be useful for identifying the owner of an event when tracing. Trace

DDQ VR
via Ctrl+Enter. Move the sprite cautiously into the 7orm. Trace through some of the resulting threads in

the Debugger.

 poll - Dyalog APLIW
File Edit Wiew Windows Session Log Action Options Tools Threads Help

ws @O0 & ot B B8 VE 1ol Q g% bR CEd B2

Jreset »

oog'F*
w
Debugger =la|x|
21: Tid|22: Tid| 23: Tid| 24: Tid|| 25: Tid|26: Tid| 27: Tid |zg ¢ *
ST D P P ZEXNE drawl11=00L 0.1 v

lenght 10, random angle
some time
ndom line origin

draw migl:=l;uZ

5] =i

Aoadd to) or _

L ul =1
Funckion Lask saved by TMPES13: 16 March 2006 15:21 Pos: 1,0
. Ready... Ins | HO | MUM

- Curbbj: test (Functi &:26 Obg:=0 OTRAP | O1:1 OI0:1 OHL:=:O

A thread may use [JVQ to post an event to an object owned by another thread. Any valid Larg except 1
(process immediately) may be used with ONQ&.

127

K

ot Day2: Fourth Generation Dyalog APL - The Internet

13333Drag the Session (or any other window) over the Form F to clear the contents (because we used
unnamed Po 1y objects which are not refreshed). Enqueue the following events (from a separate thread)
and note the effects.

UNQ&'F' 'MouseMove' (2200)(7200) 0 O

OJNQ&'F' 'MouseMove' (7200)(72200) 0 O

2[0NQ&'F' 'MouseMove' (7200)(7200) 0 O

10NQ&'F' 'MouseMove' (7200)(72200) 0 O
DOMAIN ERROR

F.MouseMove&(72p200),0 O
Identify the fundamental difference between the last two expressions.

For further information on multi-threading in Dyalog APL, see the Language Reference, Relnotes.hlp for
versions 8.2 and 10.1 and www.dyalog.com [Products][Version 10.1].

13334please ask for the next module on TCP/IP Sockets

http://www.dyalog.com/

& |

ROBERTSON ROBERTSON

Module14: TCP/IP Sockets

§ 141 The TCPSocket Object
§§ 14.1.1 IP Addresses and Ports

An Internet Protocol (IP) address uniquely identifies a specific network card on a specific computer.
Associated with an IP address are one or more ports. Communication between computers requires
specification of the IP address and port number of both ends of the connection.

1411170 discover the IP address that has been assigned to your computer network card, enter
#.TCPGetHostID
(Remember [Options][Object Syntax][Expose Root Properties] should be checked.)

A (32-bit) IP address is written as 4 numbers between 0 and 1+2*8 . 255, separated by dots. For
example, 216.239.39.99 is one of the IP addresses of Google.com.

IP addresses beginning 10. or 172. or 192. are internally assigned within an intranet and are not reachable
from outside your local area network. 127.0.0.1 is the standard IP address used for a loopback network
connection. If you try to connect to 127.0.0.1, you are immediately looped back to your own machine.

A (16-bit) port number can be anything between 1 and 1+2*16 . 65535. Internet traffic generally uses

port number 80. FTP (File Transfer Protocol) conventionally uses port 21. SMTP (Simple Mail Transfer
Protocol) conventionally uses port 25.

§§14.1.2 SocketType and Sty 1e Properties

TCP/IP stands for Transmission Control Protocol/Internet Protocol. It is a fundamental part of the standard
protocol for communications on the Internet.

Dyalog APL provides an object called a TCPSoc ket that enables access to TCP/IP communications by
way of the API functions in C:\WINDOWS\system32\winsock.dll.

There are two types of TCP/IP connections, both of which are supported by the TcPSocket object. A
UDP (User Datagram Protocol) socket is like a postal service. A single small package is sent to an address.
Packages may arrive in any order, and sometimes might not arrive at all!

The second more common type of connection is a stream socket, which is like a telephone service.
Someone initiates a call. Once a connection is established, both parties have equal status and either party
can terminate the call at any stage. Packets are received in the order in which they are transmitted. They
are guaranteed to arrive - with automatic error correction.

The equivalent of waiting for a telephone call is creating a listening socket. The minimum information
required to create a listening socket is the local port number that is to be used for communications, and the
name of the new APL object.

'SO'UWC'TCPSocket' ('LocalPort' 123)
The default socket type is stream, the alternative being UDP,

S0.SocketType v Stream
(Remember to make sure that |50 . [OwX.)
The current state of the socket is 'Listening'
S0.CurrentState v Listening

129

& &

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

The default Sty 1e specifies that character data will be transmitted. This is the standard Sty Ie for Internet
traffic.

S0.Style v Char
Alternative Sty Ies are Raw and APL. 'Raw' communication is via integer vectors between 128 and 255
(negative numbers, such as 50, are added to 256 and sent as, in this example, 256-50=206, making the
range effectively 0 to 255). Sty le 'APL' communicates via arbitrary APL arrays. The latter is only
suitable for communication between two APL workspaces.

§§ 14.1.3 Workspace to Workspace Communications

In the first instance, we are going to create a listening socket in a workspace on our computer by running the
following function, where function vshowv is just JFX'show Msg' 'Msg' (not show<«{w}).
Vv listen;w

[1] w<c'Type' 'TCPSocket'
(2] w,<c'LocalPort' 123
[3] w,«c'Style' "APL'
(4] w,<c'Event' 'All' 'show!'
[5] 'So'OWC w

v

The Create Event displays immediately, via vs howv, the message
S0 Create 1
The TCPSocket object has been assigned a socket number
S0.SocketNumber - 696
which is the Windows handle of the socket. The current state is 'Listening’. The intended final state is
‘Server'
S0. TargetState b Server
as opposed to possible states 'Client’ or 'Closed’ for a stream socket. Setting the target state to 'Closed' is the
approved method of closing a socket because then APL waits until all data has been sent before issuing a
TCPClose Event.
S0 . TargetState<'Closed'
S0 TCPClose

Next we start a new instance of Dyalog APL and use the function below to create a TCPSoc ket that will
connect to a listening socket on port 123. Again, function vshowv is just JFX ' show Msg' 'Msg'.
V connect;w

(1] w<«c'Type' 'TCPSocket'
[2] w,<«c'RemoteAddr' '127.0.0.1"
[3] w,<c'RemotePort' 123
(4] w,«c'Style' 'APL'
[5] w,<c'Event' 'All' 'show'
[6] 'S1'0OwC w
v

The minimum information required to create a connecting socket, apart from its arbitrary APL name, is the
remote address and the remote port number, which must be set to the number of the listening socket’s local
port. When RemoteAddr and RemotePort properties match the IP address and port number of any
listening socket, the client and server sockets connect. In this simple case we use our own IP address (found
from #.TCPGetHost ID) or, equivalently, the standard loopback address 127.0.0.1 .

iQ Module14: TCP/IP Sockets Q

OBERTSON ORERTSON

1131Run v1istenv in one workspace and vconnec tv in another. After the initial create event in the
listening workspace, you should get a Create event in the connecting workspace, and simultaneously, a
TCPAccept eventin the listening workspace. Check that the TCPAccept event is immediately followed
by a TCPConnect eventin the connecting workspaces followed by a TCPrReady event in both
workspaces.

The sockets, both of sty 1e APL, are now connected through port number 123 (on the listening side). As
with a telephone, once the connection has been established, the communication is peer-to-peer and neither
party monopolises the connection communication resources.

Either party can send arbitrary APL arrays, including arrays that contain J0OR’s of namespaces, to the other
in a single atomic operation using the T¢c PSend method. For example, the ‘connecting' workspace can send
matrix (3 3p19) to the 'listening’ workspace by
2 ONQ'S1' 'TCPSend' (3 3p19)
which is reported in the 'listening' workspace through the TCPRecv Event as
S0 TCPRecv 1 2 3 127.0.0.1 1568 19313036
4 5 6
7 8 9

Or the 'listening’ workspace can send vector [J4 to the ‘connecting' workspace by
2 ONQ'S0' 'TCPSend' 04
which is reported in the 'connecting’ workspace through the TCPRrRecv event as
S1 TCPRecv ABCDEFGHIJKLMNOPQRSTUVWXYZ 127.0.0.1 123 1927140

Erasing the socket object on either side (eg S1) closes the connection and removes the partner object (50).

1132Change the last linein vIistenv and vconnectv to

'S...'OWC w o 0ODQ'S..."
By running { 1 isten}&1 in one workspace and { connect } &1 in the other, show that TCP messages are
received independently of which thread owns the socket. This is intentional as otherwise, if messages are
not processed immediately, there is a chance that they might get lost.

Ifyoutrytorunviistenv and vconnectv in the same workspace but in different threads then you will
get error number 10061 reported by the Tc PError event. The interpretation of such error codes is to be
found in many places on the Internet, eg_http://www.sockets.com/err_Ist1.htm. In this case the connection
has been refused because there is a conflict over multiple port allocations for a single process.

14133\\rite a callback on the TcPRecv event in both workspaces that will execute a linear APL expression

being sent by the other party.
Hint: Include a line like ¢ (3-Msg)~0AV[6 9 10]

The distributed workspace REXEC.DWS, described in the Interface Guide, furnishes a more sophisticated
example of remote execution by a web server.

131

http://frontier.userland.com/stories/storyReader$173

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet o

§ 14.2 A simple character Socket
§§ 14.2.1 Connecting to a server Socket with TCPConnect

14211Create a simple character listening socket in the first workspace, which we shall call the server.
'SO'UWC'TCPSocket!' ('LocalPort' 123)
In a separate workspace, create another character socket, the client, which will connect to the server socket
w<'TCPSocket'('RemoteAddr' '127.0.0.1')('RemotePort' 123)
'S1'0WC w ¢ S1.onTCPConnect<'show'
#.5S1 TCPConnect
Note the immediate response of the TCPConnect event as soon as the two sockets connect. When a
connection succeeds, the CurrentState of the client TCPSoc ket object changes from 'Open’ to
'‘Connected’ and it generates a TCPConnect event.

As you can verify, it is important that the TCPConnect event is active as soon as the socket is created. If
the Event is set on the line after the 0w C then the response from the server can easily be lost through sloth
of the client or zeal of the server.

§§ 14.2.2 Sending to the server Socket using TCPSend

We may use the connect event on the client to immediately send a request to the server socket. In order to
see the request we set a callback on the server TC PRecv event.
S0.onTCPRecv<'show'

Onthe TcpPCconnect eventin the client we put the callback function

V conn Msg
(1] 2 ONQ(>Msg)'TCPSend' 'file1l'

v
This will send the character string ' i Ie1 ' to the server as soon as the connection is achieved. So the
server begins with

'SO'OWC'TCPSocket' ('LocalPort' 123)

S0.onTCPRecv<'show'
And some time later the client runs

w<'TCPSocket'('RemoteAddr' '127.0.0.1'")('RemotePort' 123)

'S1'OWC w ¢ S1.onTCPConnect<'conn'

As soon as S1 is created, the server gets the message below, where 1323 is the remote port number.
#.S0 TCPRecv filei 127.0.0.1 1323

§§ 14.2.3 Receiving from the server Socket with TCPRecv

Having received this message from a client, the server can respond to it by, for example, sending back to the
client the contents of filel.

First we create some native files containing ‘valuable’ information for the client:
'"file1'ONCREATE 1 o 'this is file 1...'UNAPPEND ~1 ¢ [NUNTIE 1
'"file2'ONCREATE 1 o 'THIS IS FILE 2...'UNAPPEND ~1 o [NUNTIE ~1

iQ Module14: TCP/IP Sockets Q

OBERTSON

Then we replace the T¢c PRec v callback on the server with function
V recv Msg;t;d

(1] :If 'filel1'=3>Msg n did they ask for fileil?
[2] t<'file1'ONTIE O p tie filel
(3] :Elsenlf 'file2'=3oMsg a did they ask for file2? etc...
[u] t<'file2'ONTIE O A tie file2
(5] :End
(6] d<[ONREAD t 82(0ONSIZE ~1)0 o UNUNTIE t n read the file
[7] 2 ONQ(>Msg)'TCPSend'd an send the contents
\Y

One further consideration before this will work is: “What will the client do with the requested information
sent from the server?” We need at least a basic callback on the client TCPrRecv event.

So now the server runs:
'SO'WC'TCPSocket'('LocalPort' 123)
S0.onTCPRecv<«'recv'
And the client runs:
w<'TCPSocket'('RemoteAddr' '127.0.0.1'")('RemotePort' 123)
'S1'OWC w ¢ Si1.onTCPConnect<'conn' ¢ Si1.onTCPRecv<'show'
On running this last line, the immediate response from the receive event is:
#.S1 TCPRecv this is file 1... 127.0.0.1 123

Note that the receive event must be set in the 0w, or at least on the same line as the 0w, in order to ensure
that the incoming message is not lost.

14231sing the appropriate remote address, the remote TCPGet Host ID, repeat the above example using
two separate computers rather than two workspaces on the same computer.

§ 14.3 Some Complications
§§ 14.3.1 HTTP and HTML

The above trivial example of a character TcPSoc ket connection affords a very simple model of how the
Internet is generally used at the socket level. Remote servers wait in a listening state for a call. A browser
connects to some server and immediately sends a request for a file — the home page say. The server receives
the request and sends the file contents, which the browser then presents on the screen. The server then
closes the connection.

Details concerning exactly how the incoming information is formatted on the client screen are solved by
way of HTML plain ASCII text. Server files do not contain arbitrary text strings, but rather text specified in
HyperText Markup Language. This embodies a method of incorporating format information into plain text.
Browsers such as Microsoft Internet Explorer, Netscape Navigator and Mozilla Firefox all recognise this
format and present text thus expressed in a uniform, precise and detailed fashion for all surfers to see.

HTML is constantly developing and the language is described in many places, for example in
http://www.w3.0rg/TR/xhtml1/. Each page presented on a browser may be viewed in its (approximate)
original HTML form by selecting menu item [View][Source] in the browser.

Not only does an Internet browser expect HTML text, all the information sent between browser (client) and
server must conform to a special transmission protocol, as the title TCP/IP - Transmission Control Protocol
/ Internet Protocol — would suggest. Requests and responses between browsers and servers are wrapped in

133

http://www.w3.org/TR/xhtml1/

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet Q

Hypertext Transfer Protocol (HTTP). The authoritative guide to HTTP is in the Request For Comments
RFC2616, found, for example, at http://www.w3.org/Protocols/rfc2616/rfc2616.txt.

§§ 14.3.2 Buffering received Data

Data sent using 7C PSend may be automatically split into packets and sent sequentially. Similarly, data
received from a server may come in packets. It is therefore necessary to implement a mechanism in
TCPRecv that will reconstitute an entire message. The simplest way to do this is simply to catenate
incoming data in the TCPRecv callback until a TCPC Iose event is encountered (because the server closed
the connection) at which point the incoming data is assumed to be complete and is saved appropriately.

More specifically, HTTP defines the sequence carriage return, linefeed (CRLF) to be the end-of-line
marker. So command lines end with CRLF (ie DAV [4 31). Further, at the end of the message HTTP
requires an empty line followed by CRLF. Therefore the receive callback looks for CRLF CRLF at which
point it knows that the end of the entire message has been reached.

§§ 14.3.3 Servicing multiple Connections

143311 your server workspace, write a function v 1 istenv which sends a reply as soon as a message is
received from a client.

v listen;w

[1] w<,c'Type' 'TCPSocket'
[2] w,<c'LocalPort' 123
(3] w,<«c'Event' 'TCPRecv' 'recvByServer'
(4] 'SO'OWC w
v

where the callback on the receive event is
V recvByServer Msg

(1] 0<«3oMsg
(2] 2 ONQ(>Msg)'TCPSend' 'Server says, "Goodbye Client!"'
[3] (¢oMsg) .TargetState<«'Closed'

\%

In the client workspace, write a function vconnect v which creates a connection socket and immediately
sends a message.

V connect;w

[1] w<,c'Type' 'TCPSocket'
[2] w,<«c'RemotePort' 123
[3] w,<«c'RemoteAddr' '127.0.0.1"
(4] w,<«c'Event' 'TCPConnect' 'conn'
[5] w,<«c'Event' 'TCPRecv' 'recvByClient'
(6] 'S1'OwC w
v

where the connect callback is
V conn Msg

[1] 2 ONQ(>Msg)'TCPSend' 'Client says, "Hello Server!"'
Y

and the receive callback is
V recvByClient Msg

(1] «3>Msg =~ display message from server

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

iQ Module14: TCP/IP Sockets Q

OBERTSON ORERTSON

Runviistenv and vconnectv. Note that the messages did get through, but that at the end of the brief
conversation all sockets have disappeared. Therefore no further communication is possible until the server
creates a new listening socket.

On sending its reply to a request from a client, a server generally sets its TargetStateto 'Closed'.
This closes the server socket and terminates the connection. At this point the connection is closed and
further requests from the client must open a new connection. This means that the server should have a new
listening socket available immediately in order to be ready for the next request.

In order to deal with this situation, TCPSoc ke ts have a special mechanism to create a new listening socket
as soon as a connection has been made to the current listening socket.

The TCPConnect event triggers in the client when the server attempts to connect to the client. The
TCPAccept event triggers in the server when the client actually connects to the server. This event
includes the socket handle in the callback message, and at this point the server has the opportunity to clone
the listening socket. Inthe TcPAccept callback it is possible to create a new socket which is a clone of
the current socket by setting the Soc ket Number property of the new socket to the socket number reported
in the callback. The only other properties that may be set here are the Event and Dat a properties. This
new socket then becomes a new listening socket, thus maintaining the server’s ability to serve.

143320dd a new line in the v 1 istenv function:
w,«c'Event' 'TCPAccept' 'acc'
where the vaccv callback is
V acc Msg;w

(1] w<,c'Type' 'TCPSocket'
(2] w,<c'SocketNumber' (3>Msg)
(3] w,«c'Event'(e>Msg) .Event
(4] aw,<c'Data' (e¢>Msg).Data
[5] ('S'",31+214o5Msg)WC w

\%

Runvlistenvand vconnectv again. Each time a client connects, the callback on TCPAccept clones
the original listening socket with a sequence of new TCPSoc ket objects using the name S1, S2,... The
server workspace always has a listening socket available and therefore vconnect v may be run again and
again...

14333\Why doesn't connectoconnect work? Fix it by changing the line that creates the client socket:
[6] ('S',5COUNT«COUNT+1)OWC w
where COUNT is a suitably initialised global variable.

Details regarding the TCPSoc ket object and its properties and methods are to be found in the Object
Reference and in the Dyalog 7.3 or 8.1 release notes. Detailed examples of its use can be found in the
Interface Guide, www.dyalog.com [Products][Dyalog for Windows][TCP/IP Support], APL97.RTF
available from www.dyalog.com and the example workspaces in ..\samples\tcpip\ .

143.34p|ease ask for the next module on Web Servers.

135

http://www.dyalog.com/
http://www.dyalog.com/

R R

OBERTSON ROBERTSON

Module15: APL Web Servers

§ 15.1 Making a simple Server

It is possible to use TCPSockets on your computer to host a web server that will be accessible by
everyone on your network. A good example, trivialised below, is to be found in the supplied workspace
..\Samples\tcpip\www.dws, namespace # . SERVER, and is described in detail in the Interface Guide. A
more robust example of a web server is to be found in the distributed workspace ..\aplserve\server.dws
and associated files.

§§ 15.1.1 Creating a listening Socket

1>L1n a clear WS, create a socket on Zoca lPort 80, the default for simple web servers:
'SO'OWC'TCPSocket' ('LocalPort' 80)

Check thatit's CurrentStateis 'Listening'. Now open your Internet Explorer and type

http://127.0.0.1 in the address bar and hit Enter. Check that the CurrentState is now

"Connected'. (You might have to use a different experimental port if 80 has been barred.)

Had we created a socket on a different port, say 2020, typing http://127.0.0.1:2020 into the address bar
we would have established a connection to this port, but :80 is the assumed default. (Different ports relate
to different services. The IP address-plus-port combination uniquely identifies a web site.)

The socket connection is not much use as it stands. IE and our server remain connected indefinitely but the
connection does nothing useful. If you go to the IE address bar and hit Enter again then an error box pops
up in APL. It tells us that we did not get the communication protocol right. This is not surprising as our
server socket did not acknowledge in any way the explorer who made the link.

Dyalog APl Fatal Socket Error EI

#.50
error code = 10053
socket operation = FO_CLOSE

The CurrentState of Soisnow 'Closed' and the socket soon disappears.

Placing a callback function with result o on the TC PError event, or setting the Event action code to "1,
will stop these popup error boxes from appearing.

11121 a clear WS, create a socket on LocalPort 80, and setall Zventsto vshowv.
OFX'show Msg' 'Msg'
'SOo'OWC'TCPSocket' ('LocalPort' 80)('Event' 'All' 'show!')
The create Event callback (s how) should respond immediately with the message
S0 Create 1
Now repeat the above experiment by entering http://127.0.0.1 into your Internet Explorer.

Inside IE, the browser creates a socket using as the remote address the IP address specified in its address
bar. It then gets a connect event and immediately sends an HTTP request to our server.

The subsequent events from the APL host server's point of view occur as follows. First the TCPAccept

event triggers and reports the socket number (handle) of the original socket we created (eg 27 2).
S0 TCPAccept 272

136

iQ Module15: APL Web Servers Q

OBERTSON ROBERTSON

The original so has actually been replaced by a new socket so that has taken on the responsibility of
connecting to the client browser that requested the connection. The original listening socket, now nameless,
continues to exist, at least until any callback on the TcPAccept event has finished processing.

The TCP4ccept eventis followed by a TCPReady event and then by a TCPRecv event. This last event,
the TCPRecv event, triggers on receipt of some data from IE. The event message contains the received
data concatenated with the IP address and port number of the network source of the data (the address and
port of the client — our IE browser socket). The actual data received from IE, which prints out in the session
as a consequence of the vshowv callback, looks something like:

GET/HTTP/1.1

Accept: */*

Accept-Language: en-gb

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: 127.0.0.1

Connection: Keep-Alive

This message is composed in HTTP protocol and says something like "Hello Host, please send me your
home page. | understand all sorts of stuff if you talk HTTP/1.1 language. I'll keep the line open until | hear
from you. Over." (Over is CRLF CRLF.)

Details of the precise meaning of the message may be extracted from the official World-Wide Web
specification of the HTTP/1.1 protocol - in http://www.w3.org/Protocols/rfc2616/rfc2616.txt.

The first and most important line is made up of a request type, a request document URI (Uniform Resource
Identifier) and a protocol, all separated by a single space:

GET / HTTP/1.1

The network location of the URI is also transmitted in a Host header field.

The above is a GET request, for the domain root index file (/ followed by a space or just a space) in protocol
HTTP/1.1. RFC2616 says,

"The GET method means retrieve whatever information (in the form of an
entity) is identified by the Request-URI. If the Request-URI refers

to a data-producing process, it is the produced data which shall be
returned as the entity in the response and not the source text of the
process, unless that text happens to be the output of the process."

All we need to understand so far is that GET may be followed (after a space) by the name of a file on the
server whose hypertext content is to be returned (inside a valid HTTP message) to the client, and if no file is
specified, but only a /, then this implies that the file to be returned is the site home page.

Setting the TargetState of Soto 'Closed' will close the connection gracefully and erase the socket.

§§ 15.1.2 Cloning a listening Socket on TCPAccept

One important job an APL server has to do on the TCPAccept eventis to clone the listening socket so that
someone else can establish a connection (even while the first is still connected). This is done by creating a
socket inthe TcPAccept callback with the same Soc ket Number as the original listening socket.

151211 a clear WS, create a socket on ZocalPort 80 (Of LocalPortName http), with a callback on the
TCPAccept eventand a global variable counT, set to zero:

'So'OwC'TCPSocket'('LocalPort' 80)('Event' 'TCPAccept' 'acc')
inwhich vaccv is

137

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

Q Day2: Fourth Generation Dyalog APL - The Internet Q

V acc Msg;w @ PERFORM WHEN ACCEPT CONNECTION TO CLIENT
(1] COUNT+<1 a Increment COUNT on each accept.
(2] w<,c'Type' 'TCPSocket' n create a socket,
(3] w,<c'SocketNumber' (3>Msg) n with the handle of the original,
(4] w,<c'Event'((>Msg)UWG'Event')a with all the events as before.
(5] ('S',sCOUNT)OWC w n create with next name.

v

After connecting from IE, check (S0 S1).CurrentState v 'Connected' 'Listening'
Setthe TargetState of Soto 'Closed' and repeat the request from IE. After connecting from IE,
checkthat (S1 S2).CurrentState v 'Connected' 'Listening'

Note the encouraging message in the IE status bar saying "Opening page http://127.0.0.1/...".

§§ 15.1.3 Sending an HTML File on TCPRecv
The simple general pattern of events in a working server is this:

1. Wait for a request to connect from a web browser <
2. Connect and clone listener in preparation for another request

3. Send the information requested by the browser, eg the home page
4. Close the connected socket
5. REPEAT AS REQUIRED

A TCcPRecv callback implements items 3 and 4. In the simplest scenario, all the receive function has to do
is read the web site home page, send it back to the server and close the connection.
vV rec Msg;t;d a PERFORM WHEN RECEIVE MESSAGE FROM CLIENT

(1] t<'C:\homepage\index.htm'ONTIE 0O

(2] d<0ONREAD t 82,2+40NSIZE t a read

[3] ONUNTIE ¢t

(4] 2 ONQ(>Msg)'TCPSend'd a send

(5] (oMsg)WS'TargetState' 'Closed' a close
\Y

A trivial home page in the file C:\homepage\index.htm, written in HTML so that IE can present it nicely,
could be just one simple line:

I index.htm - Notepad |Z||E|[z|
File Edit Format Wiew Help

khtmL}ﬁdey}{hl}HeLLO AFL Wor Ld!'</hi1x< body></html>

1>131F rase all sockets and restart IE. Create a new socket with T¢PAccept and TCPRecv callbacks:
COUNT<0
'SO'OWC'TCPSocket' ('LocalPort' 80)a('LocalAddrName' 'LocalHost')
'SO'OWS('Event'('TCPAccept' 'acc')('TCPRecv' 'rec'))

With line [1] of vrecv pointing to a suitable root file, such as index.htm above, use IE to navigate to

your web site. IE should then display the intended page.

Q Module15: APL Web Servers Q

A http:/1127.0.0.1/ - Microsoft ... [= |[B][X]
File Edit ‘Wiew Favorites Tools Help ;,,'

»

Links **

Hello APL World!

:Ej Done ® Internst

Note that in order to run/trace this repeatedly it might be necessary to close IE between connections as IE
remembers (caches), and doesn't deem it necessary to request again, a static page before displaying it.

§ 15.2 Making a realistic Server

Of course a real web page would be expected to have more on it than just 'Hello...'. Not only that, a real
web designer would aspire to having more than one page on his web site. This and much more is possible
using hypertext HTML. See a beginner's guide at http://www.put.com/HTMLPrimer.html.

The HTML in the main web site file (traditionally called index.htm - the one that is loaded if nothing
special is requested), can tell a client browser about any other HTML files and pictures to be found on the
web site host that are required in order to construct the complete home page. The browser opens another
connection to the web site and requests that file next. If that file points to others which are required to
complete the page being displayed then the browser will open another connection and ask for that file, and
so on .. until the entire page has been built on the screen.

Also embedded in HTML may be links to other files on the web site that define (through a number of sub-
files) other complete pages. The links can be defined such that one click from a user can send the browser
off to request all the required files and then construct the page even while more pieces are being delivered
from the web site host server. The links can equally refer to pages (or, by default, the main page) of any
other web site on the network by including the IP address of the site in question inside the HTML.

Thus, for example, the server in the distributed workspace ..\server\tcpip\www.dws refers to a homepage
to be built from ..\samples\tcpip\homepage\index.htm. This homepage file, shown below, includes links
to other files such as that in:

<frame src="home.htm" name="overview">

The HTML in home.htm includes calls to other files that call yet more files - all required in order to build
the home page.

139

http://www.put.com/HTMLPrimer.html

somrmr Day2: Fourth Generation Dyalog APL - The Internet Q

B index. htm - Notepad g@g

Fle Edt Format View Help
<!DOCTYPE HTML PUELIC Y-//IETF//DTD HTML//ENV> e

<html>

<heoad>

<meta http-equiv=Content-Type"

content="text/html; charset=iso-asse-1">

<metd nome=Y"GENERATOR" content="Microsoft FrontPoge z.0%>

<titleDyalog APL</title>

<meta nome=YKEYWORDSY

content="APL, Dyalog APL, Progromming Longuoges, Array Processing, Arrdy, Arrays>
<smeta name=Y

descripticn’ content="The Dyalcg APL Home Fags">

</head>

<fromeset rows="40, %V

<frame src="navigate.htm’ nome="navigate' morginwidth="1"

marginheight="1" scrolling="no" noresize>

<frame src="home.htm” nome=Yoverview'>

<nofromes>

<pody>

<pr<!--webbot bot='PurplaTaxt!

preview="The froameset on this page can be edited with the FrontPage Frames Wizard; use the Open or Open With option from the
FrontPoage Explorer's edit menu. This poge must be sdaved to o web before you can edit it with the Frames Wizard. Browsers thot don't
support frames will display the contents of this poge, without these instructions. Use the Frames Wizard to specify an alternote
page for browsers without fromes.V

s—viewdble=" Y --»> </p>

<p>This web poge uses fromes, but your browser doesn't

support them.</p>

</body>

</noframes>
</ frameset>
<Ahtml>

Calls to pages other than the site home page are to be found in navigate.htm. When the area in the
specified rectangle is clicked, the browser will take the user to the URL (Uniform Resource Locator)

specified by the HREF (Hypertext Reference) value.

<AREA SHAPE="RECT" COORDS="338, 6, 392, 27" HREF="support.htm">

The requested resource in HREF may be anywhere on the network:

<AREA SHAPE="RECT" COORDS="460, 6, 537, 27" HREF="http://195.212.12.1:8081/frserve.htm">

Developing web sites in raw HTML can be an onerous task. However, numerous WY SIWYG applications
have been developed to write HTML for you. This makes it much easier to create complex web sites with
many pages, each containing text, graphics and other controls. Microsoft FrontPage, Macromedia
Dreamweaver or even Microsoft Word 9.0, are some of the many applications that you may use to design
and alter WYSIWIG pages of your web site.

§§ 15.2.1 Threading multiple Connections

A web server is usually intended to be able to host a service to a number of clients simultaneously. So far
we have enabled this by ensuring that a new listening socket is always present. However, a new client
cannot connect to a new socket or expect a reply until processing for previous clients has finished. Creating
each new listening socket in a separate APL thread can dissipate this potential queue and thus make the
service more responsive to multiple simultaneous connections.

1>211Change vaccv as below so that new listeners are cloned in a separate thread. Use the unique thread
ID to name the socket and process socket events through 0D@.

V acc Msg;w a PEFRFORM WHEN ACCEPT CONNECTION TO CLIENT
(1] :If 9=[NC-Msg a if socket exists,
(2] clone&Msg n clone in a separate thread.
[3] : End

v
where

v clone Msg;w a CLONE THFE OLD LISTENING SOCKET
[1] w<,c'Type' 'TCPSocket' A create socket,
[2] w,<c'SocketNumber' (3>-Msg) nm with the handle of the original,
[3] w,<c'Event' ((>Msg)UWG'Event')a and with all previous events.
(4] OpQ('sS',sOTID)OWC w A create with unique name.
(5] a a line after a line with a UDQ is helpful for tracing

iQ Module15: APL Web Servers Q

OBERTSON ROBERTSON

Check that your web server still works with this enhancement in place.

A number of other essential features and useful suggestions are to be found in the supplied SERVER
workspace. For example, you are advised to include a callback, even if empty, on the TCPC Iose event to
ensure that a socket does not close prematurely. Also the TCPError event callback returns o to stop
popup error boxes appearing during the transaction process. The callback simply erases any socket causing
anerror. The TCPError event message contains the error details and therefore more error handling could
be done in this callback. To avoid potential problems in development, all sockets should be expunged
before initiating the service.

In preparation for the information expected in the Tc PRecv callback, a variable called BUFFER is
initialised to JAV [4+ 3] (CRLF) in the connected TCPSoc ket namespace. CRLF is the recognised HTTP
command string separator. BUFFER is going to be filled with the HTTP commands from the client browser
that is connected to this socket.

§§ 15.2.2 Communicating through HTTP

If large amounts of data are being sent between stream sockets in a single transaction then the data is
automatically broken into manageable packets and sent one at a time. The HTTP identifier for the end of a
complete set of packets is CRLF CRLF —two empty lines. The possibility of receiving incomplete message
packets is thus incorporated into a robust server by adding lines to the 7c Prec v callback which add
packets to a buffer and look for the end marker CRLF CRLF.

(¢>Msg) .BUFFER,«32Msg
:If JAVIw 3 4 3]# 4+ (e>Msg).BUFFER o if we have not got everything,
:Return n stop and wait for more.
:EndIf

In the simple examples above, a small amount of data was sent so no : Re t urn was necessary, but this is
not guaranteed in a stream socket, although the order of receipt of packets is guaranteed to be the same as
the order of transmission.

When a browser first establishes a connection with our server, the HTTP data shown in section §815.1.1 is
received, terminated with JAv[4 3 4 3]. Our APL server could simply send the requested file or it
could proceed with a challenge to the browser saying that our site has restricted access and requires a user
ID and password to be supplied before entry will be granted. This our server may do by sending the client
an HTTP request for authorization looking something like:

HTTP/1.1 401 Authorization Required
Date: Fri, 24 Mar 2006 13:12:55 GMT
Server: Dyalog APL
WWW-Authenticate: Basic realm="User Area 100"
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Transfer-Encoding: chunked
Content-Type: text/html; charset=iso-8859-1
1c0
<IDOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<HTML>
<HEAD>
<TITLE>401 Authorization Required</TITLE>
</HEAD>
<BODY>
<H1>Authorization Required</H1>
<P>This server could not verify that you are authorized to access the document requested .. </P>
<HR>
<ADDRESS>Dyalog APL 10.0 Server</ADDRESS>
</BODY>
</HTML>
0

141

& &

o Day2: Fourth Generation Dyalog APL - The Internet o

This command tells the browser to prompt the user for an ID and password. The arbitrary words "User Area
100" chosen by the server site programmer are displayed on the password dialog box to indicate the realm
to which access is being offered. An HTML error message is embedded (with a 'parity check' 1c0). This
message is to be displayed by the client in the event that the supplied credentials are insufficient.

Note that in order to specify which version of the HTML standard they conform to, all HTML documents
should start with a document type declaration (informally, a "DOCTYPE"), which makes reference to a
document type definition (DTD). Using the line

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

is adequate for our purpose, and indeed it may be omitted entirely.

When an ID and password have been entered, the two strings, separated by a colon, are encoded and
included in the form of an Authorization field in all further messages sent by the browser to the server. On
this subject, RFC2616 says,

"A user agent that wishes to authenticate itself with a server--

usually, but not necessarily, after receiving a 401 response--does

so by including an Authorization request-header field with the

request. The Authorization field value consists of credentials

containing the authentication information of the user agent for

the realm of the resource being requested."

The server has an opportunity to validate credentials at the head of each GET request before processing the
specific contents of the request URI and sending a response to the client browser. The credentials are sent
in a base-64 encoded string in an Authorization field such as

Authorization: Basic QWxhZGRpbjpvcGVUIHNIc2FtZQ==

The distributed PATCH workspace contains functions for encoding and decoding credentials. For example
(noting the changed translation vector in ONXLATE):

enco'Aladdin:open sesame' & 'QWxhZGRpbjpvcGVUIHNICc2FtZQ

-1

and
deco 'QWxhZGRpbjpvcGVUIHNIc2FtZQ==' & 'Aladdin:open sesame'
where
V strg<«deco code;raws;alph
(1] alph<[A,(26+17+0A4V),0D, "+/"
[2] raw<>{(0DR w)11 ODR w},&(6p2)T(alphicode~"'=")-0I10
[3] strg<«82 [UDR(-8|praw)+yraw

v
This gives a Basic level of security. There is also a higher Digest level of security as described in HTTP
Authentication: Basic and Digest Access Authentication in http://www.ietf.org/rfc/rfc2617.txt.

§§ 15.2.3 Running APL Functions on a Server

So a conversation between IE and a server could proceed as
IE Client: GET / HTTP/1.1...

APL Server: HTTP/1.1 200 OK...

IE Client: GET /images/tennis.gif HTTP/1.1...

IE Client: GET /banners/scoresheet.gif HTTP/1.1...
APL Server: HTTP/1.1 200 OK...

APL Server: HTTP/1.1 200 OK...

But negotiations between clients and servers are not restricted to requesting and supplying static pages.
Often significant background processing is desired. The GET request type can fulfil both roles.

http://www.ietf.org/rfc/rfc2617.txt

f& Module15: APL Web Servers Q

OBERTSON ROBERTSON

If the GET request URI does not contain a question mark then the URI is assumed to be an HTML file
name whose content is to be returned. If, however, the URI does contain a question mark then a browser
recognises this as a query URI that can perform operations with significant side effects.

Such a request URI may be embedded in an HTML page in a hyperlink such as

Sage Driller<\a>

This creates an element that becomes a hyperlink (with an optional 'hover box' title). In the event that a user
clicks on "Sage Driller”, the browser will send

GET driller.RUN? ...

On receipt, the server in ..\aplserve\server.dws interprets this as a request to run a function vRUNvV in a
namespace called dr i I 1er. The function must be defined dyadically and is automatically given a left
argument of the name of the socket involved. The right argument consists of parameters following the ?,
and separated by & if there is more than one parameter in the argument. A number of parameters may be
needed for a particular function, or none at all as in the case of dri 1 ler.RUN. The other primary
requirement of the APL function is that any result is in the form of an HTML string. The browser will
display this HTML automatically on receipt.

Note that this syntax is not APL-specific. For example
Groups
is to be found on the Google front page.

By adding a new namespace with a top-level function adhering to the above syntax, new applications may
be added to the server workspace in a very straightforward and elegant fashion. See, for example, functions
rain.Climate,rain.Fourier Ofr CODEVIEW .FUNCTION.

The POST request type may be used as an alternative way of initiating a function call in the server.

"The POST method is used to request that the origin server accept the
entity enclosed in the request as a new subordinate of the resource
identified by the Request-URTI in the Request-Line."

The POST request type is suitable for calling a function from an HTML form. For example, the loan.htm
file contains the line

<form action="loan.RUN" method="POST" ...

In this case loan. RUN is recognised as a function call when a POST request is received from the client as
a result of the user clicking on the form.

The ..\aplserve\server.dws workspace supports both GET and POST requests. More examples of client-
server negotiations may be found in ..\ws\FTP.dws and ..\ws\PATCH.dws.

A very useful tool for intercepting TCP interactions between a computer and the outside world may be
downloaded free from http://www.westbrooksoftware.com/tsdownload.shtml.

§ 15.3 Internet Practicalities
§§ 15.3.1 Domain Name Servers

Web sites are better known by their names than by their IP addresses. For example, www.dyalog.com is
more memorable than 194.159.243.250. But an IP address in Loca IAddr or RemoteAddr is essentially
equivalent to a domain name in Loca lAddrName Ofr RemoteAddrName.

Either the address or the address name may be used in the specification of a TCPSoc ket property. A name
is converted into the equivalent IP address by a Domain Name Server (DNS) which is always accessible

143

http://www.westbrooksoftware.com/tsdownload.shtml
http://www.dyalog.com/

K

onv Day2: Fourth Generation Dyalog APL - The Internet o

from an ISP via the Winsock APl. A TCPSocket objecthasa T'CPGot Addr event. This event is
triggered when an address name is resolved into an IP address. For example
'SO'OWC'TCPSocket' ('RemoteAddrName' 'www.dyalog.com')+
('"RemotePort' 80)('Event' 'TCPGotAddr' 'show')d
S0 TCPGotAddr
S0.RemoteAddr
194.159.243.250

In Windows XP the DNS may be invoked by the nslookup utility which can be applied to any domain name
to extract the underlying IP address.

e+ C:AWINDOWS\System 3 2\command.com

Microsof t(R> Windows DOS
C(C)Copyright Microsoft Corp 19982881 .

C:xrnslookup www.dyalog.com
Server: dnsprod.lgnet.co.uk
Addresz: 168.14.49_88

Mon—authoritative answer:

Mame = wuw _dyalog.com
Address: 194.15%.243.258

(RN

Port numbers are also often referred to by the service names.

15311Create a socket with Loca 1PortName http and show the event message from 7¢PGot Port. Check
the LocaIPort property when the port name has been resolved.

§§ 15.3.2 Firewalls and proxy Servers

If you are inside the walls of a business, the chances are that you have to go through a firewall every time
you communicate with the outside world via your personal computer. A firewall is a proxy server that
filters and controls the traffic between the company intranet, a trusted zone, and the outside Internet, which
IS not trustworthy and is teeming with parasites. A proxy server is both a client and a server. It acts as a
server for all requests to the outside world from the intranet, and as a client to all Internet servers. It
therefore offers a protective barrier between relative order and relative anarchy.

In this case, a proxy server responds to a request, not with HTTP/1.1 401 Authorization Required.., but with
HTTP/1.1 407 Proxy Authentication Required... With a simple request for an Internet page

GET http://www.google.co.uk/ HTTP/1.0

Accept: */*

Accept-Language: en-gb

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: www.google.co.uk

Proxy-Connection: Keep-Alive

the response of a proxy server may be something like:

Q Module15: APL Web Servers

ROBERTSON

HTTP/1.1 407 Proxy Authentication Required (The ISA Server requires authorization to fulfill the
request. Access to the Web Proxy service is denied.)

Via:1.1 OURPRXY

Proxy-Authenticate: Basic realm="Privileged User Access Area"

Pragma: no-cache

Cache-Control: no-cache

Content-Type: text/html

Content-Length: 2370

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">

<HTML dir=Iltr><HEAD><TITLE>The page cannot be displayed</TITLE>

to which a suitable reply, containing an encoded Proxy-Authorization field, could be

GET http://www.google.co.uk/ HTTP/1.0

Accept: */*

Accept-Language: en-gb

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Host: www.google.co.uk

Proxy-Connection: Keep-Alive

Proxy-Authorization: Basic QWxhZGRpbjpvcGVUIHNIc2FtZQ==

and the proxy server's response, having checked the credentials might be

HTTP/1.1 200 OK

Via: 1.0 OURPRXY

Date: Thu, 30 Mar 2006 07:59:35 GMT
Content-Type: text/html
Cache-Control: private

Server: XYZ/2.2

The command Proxy-Authorization: Basic QWxhZGRpbjpvcGVuIHNIc2FtZQ== must be included in all
further requests to the proxy server from the client.

§§ 15.3.3 An ISP running Dyalog.DLL

In order to have a web server that runs Dyalog APL code and that is accessible through the Internet, it is
clearly necessary to have Dyalog APL running on a computer which is connected to the Internet.

Your Internet Service Provider may be willing, at a price, to run Dyalog APL but this gives you less control

than you would wish, at least during the development phase. Rather than ask your ISP to host your site,
why not host it yourself from an old computer in the ‘demilitarised’ shed outside?

15331pjease ask for the next module on Web Clients.

145

R N

OBERTSON ROBERTSON

Module16: APL Web Clients
§ 16.1 Getting to the outside World

Once you know the IP address of an Internet site, possibly acquired via the nslookup utility, you can check
your connection with the ping utility. This is a very useful computer network testing tool described in
http://en.wikipedia.org/wiki/ping. You may ‘ping’ another computer on your intranet, including your
firewall proxy server, or, if the firewall does not get in the way, you can ping any computer on the Internet.
For example,

C:\> ping 212.58.224.131

will check your connection to www.bbc.co.uk. Another useful network tool, tracert, may be employed to
determine the route taken by a packet from your computer to another address, including your router, your
modem, or the BBC web site:

C:\> tracert 212.58.224.131

§§ 16.1.1 Direct Connection through your Internet Service Provider

You might not want to host a web server. All you might want to do is get information directly from the
Internet, or browse the Internet through a Dyalog APL TCPSoc ket object circumventing IE.

If you are connected directly to the Internet, by broadband or narrowband, wireless or wired, then you can
set the Remot e AddrName of a socket to any domain name on the Internet, RemotePort 80, and you
obtain an immediate connection.

18L111£ you have a direct connection, try connecting a socket with TargetState ‘Open’ to
RemoteAddrName ‘ww.bbc.co.uk’ or to any other domain on the Internet.

§§ 16.1.2 Proxy Servers and Firewalls

If you are connected to the Internet through a proxy server, then the only remote address that you may use is
the address of the proxy itself. The proxy server then passes your request on to the outside world — the
Internet. To discover the IP address of your proxy you can use nslookup on the proxy server name or make
use of RemoteAddrName and TCPGot Addr. The name of the proxy is normally readily available — for
example it is sometimes used for the realm in the login dialog box.

15L211f you connect through a proxy, try to connect a socket to it.

§ 16.2 Asking the Web
§§ 16.2.1 Connecting and sending the Question

1621\ rite a function that returns a CRLF separated list of commands, ending with CRLF CRLF, eg

GET http://www.google.co.uk HTTP/1.1
Host: www.google.co.uk

including a suitably encoded Proxy-Authorization command, if necessary,

Proxy-Authorization: Basic QWxhZGRpbjpvcGVUIHNIC2FtZQ==

16212Create a socket on port 80 with Remot e AddrName ‘www.google.co.uk’, or the name of your proxy

server if you have a firewall. Send the above commands when the TCPConnect event triggers.
Hint; See workspace www.dws, namespace #.BROWSER for guidance.

146

http://en.wikipedia.org/wiki/ping
http://www.bbc.co.uk/

iQ Module16: APL Web Clients Q

OBERTSON

§§ 16.2.2 Receiving and interpreting the Answer

16221 yse google.co.uk in IE to search for [dragons+castles| and notice that the address bar now contains the
string |http://www.google.co.uk/search?hl=en&g=dragons%_2Bcastles&meta=|
Put this string into a direct socket request via:

GET http://www.google.co.uk/search?hl=en&q=dragons%2Bcastles&meta= HTTP/1.1
Host: www.google.co.uk

Capture the return message from 7cPRecv and check that the response begins with HTTP/1.1 200 OK.

16222C0py the HTML text from the received message above and, using Notepad, paste it into a new file
called hoo.htm. Open IE and browse to that file using [File][Open]. Compare the display with the original
Google results page. Note that pictures are sent in raw sockets and therefore must be received in sockets of
Style ‘raw’.

10223pjg out the Last Trade price for the Boeing Company from Yahoo using command line

http://finance.yahoo.com/q?s=BA&d=t ‘

by way of a Dyalog APL stream socket.

16224Get some historical prices from Yahoo using command line

http://chart.yahoo.com/t?a=01&b=01&c=1900&d=05&e=18&f=2001&g=d&s=jdsuy=0&z=jdsu&q=q \

Use the function v At xv in the DFNS.DWS workspace, or any other method, to extract the numbers from
the HTML table.

162255end the following HTTP request, with appropriate Proxy-Authorization: or Authorization: header
field, if necessary

GET http://finance.yahoo.com/bonds/market_summary HTTP/1.0

Host: www.yahoo.com

Proxy-Authorization: Basic QWxhZGRpbjpvcGVUIHNIc2FtZQ==

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.1.4322)
Accept: */*

Accept-Language: en-gb

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/3.0Gold (Win95; I)

and check that the response looks something like:

s+ Finance
File Edit View

HTTP-1.1 200 0K

OUia: 1.1 OURPREY

0Date: Thu, 30 Har 2006 16:22:59 GHT

IContent-Tupe: textshtml

OPAP: policyref="http: »p3Ip.yahoo.com w3c pdp.wml”, CP="CAD DSP COR CUR ADH DEU TALD P3A P30 IUAL IUDL COME TELo OTPLi OUR DELL SAMLI OTRie
l5et-Cookie: PRF=: expires=Sun, 27 HMar 2016 08:22:53 GHMT: path=s: domain=finance.uahoo.com

0Zet-Cookie: B=cbahw8dZZolf3&b=3&s=30; expires=Tue, 02-Jun-2037 20:00:00 GHT; path=r: domain=.yahoo.com

0

0< TDOCTYPE html PUBLIC "-+~H3C-//DTD HTHML 4.01/7EM" "http:/swuw.wld.org/TR/htmldrstrict.dtd">0<html>0<head:0<meta http-equiv="Content-Tup»

< >
Modified Charact... Shape: 24157 (Depth: 1} Pos: 1,17

16228pease ask for the next module on Dyalog.Net

147

| &

ROBERTSON ROBERTSON

Module17: Dyalog.Net

§ 17.1 Revealing the .NET Framework
Vade cum nostris, but be prepared to meet some deeper shades of gray ® .

§§ 17.1.1 Getting Microsoft .NET

The Microsoft .NET Framework is the new low-level platform on which all Windows applications, and,
with the appearance of Windows Vista, even operating systems, are supposed to be built. Once upon a time
Windows was built starting from DOS, the Disk Operating System software backbone of 80's PCs. DOS
itself was probably (see http://museum.sysun.com/museum/cpmhist.html) modified CP/M. CP/M was
originally developed around 1975 for Intel 8080 chips and Zilog Z80 chips on Intel's 8080 emulator under
DEC's TOPS-10 operating system.

BYELISYAIEINES and Zilog Inc. developed Iog APL as a joint venture around 1982 ©. \

By the beginning of the 90's, the Microsoft Windows Application Programmers Interface (API) had
appeared, based essentially on C functions in Dynamic Link Libraries (.DLL files). This was intended to
replace DOS completely as the new basis for application development. Windows and its API slowly
evolved away from DOS. Around the mid 90's, VB/VBA and OLE/COM were introduced as the new
foundations (language cum interface) upon which all user level applications were supposed to be built.
These dreams are still being realised in the big wide IT world of today.

But now the intension is to replace all of these platforms with a new platform, called Microsoft .NET, which
is built ‘over’ the Windows API and is based essentially on libraries of C# functions. Other languages, such
as Dyalog APL, VB.NET, C++, Jscript, COBOL, FORTRAN, Python, RPG, Pascal, SmallTalk, Perl,
Oberon and Eiffel, can also contribute libraries as equal partners of C# because of the common language
specification at the entrance to Microsoft .NET Framework functionality. The .NET base class libraries, or
assemblies, comprising over 30 .DLL files, contain a huge array of functions embedded in classes, grouped
within namespaces by area of application. These functions can all be called through a highly object-
oriented approach by a growing a number of programming languages, including Dyalog APL.
Documentation is found at http://msdn2.microsoft.com/netframework/aa569294 .

The Dyalog APL interface to .NET (Dyalog.Net) has been available from Dyalog version 9.5 onwards. To
run .NET a computer requires Windows 2000 or Windows XP Professional or Vista together with the
Microsoft .NET Framework (version 1 + SP1 or version 2). Both are freely installable from Microsoft
downloads at http://www.microsoft.com/downloads/Search.aspx?displaylang=en via dotnetfx.exe. The
NET platform is an integral part of Vista and of subsequent operating systems from Microsoft.

You can check your .NET framework installation level from [Control Panel][Add or Remove Programs], or
from registry entry HKEY_LOCAL_MACHINE\Software\Microsoft\NET Framework Setup\NDP\v1.1.4322\SP value,
or by looking in directory ..\WINDOWS\Microsoft.NET\...

§§ 17.1.2 Assemblies (a), Namespaces (ii) and Classes (¢)

When Microsoft .NET is installed on your computer, you will find a subdirectory called something like
..\Microsoft.NET\Framework\v1.1.4322\ in your Windows directory. This directory contains about 30
DLLs that together (or in stand-alone subsets) form the substance of the .NET Framework and contain most
of the Microsoft-supplied functionality available to .NET programmers.

148

http://museum.sysun.com/museum/cpmhist.html
http://msdn2.microsoft.com/netframework/aa569294
http://www.microsoft.com/downloads/Search.aspx?displaylang=en

Module17: Dyalog.Net L

mscorlib.dll

System.dll
System.Configuration.Install.dll
System.Data.dll
System.Data.OracleClient.dll
System.Design.dlI
System.DirectoryServices.dll
System.Drawing.dll
System.Drawing.Design.dll
System.EnterpriseServices.dll
System.EnterpriseServices. Thunk.dll
System.Management.dll
System.EnterpriseServices.Thunk.dll
System.Management.dl
System.Messaging.dll
System.Runtime.Remoting.dll

System.Runtime.Serialization.Formatters.Soap.dll
System.Security.dll
System.ServiceProcess.dll
System.Web.dll
System.Web.Mobile.dll
System.Web.RegularExpressions.dll
System.Web.Services.dll
System.Windows.Forms.dIl
System.XML.dlI

cscompmgd.dil

ISymWrapper.dIl

Microsoft.Jscript.dll
Microsoft.VisualBasic.dll
Microsoft.Vsa.dll

All word phrases here written in green may be used, in one way or another (in character string arguments, as
methods/functions, as properties/variables, ...) in Dyalog.Net code. There are over 14,000 new unique dot-
qualified strings available for inclusion in your programs in Dyalog.Net.

It's like going from the Roman alphabet to Chinese characters, or from 04V to

Unicode, or from {the set of all letters} to {the set of all words}, or from the safe

set of integers, Z, all-be-they of infinite number aleph null (xo), to the wild real

numbers, R, or the beautiful complex numbers, C, both of number aleph one (x1)!

The .NET framework is highly object-oriented. An instance of an object is generally created from a class
which holds the object creation code. A class represents a species of object - like the Dandelion
(Taraxacum officinale) represents all the dandelions in your garden. Essentially, each .NET assembly (a
logical .DLL) contains a number of .NET namespaces that each contains many .NET classes (or object
blueprints). Classes contain members — these members include methods, properties, fields and events.

Here is a list of almost all the .NET namespaces from almost all the DLLs in the Microsoft NET
Framework (version 1.1). Their content comprises the .NET base class library.

System

System.CodeDom
System.CodeDom.Compiler
System.Collections
System.Collections.Specialized
System.ComponentModel
System.ComponentModel.Design

System.ComponentModel.Design.Serialization

System.Configuration
System.Configuration.Assemblies
System.Configuration.Install
System.Data
System.Data.Common
System.Data.Odbc
System.Data.OleDb
System.Data.OracleClient
System.Data.SqlClient
System.Data.SqlServerCE
System.Data.SqlTypes
System.Diagnostics
System.Diagnostics.SymbolStore
System.DirectoryServices
System.Drawing
System.Drawing.Design
System.Drawing.Drawing2D
System.Drawing.Imaging

System.Drawing.Printing
System.Drawing. Text
System.EnterpriseServices
System.EnterpriseServices.CompensatingResourceManager
System.EnterpriseServices.Internal
System.Globalization

System.IO

System.|O.IsolatedStorage
System.Management
System.Management.Instrumentation
System.Messaging

System.Net

System.Net.Sockets

System.Reflection

System.Reflection.Emit
System.Resources
System.Runtime.CompilerServices
System.Runtime.InteropServices
System.Runtime.InteropServices.CustomMarshalers
System.Runtime.InteropServices.Expando
System.Runtime.Remoting
System.Runtime.Remoting.Activation
System.Runtime.Remoting.Channels
System.Runtime.Remoting.Channels.Http
System.Runtime.Remoting.Channels.Tcp
System.Runtime.Remoting.Contexts

149

K

ROBERTSON

Day2: Fourth Generation Dyalog APL - The Internet

System.Runtime.Remoting.Lifetime
System.Runtime.Remoting.Messaging
System.Runtime.Remoting.Metadata
System.Runtime.Remoting.Metadata.W3cXsd2001
System.Runtime.Remoting.MetadataServices
System.Runtime.Remoting.Proxies
System.Runtime.Remoting.Services
System.Runtime.Serialization
System.Runtime.Serialization.Formatters
System.Runtime.Serialization.Formatters.Binary
System.Runtime.Serialization.Formatters.Soap
System.Security

System.Security.Cryptography
System.Security.Cryptography.X509Certificates
System.Security.Cryptography.Xml
System.Security.Permissions
System.Security.Policy
System.Security.Principal
System.ServiceProcess

System.Text

System.Text.RegularExpressions
System.Threading

System.Timers

System.Web

System.Web.Caching
System.Web.Configuration
System.Web.Hosting

System.Web.Mail

System.Web.Mobile

System.Web.Security
System.Web.Services
System.Web.Services.Configuration
System.Web.Services.Description
System.Web.Services.Discovery
System.Web.Services.Protocols
System.Web.SessionState
System.Web.Ul
System.Web.Ul.Design
System.Web.Ul.Design.WebControls
System.Web.Ul.HtmIControls
System.Web.Ul.MobileControls
System.Web.Ul.MobileControls.Adapters
System.Web.Ul.WebControls
System.Windows.Forms
System.Windows.Forms.Design
System.Xml

System.Xml.Schema
System.Xml.Serialization
System.Xml.XPath

System.Xml.Xsl

Microsoft.CSharp

Microsoft.JScript
Microsoft.VisualBasic

Microsoft.Vsa

Microsoft.Win32

Each namespace contains a number of classes that can instantiate objects. Altogether there are over 700
classes in Microsoft .NET. One library of namespaces, mscorlib.d 11, contains the core classes from
which many other common classes inherit behaviour and characteristics. The .NET namespaces found in

mscorlib.dl1 are:

System

System.Collections
System.Configuration.Assemblies
System.Diagnostics
System.Diagnostics.SymbolStore
System.Globalization

System.lO
System.|0.IsolatedStorage
System.Reflection
System.Reflection.Emit
System.Resources
System.Runtime.CompilerServices
System.Runtime.InteropServices
System.Runtime.InteropServices.Expando
System.Runtime.Remoting
System.Runtime.Remoting.Activation
System.Runtime.Remoting.Channels
System.Runtime.Remoting.Contexts
System.Runtime.Remoting.Lifetime

System.Runtime.Remoting.Messaging
System.Runtime.Remoting.Metadata
System.Runtime.Remoting.Metadata.W3cXsd2001
System.Runtime.Remoting.Proxies
System.Runtime.Remoting.Services
System.Runtime.Serialization
System.Runtime.Serialization.Formatters
System.Runtime.Serialization.Formatters.Binary
System.Security

System.Security.Cryptography
System.Security.Cryptography.X509Certificates
System.Security.Permissions
System.Security.Policy
System.Security.Principal

System.Text

System.Threading

Microsoft.Win32

In the entire .NET Framework base class library there are over 30 assemblies, altogether containing over
100 namespaces. These 100 or so namespaces together contain over 700 classes. These 700 or so base
classes (and their instantiated objects) are all immediately available to Dyalog.Net programmers.

The namespaces are organised hierarchically. This avoids name clashes and helps to approximately
categorize the functional (or objective) nature of the contents.

The System.Collections namespace in mscor lib.d 11, for example, contains about 25 classes.

Q Module17: Dyalog.Net omersox

=====CLASSES (¢)in System.Collections Namespace =====

System.Collections.ArrayList
System.Collections.BitArray
System.Collections.CaselnsensitiveComparer
System.Collections.CaselnsensitiveHashCodeProvider
System.Collections.CollectionBase
System.Collections.Comparer
System.Collections.DictionaryBase
System.Collections.DictionaryEntry
System.Collections.Hashtable
System.Collections.ICollection
System.Collections.IComparer
System.Collections.IDictionary
System.Collections.IDictionaryEnumerator

System.Collections.|Enumerable
System.Collections.|[Enumerator
System.Collections.|HashCodeProvider
System.Collections.IKeyComparer
System.Collections.IKeyedCollection
System.Collections.IList
System.Collections.KeyComparer
System.Collections.Queue
System.Collections.ReadOnlyCollectionBase
System.Collections.SortedList
System.Collections.Stack

Classes are used to create objects, which have properties and methods. In the interests of application
efficiency, some information about a class is not carried around with the class itself but is kept separately in
its MetaData which is stored in the assembly's corresponding type library, or .TLB file. Typically, a class
itself has no GetMet hods method. Instead, you have to use the Get Ty pe method to instantiate a
reflection of the original object in order to list the methods. The reflected object may be of ‘dataType’
System.Runt imeType. This object inherits the niladic To St r i ng method that reports the dataType of
the original object as, for example, System.Collections.ArrayList inthe case of an instance of
ArrayList. Italsohas GetMet hods, GetProperties and GetF ie lds methods that describe the
members of the original instance of the System.Collections.ArrayList class. These methods
access the MetaData which contains member names, dataTypes and method calling information.

Classes contain Methods, Properties, Fields and Events.

~—— MET Framework

——mscorlib
~— System.Collections

System.Collections.ArrayList
Methods
Properties Fields
Events
Class Class Class
.NET Namespace
[J NET Hamespace

)

MNET Namespace

‘ .NET Namespace

Assembly

Assembly

Assembly
Assembly

If we create an instance of the System. 0b ject class then the default display form of the instance also
happens to be System.0bject, and the dataType of the instance is also called System.0bject.
However, these three names are logically distinct. The name of the class need not be identical to the
dataType description of the instance, which need not be identical to the object display form. Thus, for
example, the Get Ty pe method of an instance of the Array L ist class returns an instance of an object of
the System. Type class whose dataType is reported as System. Runt imeTy pe and whose display form
is the full class name of the original instance, viz System.Collections.ArrayList. The
ToString method is inherited by most objects. Its result is of type System.String and is returned to
APL as a simple character vector. This is the default display form of an object and often spells out the

& &

o Day2: Fourth Generation Dyalog APL - The Internet o

dataType (or simply the type) of the object. In Dyalog version 11, the display form of an object may be set
to any arbitrary character array via the new System Function [DF.

1712\What assembly do you think the System. ServiceProcess namespace is probably in? What
namespace contains the System.ServiceProcess.ServiceControllerPermissionEntry

class? (Version 11 has extended (N L to facilitate this latter question.)
Hint: Use Google or consult http://msdn.microsoft.com/library/.

§§ 17.1.3 Using DU SING

Occasionally namespaces have members that are spread across multiple assemblies. In particular, the
System namespace is spread over mscorlib.dll and system.dll. A .NET namespace is a logical design-time
naming convenience, used mainly to organize classes in a single hierarchical structure. From the viewpoint
of the runtime, there are no actual namespaces. Nevertheless, treating an assembly as a namespace
receptacle is convenient. But it is therefore not easy programmatically to get a list of namespaces from an
assembly name and so the namespace name together with its assembly origin must be specified before it can
be utilized.

Dyalog APL contains a new system variable called JUSInG. Itis a bit like OPATH, which redirects APL to
the location of some program that is in another APL namespace. JUSING (closely analogous to the using
directive in C# or the import directive in VB.NET) redirects APL to the location of some class that is in
some particular .NET namespace that is in some particular assembly.

QUSING<«'fiy,a;" 'A,,3," ... a Use .NET namespace 1i; from assembly a ;

In a new clear workspace FJUSING=0p<''. APL namespaces and programs inherit their local value of

JusING from the parent space, as does JPATH. Unlike OPATH, the System Variable JuSING cannot be
saved in the .DSE Session file.

JUSING is avector of character vectors (APL ‘dataType’ VecCharVec) each character vector of which
contains two parts separated by a comma. The first part specifies the case-sensitive name of a .NET
namespace, and the second part specifies the name of a DLL file, thus
OUSING<«,c'NetNamespace,C:\..\Assembly.dI1I'
The primary assembly in the .NET framework, containing the most commonly used namespaces, is
mscorlib.dl1. The namespace in this assembly with the most commonly used classes is named the
Sy stemnamespace. Its content is exposed to APL by setting
QUSING<«,c'System,mscorlib.dl1'
This particular namespace, and only this space, may be exposed by simply typing USING<«'System!', Or
even just JUSING<«""' as long as you thereafter prefix everything with "System.". We shall often use the
explicit verbose form for clarity, and because all other namespaces have to be treated this way.

This establishes the basic starting point for Dyalog.Net. If, for example, classes in the namespace
System.Windows .Forms are also to be invoked in Dyalog.Net code then the entry

OUSING,«c'System.Windows.Forms,System.Windows.Forms.dIlIl'
must be added to the local list of namespace paths.

1713156t NusING in such a way that all the classes in .NET namespace Sy st em and .NET namespace
System.Windows .Forms may be used directly from Dyalog APL.

http://msdn.microsoft.com/library/

Q Module17: Dyalog.Net Q

OBERTSON

§ 17.2 Exploring the .NET Interface

§§ 17.2.1 Examining Classes

In the impressively deep hierarchical structure of .NET there is another level above the assembly level, and
another level beyond that, as well as levels below the class level, quite apart from the object hierarchies
defined by any particular program. Therefore it is easy to get lost in the framework!

‘ ProcessesoApplication PoolsoAppDomainso.NET ThreadsoAssemblieso.NET NamespacesoClassesoObjectsoMembers ‘
We shall occasionally indicate whether something is an assembly by a, a namespace by 1 or a class by ¢.

Consider Apppomain (¢)in System (i) inmscorlib.d11 (a). This class represents an application
domain, which is an isolated environment where applications execute.

RSc<«AppDomain a Classin Systemfinmscorlib.d11 a

The class has a Current Doma in property that gets the current application domain for the current thread
object. (Thread (¢)inSystem.Threading (f)inmscorlib.d 11 (&) creates and controls a thread,
sets its priority, and gets its status.)

RSc«AppDomain.CurrentDomain o Property of AppDoma in ¢ returning a domain object

CurrentDoma in returns an object of dataType System. AppDoma in.

RVec<«AppDomain.CurrentDomain.GetAssemblies o Property returns objects

This object hasa Get Assemb I ies method that returns a vector of objects of dataType
System.Reflection.Assembly representing the assemblies currently loaded in the application
domain, each with a different display form containing a long string of individual information such as
assembly name and version.

RVec<«AppDomain.CurrentDomain.GetAssemblies.GetTypecé o Vecofobjects

The ubiquitous (inherited) niladic Ge ¢ Ty pe method of Assembly ¢ in System.Reflectiondin
mscorlib aallows one to discover the dataType of the vector of assembly objects.

VecRVec<«AppDomain.CurrentDomain.GetAssemblies.GetTypes a Mirrors

The niladic Get Ty pes method of 4ssembly ¢in System.Reflectionfiinmscorlib & returnsa
vector of vectors of objects (VecRVec) of dataType System. Ty pe which describe all the dataTypes
found in the assembly. So, for example,

QUSING<«'System,mscorlib.d1l' 4

'System.Windows.Forms,System.Windows.Forms.d11'd

{(8ppw)lpwYAppDomain.CurrentDomain.GetAssemblies
mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
bridge110, Version=11.0.0.0, Culture=neutral, PublicKeyToken=ebSebc232ded9kidcl
dyalognet, Version=11.0.0.0, Culture=neutral, PublicKeyToken=eb5ebc232de9udcf
System.Windows.Forms, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c54e089
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
System.Drawing, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a
Note the appearance of two Dyalog-specific assemblies. Dyalog APL (version 11) communicates with the
NET framework via the Dyalog-distributed interface libraries, bridge110.dIl and dyalognet.dll.

p AppDomain.CurrentDomain.GetAssemblies.GetTypes

2320 178 6 2220 1783 294

VecRVec«AppDomain.CurrentDomain.GetAssemblies.GetExportedTypes

The related Get ExportedTypes method of 4ssembly ¢ returns six subsets of System. Type objects
containing information about public classes in each of the six assemblies.
p "AppDomain.CurrentDomain.GetAssemblies.GetExportedTypes

153

Q Day2: Fourth Generation Dyalog APL - The Internet Q

1287 35 4 1053 872 186
3+>AppDomain.CurrentDomain.GetAssemblies.GetExportedTypes
System.0bject System.ICloneable System.Collections.IEnumerable

VRV<AppDomain.CurrentDomain.GetAssemblies.GetExportedTypes.Module

Each of these objects is of dataType System.Type and has a Modu I e property that returns an object of
dataType System.Reflect ion.Modu le whose default display form describes the assembly in
question.

3+oAppDomain.CurrentDomain.GetAssemblies.GetExportedTypes.Module
CommonLanguageRuntimelLibrary CommonLanguageRuntimeLibrary CommonLanguageRuntimelLibrary

(CS>>AppDomain.CurrentDomain.GetAssemblies.GetExportedTypes.Module

NS
#.[System.AppDomain].[System.Reflection.Assembly].[System.RuntimeTypel.[System.Reflection.Module]

12110pjects of dataType System. Ty pe have some properties that return simple string or Boolean values.
Investigate the properties TsClass, IsPublic, Name, Namespace and Ful1Name. Write an
expression that returns a vector of objects of dataType System. Runt imeTy pe which describe all the
public classes in the first assembly in the current domain.

1212Check that the Sy stem. Mat h class is available for use when FOusInG=" 1.
Hint: Look at the 'Name Category' (ONC) of <'Math'.

§§ 17.2.2 Examining Methods

In Microsoft .NET there are no functions or variables outside classes. Some methods in some .NET classes,
such as those considered in §817.2.1, may be used without explicitly creating instances. They have some
public methods and properties accessible directly from the class namespace. System.Mat h issuch a
class. It is a container for some simple mathematical functions that may be called directly from the class. A
few basic mathematical methods and fields are immediately available from the ¥at A class, assuming that
the Sy st em namespace is on the JUSING path.

Math.((Sin 0.5)(Asin 0.5)) » 1 ~100.5 & 0.4794.. 0.5235...

Math.((Log 0.5)(Exp 0.5)) &% (0.5)(x0.5) & ~0.6931.. 1.648...
Math.Abs " "5+19 & | 5419 & 4 3 2 1 0 1 2 3 4

Math.(E PI) & (%1)(o1) & 2.7182.. 3.1u415...
Remember that . . and . . . were defined as single symbols.

17221) 5ad the MetaData for the Ma ¢t i class and try using some of the methods in the class.
Hint: Right click MetaData in WS Explorer to load the .TLB file
Make sure [View][Type Libraries] in WS Explorer is checked.

Most .NET classes are used by creating an instance of the class. In .NET, to examine programmatically the
information associated with members of a class (methods, properties, etc..), you have to create an instance
of the class and then use the Ge ¢ Ty pe method to create an associated object of dataType System.Type
and examine the results of its GetMet hods and Get Propert ies methods. Information about the
original object-generating class is extracted from the assembly Type Library file (TLB) and is reported via
a Ty pe object instantiated from the Ty pe class.

In typical OO style, the .NET Framework deals in classes and objects and methods and properties... (Events
may be used as methods via 4[JNQ ... and from version 10.1 onwards it is possible to declare events on
NetType objects created with Dyalog APL.)

RSc<0ONEW ¢ ... a Create (instantiate) an instance of the class

ROBERTSON ROBERTSON

Q Module17: Dyalog.Net Q

In Dyalog version 11 instances may be created from classes with the OV EW system function. This monadic
function takes a class as the first parameter of its argument, followed by a second parameter if required. For
example, assuming the Sy s t em namespace is visible,

DT<[ONEW DateTime (2006 7 u4)
creates a new instance of the DateT ime class specifically relating to American Independence Day. The
MethodList and ProplL ist properties of this instance return a list of its methods and properties. The
list of methods (with further dataType information) may be discovered from MetaData or, equivalently,
from expressions such as

24DT .GetType.GetMethods @
System.DatelTime Add(System.TimeSpan) System.DateTime AddDays(Double)

17-222Find the minimum and maximum dates allowed for a Dat eT i me object.

Returning to the ArrayList class, given that DUSING is set appropriately, eg
OUSING<«'System,mscorlib.dll' «

'System.Collections,System.Collections.d11'¥

an instance of the 4rrayList class may be created by the statement

AL<[0NEW ArrayList
and the methods associated with this object may be obtained using its ¥et hod L i st property.
Alternatively, a more detailed description of each method may be obtained from the Get et hod s method
of the reflected object. Unsurprisingly (by now) the GetMet hods method returns a vector of objects. The
display form of each object (dataType System.Ref lection.Runt imeMet hodInfo) gives
information about a method and its syntax.

2+AL.GetType.GetMethods &

Int32 get_Capacity() Void set_Capacity(Int32)

Thus each class (object creation program inside its own space) contains a number of methods (functions).
For example, the System.Collections.ArrayList class contains the following methods.

==METHODS in System.Collections.ArrayList Class==

System.Collections.ArrayList Adapter
Void AddRange
Int32 Add
Int32 BinarySearch
Int32 BinarySearch
Int32 BinarySearch
Void Clear
System.Object Clone
Boolean Contains
Void CopyTo
Void CopyTo
Void CopyTo
Boolean Equals
System.Collections.ArrayList FixedSize
System.Collections.IList FixedSize
System.Collections.IEnumerator GetEnumerator
System.Collections.IEnumerator GetEnumerator
Int32 GetHashCode
System.Collections.ArrayList GetRange
System.Type GetType
Int32 IndexOf
Int32 IndexOf
Int32 IndexOf
Void InsertRange
Void Insert
Int32 LastIndexOf
Int32 LastIndexOf
Int32 LastIndexOf
System.Collections.ArrayList ReadOnly
System.Collections.IList ReadOnly

System.Collections.IList)

System.Collections.ICollection)

System.Object)

Int32, Int32, System.Object, System.Collections.IComparer)
System.Object, System.Collections.IComparer)
System.Object)

)
)
System.Object)

Int32, System.Array, Int32, Int32)
System.Array, Int32)

System.Array)

System.Object)
System.Collections.ArrayList)
System.Collections.IList)

Int32, Int32)

)
)
Int32, Int32)
)
System.Object, Int32, Int32)
System.Object, Int32)

System.Object)

Int32, System.Collections.ICollection)
Int32, System.Object)

System.Object, Int32, Int32)
System.Object, Int32)

System.Object)
System.Collections.ArrayList)
System.Collections.IList)

155

Day2: Fourth Generation Dyalog APL - The Internet

Void RemoveAt (Int32)
Void RemoveRange (Int32, Int32)
Void Remove (System.Object)
System.Collections.ArrayList Repeat (System.Object, Int32)
Void Reverse (Int32, Int32)
Void Reverse ()
Void SetRange (Int32, System.Collections.ICollection)
Void Sort (Int32, Int32, System.Collections.IComparer)
Void Sort (System.Collections.IComparer)
Void Sort ()
System.Collections.ArrayList Synchronized (System.Collections.ArrayList)
System.Collections.IList Synchronized (System.Collections.IList)
System.Array ToArray (System.Type)
System.Object[] ToArray ()
System.String ToString ()
Void TrimToSize ()
Int32 get Capacity ()
Int32 get Count ()
Boolean get IsFixedSize ()
Boolean get IsReadOnly ()
Boolean get IsSynchronized()

System.Object
System.Object
Void
Void

get Item (Int32)

get SyncRoot ()

set Capacity (Int32)
(

set Item Int32, System.Object)

Names of methods are repeated in this list when dataTypes of argument parameters vary. Each line
specifies one way in which the method may be called. The situation often arises in APL, but behind the
scenes. Consider, for example, the dyadic primitive functions « and ~. Their arguments may be numeric or
character. Under the covers, APL checks which and applies the required algorithm. Dyadic p can
accommodate a right argument of many different dataTypes and, as of version 11, the arguments to ~ and v
may be Boolean or integer. The arguments to ! may be integer or real, etc... Unlike APL (and VBScript
...), but like most mainstream low-level programming environments such as FORTRAN, VB and C#, .NET
requires us to be more explicit about possible types of arguments to, and results of, methods. In fact it
would be useful to include in APL documentation all the explicit calling options associated with each
primitive function. However, to specify the precise structure of every intermediate array in an real APL
application would be a thankless task.

ONEW is not the only way in which instances of classes may be created. Classes often have methods that
return instances. For example, the DateT ime class has a property (niladic function) called vow. Now
returns an object of dataType System.DateT ime.

17223se the IsLeapYear method of an instance of the Dat eT ime class created by the Today property
to determine whether or not the year 3000 is a leap year.

§§ 17.2.3 Examining Properties

Normally, classes instantiate objects whose methods and properties are then used and changed. Consider,
DateTime ¢,iNnSystemil,iNmscorlib.dl1 a. Thisclass has a property (niladic function) called
Now. Now returns an object of dataType System.DateT ime. (This is the dataType we met in Module 0.
In .NET there is a Ty pe class whose purpose is to yield object dataType information.)

DT<«DateTime.Now
DT is an object with about 90 methods and 59 properties, as verified by

p 'DT.(MethodList PropList) & (,90)(,59)
and whose dataType is discovered from the default display form (see [JDF) of the object returned by the (in
this case niladic) Get Ty pe method (which is inherited ubiquitously from System.0bject ¢).

DT .GetType b
GetType returns an object of type System. Ty pe. This object has an Assemb 1y property whose display
form contain the name of the assembly from which the current type has come.

'System.DateTlTime'

iQ Module17: Dyalog.Net Q

OBERTSON

84%DT.GetType.Assembly - 'mscorlib'
(Note that the Ty pe class has a monadic Ge ¢ Ty pe method that takes a St r i ng argument.)

The object returned by the Assemb 1y property of the instance of the Ty pe class representing DT,
Ass<DT .GetType.Assembly
itself has a Ge t Ty pes method that returns a vector of objects (Rvec) representing all classes in the
assembly.
pAll<Ass.GetTypes & 2373
Some of these classes are Enumerations. Their principal purpose is to supply alternate names for values of
an underlying primitive instance. All the objects in vector 41 I have a niladic method, 7 sZnum, which
returns a Boolean value indicating whether the corresponding object in 41 1 is an Enumeration.
pEnums<«(All.IsEnum)/AlIl » 384
Taking the first such type, the Get F ie 1ds method gets all the field names for the first Enum in the list.
pEnums([1].GetFields & v 17
A field is a member of an object or class and represents a variable associated with the object or class. For
example, if the 23" enumeration is the System. Day0fiWeek enumeration
lsEnums[23] v 'System.DayOfWeek'
then the fourth field in the enumeration happens to be the Tuesday public static field.
susEnums[23].GetFields & &+ 'System.DayOfWeek Tuesday'

17-231yse an instance of DateT ime ¢ to find the day of the week today.

17:232\/erify that the object returned by A4ssemb 1y (of dataType System.Reflection.Assembly)
hasa Locat ion property that returns a string containing the directory in which the assembly resides.

233Find how many classes there are in System.Web.d 11.
Hint: Create a new instance of, say, System.Web.UI.Control Of System.Web.Mail.MailMessage.

As with object methods, the dataTypes associated with object properties make up an essential part of their
specification. Therefore, in the pursuit of clarity, we talk about dataType — an adjective describing what
type of data structure an object conforms to. You might think of it as a very sophisticated (albeit non-
existent) version of monadic DR. For simple objects like the number 9, the dataType might be
System.Int16. System.Int16 isactually, in most situations, a value type - a light-weight class
which is treated as a value rather than a full-blown class. On the other hand, the dataType of a more
complicated object such as an instance of the Array L ist class is usually described in the same words as
the namespace-qualified name of the class itself - System.Collections.ArrayList.
System.Collections.ArrayList iscalled areference type — a full-blown object passed around by
references to it (shallow copies) rather than by making a genuine duplicates (deep copies).

= PROPERTIES in System.Collections.ArrayList Class=

Int32 Capacity

Int32 Count

Boolean IsFixedSize

Boolean IsReadOnly

Boolean IsSynchronized

System.Object SyncRoot

System.Object Item [Int32]

Note that the T ¢ em property looks different from the others as it seems to take an argument! Properties are
often like shared variables and are accessed through get_.. and set_.. control functions. Fields are more like

157

noneaTs Day2: Fourth Generation Dyalog APL - The Internet noneaTs

simple APL variables. Methods are like locked monadic or niladic functions — sometimes chameleon-like,
ie either! Events are treated like methods in Dyalog.Net and cannot as yet be assigned callback functions.

The Get Propert ies method returns objects representing the properties of a Dat eT i me object, with
their dataTypes.

$3>DT.GetType.GetProperties & & 'System.DayOfWeek DayOfWeek'
pDIP<{(8ppw)lpw}rDT.GetType.GetProperties & & 16 1

Thus the Day 0 fWeek property returns an object of
type System.DayO0fWeek, whose display form is
the actual day of the week relating to the instance date,
whereas Day contains a simple integer day number
(Int32 => z.5c) relating to the instance date.

DT .DayOfWeek.ToString & a CVec
Tuesday

3DT .DayOfWeek a CVec 4 _
Tuesday ; eTime UtcHow

OFMT DT.DayOfWeek a CMat '
Tuesday st n TimeOfDay

DT .DayOfWeek a RSc atefime Today
Tuesday

I Mesked Array 16x1 (1) Pos: 0,0

17:234Vith a new instance of DirectoryInfo ¢ from System.I0 7, call the GetFiles method with
argument ' = . = ' to get (objects representing) all the files in a given DOS directory. Then read the Name
and Creat ionT ime properties of the vector of instances of dataType System.I0.FileInfo toaccess
the file details.

§ 17.3 Digging into .NET
§§ 17.3.1 Windows Forms

Now that we know how to create instances of .NET classes by JUSING the Sy st em namespace
(ONEW DateTime(34+0TS)).ToString €& & '11/04/2006 00:00:00"
and understand that objects may be created with different constructors
(ONEW DateTime(640TS)).ToString € - '11/04/2006 10:07:21"
and can recognise some different categories of objects
DI<0NEW IO.DirectoryInfo(c'C:\windows')oNCc'DI' & 9.3
and appreciate some of the idiosyncrasies and niceties of .NET by way of Dyalog calling syntax
(oDI.(GetFilesc'x.exe')).FullName & 'C:\windows\alcrmv.exe'
and know how to read syntax from MetaData (being wary of ws Fu L L for this large assembly), we should
be able to build applications based on .NET classes. Workspaces supplied with Dyalog in directory

..\samples\winforms\ give some excellent examples as does the Dyalog.Net Interface Guide. Here we do
little more than skim the surface.

In order to create a Form in .NET it is necessary to access System.Windows .Forms 1.
OUSING<«'System.Windows.Forms,System.Windows.Forms.dl11l'
We can then immediately create a Form, and make it visible
F<[ONEW Form o F.Visible<«1

Q Module17: Dyalog.Net Q

EEX

compared with 'F2 "OWC 'Form'

The only visible difference is the default Icon. The differences between Windows GUI and Windows .NET
Forms begin to diverge from this close (guess why;-) start.

The GUI Form has an 0nTop property which becomes TopMost in .NET. The Capt ion property
becomes the Text property and the Size and Posn properties are each a combination of two properties:
F.(Height Width)<200 300 n was Size
F.(Top Left)<100 200 A was Posn
There is also a Locat ion property that has dataType System.Drawing.Size. Thisis more like the
old Posn property in the sense that it accepts the Top and the Le ¢ coordinates in one argument. But in
order to achieve this we have to create an instance of System.Drawing.Size ¢ via Point ¢. One
way of constructing an instance of System.Drawing.Point ¢ iswith a OVEW object parameter of
dataType System.Drawing.Size which is what we are trying to create in the first place! Luckily there
is also a constructor with (Int32, Int32) for X and Y.
OUSING,«c'System.Drawing,System.Drawing.dl11'
F.Location
Pt<0NEW Point (10 10)
F.Location<Pt A was Posn

1731150t the Form size in one statement using the ¢ 1 ient Size property.

A But ton object, an instance of But ton ¢, of dataType System.Windows.Forms.Button and of
display form System.Windows .Forms.Button, Text:..., may be created by

B<[(NEW Button
NET does not really have well-defined namespace hierarchies. For naming convenience, namespaces
appear to be arranged hierarchically, but in fact, if a namespace called 4. B. C . D exists in .NET then this
does not imply that any of 4, 4.Bor 4.B.C hasto exist. The .NET way of assigning a parent-child
relationship to the Formand But ton is by way of the Cont ro 1 s property of a 7orm which returns an
instance of the class System.Windows.Forms.Control. This object hasan Add method.

S>F.Controls.MethodList » 'Add'
This method takes an object as its argument and adds it to the collection of controls comprising the children
of F.

F.Controls.Add B

17312Trace the vscribblev function below and use MetaData to verify the comments. L

159

K

ROBERTSON

Day2: Fourth Generation Dyalog APL - The Internet

N

ERTSON

\
[1]
[2]
[3]
[u]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]

v

scribble;F;GR;PB

OQUSING<'System.Windows.Forms,System.Windows.Forms.dIl1l'

QUSING,«c'System.Drawing,System.Drawing.dl1l'
F<(NEW Form

F.Visible<1

PB<[JNEW PictureBox

PB.Size<F.Size

F.Controls.Add PB

GR<PB.CreateGraphics
GR.{DrawLine(Pens.Gold,w)} '+72100 4p300
GR.{DrawlLine(Pens.Chocolate,w)} '+7100 4p300
GR.{DrawLine(Pens.BlueViolet,w)} +72100 4p300
F.Close

A

A

» » » » » » » ®» ® D

Scribble lines on a Form.

o Initiate System.Windows.Forms

and System.Drawing namespaces.

Create inst.of System.Windows.Forms.Form ¢
and make it visible.

Create instance of ..Forms.PictureBox ¢
and make its Size same as the Form.

Add control to Form x
Create Graphics obj with CreateGraphics m
Run DrawlLine m of ..Drawing.Graphics ¢
using Chocolate p of System.Drawing.Pens ¢
to create a System.Drawing.Pen object.
Close the Form.

* ok k%

What class owns the Add method?

17313 race the v_Grid2v function in supplied workspace ..\samples\winforms\winforms.dws.

An Ed it object becomes a TextBox class in Dyalog.Net, a Gr id object becomes a DataGrid class but
arLabelisstillcalleda zabel anda StatusBar isstill calleda StatusBar.

The definitive guide to .NET framework class libraries is MSDN (MicroSoft Dot Net), available on-line or
as a download.

3 Graphics.DrawRectangle Method (System.Drawing) - Microsoft Internet Explorer

Fle Edt Wew Favortes Tools Help

@Back M > | \ﬂ @ h /:\J Search ‘i“\?Favurites @Media e}

- = L

'1:

Address €] http:Jmsdn2.microsoft comjen-USflbrary/system. chawing. graphics.dranrectangle. aspx
United States

] Graphics Class

s
MSDN Home | Developer Centers | Library | Downloads | How To Buy | Subscribers
[FontStyle Enumeration A

MSDN Library = JMET Development = JMET Framework SDK > Class Librat

Links >

v Go

Micrasaft.comn Homne | Sits Map

MSDN Worldwide

Be the first to rate this content! Rate this page *

[Graphics Members

Reference > Systemn.Drawing > Graphics Class = Graphics Methods = DrawRectangle Method

[E Graphics Methods
[addMetafileComment Meth
BeginContainer Method
[Clear Method
CopyFromScreen Methad
[Dispose Method
Drawére Method
DrawBezier Method
DrawBeziers Method
DrawClosedCurve Methad
DrawCurve Method
DrawEllipse Method
Drawlcon Methad
[] DrawIconUnstretched Meth

[Collapse All

\NET Framewark Class Library

[Overload List

Name

Drawling Mathod

Drawlines Methad

[DrawPath Methad

DrawPie Mathod

DrawPolygon Method

[8] DrawRectangle Method
< | >

[See Also
Reference
Graphics Class
Graphics Members
System.Drawing Namespace

£3

Graphics.DrawRectangle Method

Draws a rectangle specified by a coardinate pair, & width, and & height.

Graphics DrawRectangle (Pen, Rectangle

Graphics DrawRectangle (Pen, Int32, Int32

Int32, Int3z]

DrawImags Method

DrawImageUnscaled Meth

[DrawImageUnscaledAndCl Graphics.DrawRectangle (Pen. Single, Sinale
Single, Single:

Description

Draws a rectangle specified by 3 Rectangle
structure.

Supported by the .NET Compact Framework.

Draws a rectanale specified by a coordinate
pair, a width, and a height.

Supported by the .NET Compact Framewark,

Draws a rectangle specified by a coordinate
pair, a width, and a height.

&) Done, but with errors on page.

@ Internet

17314 nssign a simple vs howv function to the onc 1 ic k property of Button B. Trace the line

Application.Run F

and compare with 0DQ. Notice that the message argument is a 2-vector of objects.

173157 race the .NET-laced vRUNv function in workspace ..\samples\winforms\gdiplus.dws, watching out

for the instance of the T imer ¢.
Hint: Trace Application.Run Formi rather than using the Session implicit 0DQ.

173.15pay the pretty game of Tetris in workspace ..\samples\winforms\tetris.dws, then trace the exhibition-
quality Dyalog.Net code. Take care with the onT i c k event and multi-threading when tracing.

ROBERTSON ROBERTSON

Q Module17: Dyalog.Net Q

§§ 17.3.2 Communications

Computer communications is a huge topic these days. Once upon a time it might have covered simply the

notion of conveying messages to the user, which today we might provide thus:
OUSING<«'System.Windows.Forms,System.Windows.Forms.d11l'
MessageBox.Showc'This Iin itself is the message.'

This in itself is the message.

Press OK.

OK

Communications might have included requests for information about the local system environment.
QUSING<«'System'
$I0.Directory.GetCurrentDirectory & 'C:\Dyalog\DWS'
which was previously covered by ONA " kernel32 |GetCurrentDirectoryA U4 >0T"' or before
that by Oc¥D' cd '. More such communications with the environment can now be exemplified by
$I0.Directory.(GetParent GetCurrentDirectory) & 'C:\Dyalog'
or
I0O.Directory.(GetDirectoryRoot GetCurrentDirectory) & 'C:\'
or
Environment .CurrentDirectory & 'C:\Dyalog\DWS'
as an alternative to .NET above (except it does not return an object and so can be assigned directly), or
Environment.CommandLine
"C:\Program Files\Dyalog\Dyalog APL 11.0\dyalog.exe"
which is the same as # . Get Command L i ne in Dyalog GUI terms. Similarly,
Environment .UserName & 'ADENNY'
gives the same result as JAN.

But there are many other properties and methods in the Framework Class Library that give information that
is not readily available in raw APL, although probably accessible via Ov 4.
Environment .MachineName & 'JCM5032483"

Environment.(0SVersion Version)
Microsoft Windows NT 5.1.2600 Service Pack 1 2.0.50215.u44
Environment.GetLogicalDrives
A:\ C:\ D:\ K:\ L:\ M:\ 0:\ P:\ @Q:\ R:\ U:\ X:\ Y:\ Z:\
Sometimes APL gives information not directly available from Microsoft .NET, such as the inverse of a
matrix, and sometimes APL just is not very concerned:
+(Int16 Int32 Inte4).(MinValue MaxValue)
32768 32767
T2147483648 2147483647
-9223372036854775808 9223372036854775807

Once upon a time extraction of data from a file system or database might have been classed as
communications. In .NET the System.Data... namespaces contain facilities for ODBC, SQL...

But we all know that communications is much bigger and wider than all that. It means radio, TV, postal
services and transport. But in particular these days for computing it means eMail and the Internet.

161

& &

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

The .NET Framework has a namespace in the base class library System.d 11 called System.Net and
another called System.Net .Sockets. These cover most of the TCP/IP functionality available through
Dyalog TCPSocket objects. For examplethe System.Net .Sockets.Socket class hasa Send
method which is similar to the 7¢ PSend method in the Dyalog GUI. Butthe System.Net namespace
has a lot more functionality. For example, there are classes relating to Authentication, Cookie control and
HTTP handling and a namespace System.Net .Secur ity relating to security issues. The framework
class library also has as a number of other assemblies, such as System.web.d 11, entirely devoted to
Internet issues and System.Web.Ma i I relating to email issues.

Consider, for example, the TCPGot Addr event of TCPSoc ket objects in the Dyalog GUI. This event
may be used to report the IP address associated with a host name. Alternatively, the DOS command
C:\WINDOWS\system32\nslookup.exe may be used to find the same information. This information is
retrieved via a Domain Name Server (DNS) located somewhere on the visible network. It is the job of this
server to maintain an up-to-date list of site names (domains) and their IP addresses.

In .NET, the System.Net .Dns class has a method called BeginGetHostByName that takes a URL
parameter and returns asynchronously, having made contact with a DNS server, an object containing
information about the URL in question.
OUSING<«'System,system.dl1l'
URL«'www.google.co.uk'
RAR<System.Net .Dns.BeginGetHostByName URL(ONS''"')(ONS'")
RAR is a namespace of dataType System.Net .Dns+ResolveAsyncResult. This object is used as
an argument to the System.Net . Dns class method EndGetHostByName. When the URL has been
resolved, this method returns an object of dataType System.Net .IPHostEntry. An instance of
System.Net .IPHostEntry ¢ has properties 4l iases, HostName and AddressList thatgive
some basic information about the domain, including all the related names and addresses.
IPH«<Net .Dns.EndGetHostByName RAR
3 1pIPH.(Aliases HostName AddressList)
WWW.google.co.uk www.google.com
www.l.google.com
64.233.183.103 64.233.183.104 64.233.183.147 64.233.183.99

Aliases isof dataType System.String[] which in APL translates into VecCVec. HostName is of
dataType System.String which in APL terms translates into CVec, and AddressList is of dataType
System.Net .IPAddress[] which returns a vector of instances of the System.Net .IPAddress
class.

% Display Dyalog APL Arrays - [3 1%IPH. (Aliases HostName AddressList)] =T
ﬂﬁile Edit View Format Tools ‘Window Help _
DE &

" |Dyalog S TT vl‘l? W

BL.Z33.183.147 EL4.%33.183.893 EL.Z33.183.103 ELh.Z33.183.104

a1

Hint:

iQ Module17: Dyalog.Net Q

OBERTSON ORERTSON

Based on this functionality, Stefano Lanzavecchia has given the dotnet@dyalog.com group, amongst many
other treasures, the following function which determines the IP addresses of all 3-letter .com domains.

V r<ssil;step;name;list;n;QUSING;blocks;b;x;t

[1] step«300 a blocksize

[2] OQUSING<«'' ',system.dll'

[3] name<{'www.',w,'.com'}

(4] list«name™ ,>0.,/04 04 04

[5] r<list,[1.5]c"!

[6] blocks«((plist)p(steptl))ciplist

(7] t<04I[3]

[8] :For b :In blocks

[9] O«'n: "(2b)'"/'(plist)

[10] O<«'elapsed: '(0.001x0AI[3]-t)'estimated: '(0.001x(plist)x(0AI[3]-t)+>b)
[11] x<{System.Net.Dns.BeginGetHostByName w(ONS'')(ONS'')} list[b]

[12] r(b;2]«{0::8 ¢ (System.Net.Dns.EndGetHostByName w).AddressList.ToString} x
[13] :EndFor

v

321Create a new instance of Mai IMessage ¢ in System.Web.Mail fi. Assign suitable values to the
To, From, Subject and Body properties of the object. Run the Send method belonging to

System.Web.Mail.SmtpMail ¢ withthe MailMessage oObject as its argument.
Hint: See the Dyalog.Net Interface Guide p20.
Notel: Lines in the Body string end in 04V [3] (LF) and the Body is terminated with 04V [u4] (CR).
Note2: You might need to set the name of your SMTP relay mail server via Smt pMail.SmtpServer.

17322yse \NET to retrieve the string contents of a URL web site. Run the create method of
System.Net .WebRequest ¢ from System.Net fdinsystem.d 11 & with an argument of some
URL string such as 'http://www.dyalog.com'. The Get Response method returns an object of dataType
System.Net .WebResponse. This object has a method called Get ResponseStream that returns an
object of dataType System.I0.Stream. This object may then be used as a parameter when creating a
new instance of System.I0.StreamReader ¢. Finally, the ReadToEnd method of this instance

returns a string containing the contents of the URL home page. @
Hint: See the Dyalog.Net Interface Guide p21.
Note: You might need to create a suitable instance of we bProxy ¢ and assign it to the Proxy property.

§§ 17.3.3 Generalising APL Primitives

Many facilities in Dyalog version 9 are replicated in Dyalog.Net. Succession has occurred many times
before and in many different contexts. If Microsoft continues its success then .NET is here to stay for the
foreseeable future. It will replace the methodologies of the Dyalog GUI, Dyalog TCPSocket objects, APL
threads, N A4... , perhaps unnoticeably; like (07 .S changed is clock and (AN changed its data source (ask
Geoff Streeter ©).

Even APL primitive functions may be supplemented with .NET methods or replaced by .NET equivalents
although the current mathematical offerings of .NET are far less extensive than those in APL 1. One might
hope, for example, that complex arithmetic will be gifted to Dyalog APL through .NET although neither
camp seems particularly motivated. However, it is the simple basic grammar of APL and not the
underlying algorithms that distinguishes APL from all other less elegant, less regular languages.

Although APL originated as a notation for succinctly describing algorithms and was only later implemented
as a computer language, it owes much to other computer languages in its later incarnations. For example
the concepts of file systems, nested arrays, error trapping, control structures, multi-threading and the
modern GUI interface are all derived directly by other computer languages.

163

mailto:dotnet@dyalog.com

Q Day2: Fourth Generation Dyalog APL - The Internet Q

Error trapping in Dyalog.Net follows the OO style. An error encountered within .NET signals an error
number 90. This error may be trapped in the usual way with OTRAP or : Trap. [JDM contains the usual
diagnostic message, but many more details may potentially be found from the properties (and display form)
of the new system object, IEXCEPT I0N, which is an instance of System.Exception ¢.

173310rce an error in .NET and examine the properties of the EXCEPTI0N object.

Many people are developing .NET classes to cover various areas of computing which are not found in the
framework library, eg http://www.extremeoptimization.com/ or http://www.strangelights.com/fsharp/.
Some of these extensions might one day be an intrinsic part of Dyalog APL. Microsoft .NET itself
introduces methods which extend basic arithmetic and Boolean functions, to DateT ime objects for
example.

The meaning of adding days to dates or determining whether one date is greater than (after) another are
intuitively clear and so .NET introduces methods suchas op Additionand op GreaterThan that
apply directly to instances of System.DateTime ¢ and System.TimeSpan ¢. Dyalog has
incorporated some of these ‘operators' into the appropriate APL primitive functions.

17:332Ey neriment with APL primitives + - = = > » < <asappliedto DateTime and TimeSpan
objects and compare with corresponding methods in these classes. Dyalog goes further and provides natural

extensions to primitives 4 ¢ L [. Experiment with derived functions (such as [/) as applied to dates.
Hint: See the Dyalog.Net Interface Guide p16.

17:333Consider joining the dotnet@dyalog.com mailbox group and ask for the next module on writing .Net
classes.

http://www.extremeoptimization.com/
http://www.strangelights.com/fsharp/
mailto:DotNet@dyalog.com

R N

(OBERTSON ROBERTSON

Module18: Dyalog.Net Classes

§ 18.1 Writing Dyalog.Net Classes
§§ 18.1.1 Dyalog Namespaces and .NET Namespaces

NET namespaces are similar to Dyalog namespaces, but unfortunately (for .NET) they are not identical.
Nevertheless, when creating a .NET class in Dyalog APL, a Dyalog namespace is destined to become a
NET namespace (in a .NET assembly) containing the new .NET class.

18L11Create a workspace called GENERAL.DWS containing a single namespace called # . Ma ¢ hs.

§§ 18.1.2 Creating a Ne t Ty pe Object

In Dyalog.Net, a .NET class is created through a Net Ty pe object. The BaseC lass property of a
NetType object may be set to the name of some particular class from which the new class is derived.

Cvec OWC'NetType' a Create anew Net Ty pe object, with name in Cvec

8L211n the namespace # . Mat hs create a Dyalog GUI Net Ty pe object called Spec ¢ rum.
Hint: See GUI Help or Object Reference for description of Ne ¢ Ty pe object.

§§ 18.1.3 Writing Functions and defining Variables

813110 namespace # . Mat hs . Spect rum, copy in function vFour ierv from distributed workspace
MATH.DWS and write the following two functions:

V R«ft W n Fourier Transform
[1] R<Fourier W

V R«<ift W a Inverse Fourier Transform
[1] R« 1 Fourier W

§ 18.2 Exporting Methods and Properties
§§ 18.2.1 Arguments and Result “dataTypes”

When exporting methods and properties it is necessary to specify the dataTypes of all interface variables. In
order for .NET to interpret correctly the dataTypes being specified it is necessary for the classes associated
with the specified dataTypes to be accessible to APL. The basic dataTypes are to be found in the core
System namespace. They correspond to classes such as System.Int32,System.Intéu and
System.Array. These inherit from System.ValueType which inherits from System.0bject.

To make these basic dataTypes visible to APL when exporting class members we might assign JUSING to
the core System namespace. Were we to do this then the classes would have to be called 7nt 32, Intek.
But the default names in the .NET properties dialogue are written with the "System." prefix. Therefore we
must assign JUSING to an empty character vector in order to match the names of the default entries below.

We can now specify the calling dataTypes of vf¢v and vif¢v asthe default, System. Array and
identify them as public methods. (Remember, methods may not be dyadic functions.)

165

Day2: Fourth Generation Dyalog APL - The Internet

1821Iassign OusInG<' 1, place the cursor on £ ¢ in the Session and right-click the mouse. Select
[Properties][.Net Properties] and set the information as below. Repeat for i f¢.

2 #.Maths.Spectrum.ft - Properties

Properties | Yalue | Monitor | -Met Properties

Param Namel Type | Modifier | Optional |
Result System.Aray A v
Paraml System.Aray ~ v O

Help D

(&) Methad () 'webMethad () Prop Get () Prap Set

ﬁubllc [] Static [¥irtual [] Constructar

|:| PFrotected

= | #.Maths.Spectrum.ift - Properties

Propetties | “alue | Monitor | Met Properties

Param Namel Tupe | todifier ‘ Optional |
Result System.Amrap - “
Pararnl Spstem.Array w £v3 D
Help D
(&) Method (O web Method (O Prop Get () Prop Set

[“TPublici [static [wirtual

[] Constructor
[Protected

Alternatively, it would be possible to assign this information via SetMet hodInfo. Also note that we

could have identified the methods as Static in which case they would be useable directly from the class
without the need to create an instance of Spec ¢t rum before calling them.

§§ 18.2.2 Making an Assembly

18221geect [File][Export] from the Session menu and navigate to the framework directory. Choose a file
name — the default is the name of the workspace with .dll rather than .dws. This will be the name of your
NET assembly. The Runtime application check box should be checked in order to create a distributable

assembly, otherwise the development .dll (dyalog110.dll rather than dyalog110rt.dll) will be bound.

Create bound file

-

Recent

Desktop

Iy Documents

My Computer
<)

by Metwark,

Buntime application

Savejn | 3 v2.0.50215 v O T M-
..j é] Aspnet_perf.dl
L2 ASP NETWebadminFiles é] aspret_rc.dl
[T ConFIG %] aspretrmcExt di
[CIMicrosoft MET Framework 2,0 Beta 2 .jz] CORPerfManExt. dl
IC2IMsBuild &] cscomp.dil
Mot é] cscomprgd. dil
) RedistList %] culture.di
| Temporary ASP.NET Files .jz] CuskomMarshalers.dll
%] accessibility. il] e, an
.j] AdonetDiag, di .j] diasymreader, dl
%] alir, i | %] EventLogMessages. di
é] aspret_Filker dil Ca] Fusion.dll
é] aspnet_isapi.dll é] IEExechemote. dll
< b4
File name: general hd
Save as type: Microzaflt Net Aszzembly (*dll| w

When you hit the Save button, if no problems are identified, then the following message box and status

message dialogue appear.

Q Module18: Dyalog.Net Classes Q

% Dyalog APLAW - Status
File Options

Declared Assembly general
Declared Module general in file C:sHINDOHEsMicrosoft.METFrameworksw2. 0.50215%general .dll
Declared Type Haths.Spectrum
Compiling Hethod "ft"
Parameter tupe "Sustem.Arrau” resolved to Sustem.Array
Result tupe "Sustem.Array” resoluved to Sustem.Array
Compiled Method "Ft"
Compiling Method "ift"
Parameter type "System.Array” resolved to System.Array
Result type "System.Array” resolued to Sustem.Array
Dyalog APL/W Compiled Hethad "ift"
— Emitted Tupe Haths.Spectrum
Emitted Assembly to file "C:~HINDOWS-Microsoft . NET“Frameworksw?.0,50215%general . d11"

.
\y File: C:YWINDOMW SMicrosoft NET\Frameworkiv2.0.50215\gener al dil successfully created. |

§§ 18.2.3 Checking the MetaData

1823110 WS Explorer, load the MetaData of the assembly General.d 1. Find the exported methods and
check their entries.

B1 Exploring CLEAR WS [#] o (=13
Eile Edit View Columns Tools
‘P mXQE @O EE [
workspace Tree
=k
(5 0SE
-t HetaData
[ER 4| 0aded Hetadata
© Tét general
=%t Hodules
=-Jét C:sHINDOWS < Hicrosoft.MET~Frameworksu?.0.50215general . d1l
=8 -1 Mamespaces
=t Haths
= Tt Classes
=8 -1 Maths. Spectrum
Tt Base Class
I Constructors
Tt Fields
= %t Hethods
TEt (Private)Intd2 $get_idx()
Tt (PrivatelSystem.Object HMemberwiseClane()
Tét (PrivatelUoid §InitializelnstanceFields()
Tét (PrivatelUoid §lnitial izeSharedFields()
Bt (Private)lUoid BaseConstructor()
Bt (Privatel)Uoid Finalize()
Tét Boolean Equals(System.0Object)
Bt 1nt32 GetHashCode(D
Tt System.Array ft(Sustem.Arrayl
Tt System.Array ift(Sustem.Arrau)
TEt System.String ToString()
Tt Sustem.Tupe GetTupe(d

TupelLibs

0 object(s), 28.28Mb (29656592 bytes) free.

Note that a number of other methods are present in the list. They have been inherited from
System.0bject ¢ which is the default BaseClass of a NetType object. Itis at the root of every
NET class and therefore every class has the ToString and Get Ty pe methods (although their constructor
syntax may be overridden by any of their descendants).

§ 18.3 Calling Dyalog.Net Classes
§§ 18.3.1 Calling your Dyalog.Net Class from Dyalog APL

To use the .NET class that you have just created, you follow exactly the same procedure as for any other

NET class. First you have to set JUSING to the appropriate value:
UUSING<«'Maths,General.d11l'

By way of checking that the class is visible to APL, typing its name at this point will print the full

namespace-qualified name of the class in the Session, surrounded by parentheses to indicate a class name.
Spectrum

(Maths.Spectrum)

An instance of the class is created using the OV EW system function:
S<0ONEW Spectrum

167

K

o Day2: Fourth Generation Dyalog APL - The Internet o

Create an arbitrary rank array of data whose Fourier Transform is to be found.
O«R«<2 2 10p4002400

180 95 12 213 350 139 187 273 82 243

150 331 177 34 341 69 371 345 332 28

391 126 301 61 336 319 31 325 254 36
233 263 43 148 246 153 274 333 305 306
Applying the transform followed by its inverse reproduces the original data, now with an explicit zero
imaginary component.

S.iftcS.ftcR
180 0 95 0 12 0 213 0 350 0 139 0 187 0 273 0 82 0 243 0
150 0 331 0 177 0 34 0 341 0 69 0 371 0 345 0 332 0 28 0

391 0 126 0 301 O 61 O 336 0 319 0 31 O 325 0 254 0 36 O
233 0 263 0 43 O i48 0 246 O 153 0 274 O 333 0 305 0O 306 O

(From Dyalog version 10 onwards it is possible to display ActiveX controls and .NET classes in the cells of
a Grid object. This, thanks again to John Daintree, introduces considerable scope for new applications.)

§§ 18.3.2 Calling your Dyalog.Net Class from C# and VB.NET

NET classes created using Dyalog APL may be called from any .NET language just like any other .NET
class. The assembly .dll file, in this case general.dll, and any supporting .dll files, in this case fftw.dll, have
to be shipped. The only other Dyalog files that have to be shipped to the machine intending to use the class
are bridge110.dll, dyalognet.dll and dyalog110rt.dil, the Dyalog APL runtime engine.

§§ 18.3.3 Complications

We have attempted to give a straight-forward view of .NET from an APL point of view. Many of the 'new'
concepts have been part of Dyalog APL since its inception — data encapsulation, method overloading,
exception handling ... - and many have already been incorporated in a natural way into Dyalog APL —
namespaces, threads, sockets ...

The reality of .NET is not as clear-cut as an APL programmer would wish. There are inevitably a number
of complications. We have neglected at least those we can discern in the belief that the straightforward
picture is the best foundation on which to build.

However, we note here a couple of the grey areas that you will encounter on deeper investigation of .NET.

o .NET namespaces may be spread over more than one assembly, as you already know.

e Some C functions do not return their results, but rather they store them in memory at specific
locations indicated by pointers, which they do return. In Dyalog.Net this eventuality is resolved
using ByRef ¢ in Dyalog i supplied in bridge110.d11 a.

e Classes are not the only members of assemblies. Assemblies may also contain Enumerations,
Interfaces and Structs. We have ignored these topics because they do not appear to introduce
anything particularly illuminating, but just complicate for an APLer an already complicated picture.

183315ee Dylog.Net Interface Guide chapters 1 to 4 and ..samples\APLClasses\... for further study. Please
ask for the next module on ASP.NET ©.

R N

(OBERTSON ROBERTSON

Module19: Dyalog.Asp.Net

APL and its applications may yet lead the World through cyberspace! The empowering key is that Dyalog
APL programs may be run remotely by, with or from practically any Internet browser on the Planet. There
are (almost) no excuses left. If APL is as good as we think it is then it should begin to shine through IE7.

§ 19.1 Dynamic Web Pages
§§ 19.1.1 Active Server Pages in VBScript or JScript

The early Internet worked by a browser requesting a page from a server and the server delivering the
requested page back to the browser in HTML format. A server is identified by its IP address (or the
corresponding domain name translated via a DNS) and a port number (generally port 80).

In 1995 Sun and Netscape incorporated Java into Netscape Navigator. Essentially, Sun added some new
tags into HTML that will run Java programs inside a web browser that is Java-enabled. Java programs that
run in web browsers are called applets. They heralded dynamic Internet sites by incorporating client-side
programs. When you use a Java-enabled browser to view a page that contains an applet, the applet’s code
is transferred to your system and executed by the browser's Java Virtual Machine. Employing local
processing like this can enhance an Internet site in many ways, from generating complex drawings, graphics
and animations, to getting better control of the mouse, keyboard and available fonts. However, all this
requires local facilities that are not yet enabled on the vast majority of browsers.

Active Server Pages (ASP) introduced by Microsoft in 1996 added a complementary facility. ASP heralds
dynamic Internet sites by incorporating server-side programs. When a browser requests an ASP, the web
server generates, via some COM-enabled language, a page in HTML code, and sends it back to the browser.
Dyalog APL can create OLEServer objects and can therefore gain access to this technology. Note that it
does not rely on any special atypical local facilities on the client side.

19111 yne http://81.187.162.51:8081 into your web browser or, egivalently, select [Webserver] in
www.dyalog.com to view the Dyalog.Asp example outlined below. The Dyalog web site on IP address
82.111.24.53, port 8081, if accessible from your (possibly prohibitively well protected) web location,
demonstrates the Dyalog APL ASP server, called ASPSVR.

If not accessible by you from the remote Dyalog web site, the Dyalog APL ASPSVR may alternatively be
installed and run locally on your computer.

1112nhownload ASPSVR.ZIP from the [Download Zone][Document Download Zone][ASPSVR] section of
www.dyalog.com and follow the instructions for a good introduction to "classic” ASP with Dyalog APL
version 9. A summary outline of the mechanism employed follows below.

The default HTML web page on this site is called default.ntm. The web page involves frames and
therefore it automatically requests a couple more sub-pages including toc.htm as highlighted below.

default.htm

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>...

<frameset cols="30%,70%">

..<frame name="toc" marginwidth="1" marginheight="1" src="toc.htm" target="main" />...
</html>

The DOCTYPE line is included so that web authors can validate their HTML documents. There are many
variations. None is necessary, but one recommended choice favours HTML 4.01 validation:

169

http://81.187.162.51:8081/
http://www.dyalog.com/
http://www.dyalog.com/

R &

onv Day2: Fourth Generation Dyalog APL - The Internet o

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 TRANSITIONAL//EN"
"http://www.w3.0rg/TR/1999/REC-htmI401-19991224/loose.dtd" >

The table of contents file, toc.htm, contains a link to an ASP file called dyalog.asp, as does another sub file
in the web site, loan.htm. These two files call dyalog.asp in different ways. Both approaches ultimately
lead to the main goal; execution of a program in Dyalog APL.

toc.htm

..<td><a href="loan.htm"
..<td>Sage Driller</td>
..<td>Fourier...

loan.htm

..<form action="dyalog.asp" method="GET" name="LoanForm"

..<td><input type="text" size="9" name="LoanAmt"></td>

..<td><input type="text" size="6" maxlength="6" name="PercentDown"></td>
..<p><input type="submit" value="Calculate Repayments"></p>

..<input type="hidden" name="DWSAction" value="loan.RUN">...

Dyalog.asp being called here is an active server page file written in VBScript. The script creates an
instance of an OLEServer called dyalog.ASPSVR that owns an exported method called MakeHTML. This
function is passed an argument consisting of some string following a query (?), eg
DWSAction=rain.Fourier&format=PNG in toc.htm above. MakeHTML runs in Dyalog APL and may
execute any APL code as long as its final result is HTML. However, VBScript is generally only supported
by the Microsoft browser IE and the alternative language, JScript, is not enabled by default.

dyalog.asp

<% @Language = "VBScript" %>

.. Set aplsvr = Server.CreateObject("dyalog.ASPSVR")
.. strQuery = Request.QueryString

..Response.Write aplsvr.MakeHTML (strQuery)...

The Dyalog OLEServer dyalog.ASPSVR is created from workspace aspsvr.dws. [File][Export] generates
aspsvr.dll, which must be registered on the server using regsvr32.exe. When used, aspsvr.dll is run in
conjunction with C:\WINDOWS\system32\dyalog.dll. Within the aspsvr.dws workspace, the function
#.ASPSVR.MakeHTML is exported as a method. The essence of this function is:

VHTMIL<MakeHTML PARS;NS;FN;DWSPARS;INST;01I0;0ML
DWSPARS PARS<«SplitPars DeCode " '8&='Split PARS
HTML<e¢FN,' 4+PARS'

Y

Once registered, the OLEServer may be tested in Dyalog.
"ASV'WC'OLEServer' 'dyalog.ASPSVR'

pASV .MakeHTML'DWSAction=1loan.RUN'L3759

pASV .MakePicture'DWSAction=rain.Timeseries&format=PNG'b20L

In the Dyalog.asp example above, this OLEServer is used to drive a web server that can execute Dyalog
APL code remotely. This scenario is reminicent of mainframe timesharing for 1* generation APLs!

iQ Module19: Dyalog.Asp.Net Q

OBERTSON ROBERTSON

§§ 19.1.2 The System.Web.UI.Page Class

In 2002 “classic™ ASP was superseded by ASP.NET. ASP.NET is part of Microsoft .NET and therefore has
full .NET support for languages such as VisualBasic.NET, C#, .. and Dyalog APL.

In Windows, an Internet site is hosted by 1IS, the Internet Information Service. 11S must be installed from
the Windows CD before .NET is installed. And .NET must be intalled before Dyalog APL and the Dyalog
APL 11.0 .Net Interface Components.

An ASP.NET page is identified by the extension .aspx (as opposed to .asp for classic ASP). All executable
code is moved out of the <htmI> section and into a new <script> section of the file.

As far as the programmer is concerned, the dynamic part of ASP.NET pages is built with graphical controls
in a way similar to a standard Windows user interface, and the program dynamics is event-driven like all
Windows GUI applications. For example, a web button is assigned properties and responds to events.
However, rather than being immediately drawn, web controls in segments of html-plus-script are built on
the server and form part of the resulting page sent to the end-user's browser.

On receipt of a request for a .aspx page, the ASP.NET engine within 11S automatically creates a class that
derives from the System.Web.UI.Page class. This dynamically created class is immediately compiled and
run to produce html which is returned to the client.

Multi-user access is managed by 1IS. In particular, I1S maintains one distinct AppDomain for each
ASP.NET application currently running.

19121copy the following code into Notepad and save the file as C:\Inetpub\wwwroot\VB1.aspx, then type
http://localhost/vb1.aspx in IE. A button asking to be clicked should appear in IE.

C:\Inetpub\wwwroot\VB1l.aspx

<html>

<body>

<form runat="server">
<asp:Button id="button1" Text="Click me!" runat="server" />
</form>

</body>

</html>

In ASP.NET, all HTML server controls must be within a single <form> tag with the runat attribute set to
"server". Note that there can only be one <form runat="server"> control per .aspx page. The
runat="server" attribute indicates that the control is to be processed on the server. It also implies that
controls enclosed in <asp: .. > may be accessed by server scripts.

19122 add the VB script section in pink to vb1.aspx. Note the addition of the OnClick event that initiates the
VB submit callback when the button is pressed. Save this as C:\Inetpub\wwwroot\VB1.aspx and press the
button from http://localhost/vbl.aspx. Note that all executable code resides outside the <htmlI> tags.

C:\Inetpub\wwwroot\VB1l.aspx

<script Language="VB" runat="server">
Sub submit(Source As Object, e As EventArgs)
buttonl.Text="You clicked me!"
End Sub

171

http://localhost/vb1.aspx
http://localhost/vb1.aspx

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

</script>

<html>

<body>

<form runat="server">
<asp:Button id="button1" Text="Click me!" runat="server" OnClick="submit"/>
</form>

</body>

</html>

Within the submit function all sorts of other VB code could be added, eg
buttonl.Style("background-color")="#0000ff"
button1.Style("color")="#ffffff"

buttonl1.Style("width")="200px"

buttonl.Style("cursor")="hand"
buttonl.Style("font-family")="verdana"
buttonl.Style("font-weight")="bold"
buttonl.Style("font-size")="14pt"

buttonl.Text="A New Caption"

A second example of the OnClick event, this time involving a TextBox control, is shown in VVB2.aspx below.
You will convert this example from VB, the default language, to Dyalog in exercise 19.2.1.1.

C:\Inetpub\wwwroot\VB2.aspx

<script runat="server">

Sub submit(sender As Object, e As EventArgs)
labl.Text="Your name is " & txtl.Text

End Sub

</script>

<htmlI>

<body>

<form runat="server">

Enter your name:

<asp:TextBox id="txt1" runat="server" />
<asp:Button OnClick="submit" Text="Submit" runat="server" />
<p><asp:Label id="labl" runat="server" /></p>
</form>

</body>

</html>

When a browser makes a request for an ASP.NET web page, the request is first sent to the server implicated
by the URL. If itis a Windows server, 1IS receives the request, recognises the .aspx extension, and passes
the request on to ASP.NET for processing. ASP.NET creates an instance of the System.Web.UI.Page class
from the .aspx file contents.

When a page is created the Load event is triggered. By default, ASP.NET tries to find the special method
name Page_Load on the page. If a match is found, the function is considered to be a handler for the Load
event. In other words, Page_Load is taken to be the callback attached to the Load event.

19123 add the following file to your default web site and run it in IE. Notice how the time changes on
refresh.

C:\Inetpub\wwwroot\VB3.aspx

<script runat="server">

Sub Page_Load

labl.Text="The date and time is " & now()
End Sub

iQ Module19: Dyalog.Asp.Net Q

OBERTSON

</script>

<html>

<body>

<form runat="server">

<h3><asp:label id="lab1" runat="server" /></h3>
</form>

</body>

</html>

The Page_Load subroutine runs every time the page is loaded. If you want to execute the code in the
Page_Load subroutine only the first time the page is loaded, you can use the IsPostBack property of a Page
object — ie an instance of the Page class. If the IsPostBack property is false (0), then the page is being
loaded for the first time. If IsPostBack is true (1), the page is being posted back again to the server.

Y124 ncorporate the 'If* condition into VVB3.aspx and notice the different response on [View][Refresh].

<script runat="server">

Sub Page_Load

If Not Page.IsPostBack then
labl.Text="The date and time is " & now()

End If

End Sub

§§ 19.1.3 The System.Web.UI .WebControls Namespace

There are two groups of controls available to the web programmer. There are the standard ones used to
present web pages, including dynamic ones for client-side scripts. And there is a new set of dynamic
controls for ASP.NET server-side scripts.

Under .NET, the first group is located in the System.Web.UIl.HtmIControls namespace. These map
directly to standard HTML tags supported by all browsers. They allow simple programmatic control of
HTML elements on any HTML or ASP.NET page. The second group is ASP.NET specific and is found in
the System.Web.Ul.WebControls namespace. Here is a list of some of them. They are distinguished by
the fact that they may be used to initiate a program on the server.

A Label —| Button # Reset Button
£ Submit Button Jsbl Text Field et e IE Fie Field
frk PasswordField W Chedkbex (¢ Radio Button bl Hidden
[E] Table (=] Flow Layout Panel [E] Grid Layout Panel Image
EH Listbox ER Cropdonn [=] Horizonta! Rule

Any of these web controls may be included in the .aspx <form> tag like this:

<asp:HyperLink id="HyperLink1" runat="server">HyperLink</asp:HyperLink>
<asp:RadioButtonList id="RadioButtonList1l" runat="server"></asp:RadioButtonList>
<asp:DropDownlList id="DropDownListl" runat="server"></asp:DropDownList>
<asp:ListBox id="ListBox1" runat="server"></asp:ListBox>

<asp:Image id="Imagel" runat="server"></asp:Image>

<asp:AdRotator id="AdRotatorl" runat="server"></asp:AdRotator>

<asp:Table id="Tablel" runat="server"></asp:Table>

<asp:Calendar id="Calendarl" runat="server"></asp:Calendar>

<asp:DataGrid id="DataGrid1" runat="server"></asp:DataGrid>

173

K

o Day2: Fourth Generation Dyalog APL - The Internet o

Usually callbacks are set on appropriate events on these controls. For example, a form is most often
submitted by clicking on a button.
<asp:Button id="id" text="label" OnClick="submit" runat="server" />

There is also a set of controls whose job it is to validate entry into certain web controls. eg

<asp:RequiredFieldValidator id="RequiredFieldValidatorl" runat="server"
ErrorMessage="RequiredFieldValidator"> </asp:RequiredFieldValidator>
<asp:CustomValidator id="CustomValidatorl" runat="server"
ErrorMessage="CustomValidator"> </asp:CustomValidator>
<asp:ValidationSummary id="ValidationSummary1" runat="server"></asp:ValidationSummary>

For example, to restrict the contents of a TextBox called tbox1 to integers between 1 and 100, a
RangeValidator may be set to:

<asp:RangeValidator ControlToValidate="tbox1" MinimumValue="1" MaximumValue="100"
Type="Integer" EnableClientScript="false" Text="The value must be from 1 to 100!"
runat="server" />

A more complete list of controls can be found at the official ASP.NET web site, http://www.asp.net.

§ 19.2 Dyalog Script Language
§§ 19.2.1 Callbacks in Dyalog APL

The script in file C:\Inetpub\wwwroot\VB1.aspx is written in the default scripting language, VB .NET. In
order to rewrite it in Dyalog APL it is necessary to set the Language attribute to *'dyalog™ in Dyalog
version 11 (or "apl™ in version 10). Then all that needs to be done is to convert the Visual Basic .NET code
into Dyalog APL code ©.

C:\Inetpub\wwwroot\APL1.aspx

<script language="dyalog" runat="server">
Vsubmit args
tAccess Public
:Signature submit Object Source, EventArgs e
buttoni.Text<«'You clicked me!'
v
</script>
<html><body>
<form runat="server">
<asp:Button id="button1" Text="Click me!" runat="server" OnClick="submit"/>
</form>
</body></html>

The : Access Public statement means the function may be called from outside the script.

The : Signature .. statement is the equivalent of Source As Object, e As EventArgs and defines the
dataTypes of the standard incoming event message arguments. These arguments are not actually used in
this particular APL code, although the third line could have been coded as

(nargs) .Text<«'You clicked me!'

1211convert C:\Inetpub\wwwroot\VB2.aspx to C:\Inetpub\wwwroot\APL2.aspx and test it in IE.
Hint: See [Control Panel][Regional and Language...][Languages][Details][Settings]
and the Dyalog.Net Manual Chapter 10 for scripting APL in Notepad.

http://www.asp.net/

Q Module19: Dyalog.Asp.Net

Note that JUSING may be assigned inside the <script> tags, indicating that the full power of the .NET
framework, as well as the full power of Dyalog APL, may potentially be summonsed from any browser.

§§ 19.2.2 Workspace behind ...

19221gtart the Dyalog.Net tutorial at www.dyalog.com by selecting [Products][Dyalog for
Windows][Microsoft .NET Interface][Web Pages Tutorial] or by typing http://81.187.162.51/tutorial.net
directly into your browser. Run the examples and view the explanation of each.

In the example ..\tutorial\intro6.aspx, the entire <script> section is replaced with a reference to a
workspace, fruit.dws, which contains a single namespace called FruitSelection.

19222¢0py the file .\Samples\asp.net\tutorial\intro6.aspx to C:\Inetpub\wwwroot\intro6a.aspx and
change the name of the workspace being called to C:\Inetpub\wwwroot\fruity.dws

C:\Inetpub\wwwroot\intro6a.aspx

<% @Page Language="Dyalog"
Inherits="FruitSelection"
src="fruity.dws" %>
<html>
<h1l>intro6: Workspace Behind</h1>
<p>This example illustrates how you can use an APL workspace.</p>

<body>
<form runat="server" >
<asp:DropDownlList
id="list"
runat="server"
autopostback="true"
OnSelectedIndexChanged="Select"/>
<p>
<asp:Label
id=out
runat="server" />
</p>
</form>
</body>
</html>

The only function explicitly called from the workspace is the callback, Se Iec ¢, on the DropDownL.ist.

19223Create a new workspace called C:\Inetpub\wwwroot\fruity.dws and within it create the following
NetType object and functions (exported as methods), then navigate to http://localhost/intro6a.aspx .

JWSID C:\Inetpub\wwwroot\fruity.dws

was CLEAR WS
Ousing«'' 'System.Web.UI,System.Web.dll'
'FruitSelection'[JWC'NetType'('BaseClass' 'Page')
)cs FruitSelection

#.FruitSelection

The only function explicitly called from the workspace is the callback, select, which we define as:

vV Select args
out.Text«'You selected ',list.SelectedItem.Text
\4

175

http://www.dyalog.com/
http://81.187.162.51/tutorial.net
http://localhost/intro6a.aspx

K

oneaTss Day2: Fourth Generation Dyalog APL - The Internet somemr

The contents of the DropDownList control is initially empty. We can use the Page_Load callback to
initialise the control contents.

vV Page_load
:If 0=IsPostBack
list.Items.Add<'Raspberry'
list.Items.Addc'Blackberry’
list.Items.Addc'Grape'
list.Items.Addc'Mango’
tEndIf

These two methods must be exported as Public methods and their calling structure must be set appropriately
in the [Properties][.Net Properties] popup boxes invoked by right-clicking on the current (curobj) function.

2 #.FruitSelection.Select - Properties E| 2| #.FruitSelection.Page_Load - Properties E|
Properties | Yalug | Monitor | Met Properties Properties | Yalug | Monitor | -Met Properties
Param Name ‘ Tupe | odifier | Optional ‘ Param Name | Type | M odifier ‘ Optional |
Fesult System Vaid v v Result System.Yoid v v
Paramil System. O bject hd w]
Paramz System.Eventirgs v “ O
Help 1o Help 1o
(%) Method () web Method () Prop Get () Prop Set (%) Method () web Method () Prop Get () Prop Set
[“IFubig [5tatic [J¥irtual [Constiuctor Public [Sitatic [Cirtual [Canstructor
[Protected [Protected

As shown in the online tutorial, in place of a workspace the APL code may be saved as a class in a script
file with extension .apl. This is more consistent with standard language methodology, called code behind
rather than workspace behind, but it loses the most advantages of working with APL workspaces.

(Alternatively, a primitive APL class called FruitSelection may replace the Net Type object. This
approach is more consistent with the latest standard language methodology and is pursued in §20.)

19224Convert ..\tutorial\intol.aspx to use a "workspace behind" rather than a scripted function.

§§ 19.2.3 The TextBox Control

We are now in a position to implement a very basic APL session hosted inside IE. The session window
might be represented by a TextBox control whose TextMode attribute is set to "multiline”.

. <body style="font: 10pt verdana">
<form runat="server">
<h3>Dyalog ASCII</h3>
..<asp:TextBox id="txt1" textmode="multiline"
runat="server" rows="20" cols="50"
acceptsReturn="1"></asp:TextBox>...
</form></body>...

Q Module19: Dyalog.Asp.Net Q

ROBERTSON

A line typed into this TextBox may be executed on the server in Dyalog APL, using a button to initiate
execution. Note: until Unicode is standard, no APL font can be assumed to exist on a typical client PC.

..<p>
<asp:Button id="btn1" Text="Execute" runat="server"
NotifyDefault="1" onclick="Execute"/>

</p>..

The <script> section is replaced by a file with an opening line such as:

\ <% @Page Language="dyalog" Inherits="MySession" src="ascii.dws" %> \

The workspace ascii.dws contains a Net T'y pe object called ¥y Session whose BaseC lass is the

System.Web.UI.Page class. MySess ion contains just one function, Execut e that is exported with
properties similarto # . FruitSelection.Select above.

Inside the APL Execute function, the text in the TextBox is extracted from tx¢1.Text. The line of text
Is executed and the result (or 0D¥ in the event of an error) is inserted back into t xt1.Text.

. MySession. Execute

File Edit Wiew Options

Execute args;in:out fi Button callback
inetwtl.Text A contents of TextBox
f tie«'d:~temp'OFCREATE 0 A simple debug
A in OFAPPEMD tie A check on shape of 'in
A OFUNTIE tie

AR o
out«F4, in f output
out<0EH OEN fi error

tutl.Text«in, (3=0TC, ,out, C3=0TC)

Function Last saved by: Graeme:04 July 2006 13:00 | Pos: 0,1

1923 \Write a page called ..\ascii.aspx which invokes a "workspace behind" called ascii.dws that executes
lines of ASCII text as if they were in some APL font.

A hitp:/lgraemexplascii.aspx - Microsoft Internet Explorer - @I‘
I
o

Fle Edt vew Favortes Jodk Help

Gsack - @ \ﬂ \EL‘) /.7‘=search ‘»:"\}'Favontes
Address | @] http:igrasmexpjascii aspx v B co ks >
Search 5] Dyalog Business
Dyalog ASCIT

33/33/0111 2 3,[0.514 5 6 -~
111111111111111111111111
111111111z2222222222222¢2¢2
zzz2z22222222222222333333
33333933333333333333333733
333
111111111111111111111111
111111111222222222222222
zzzzz22zzzz2z2222223333733
3333533333333333333333333
333
111111111111111111111111
111111111z2222222222222¢2¢2
zzz2z22222222222222333333
33333933333333333333333733
333
111111111111111111111111
111111111222222222222222
zzzzz22zzzz2z2222223333733
3335333333333333333333333 ¥
&] Done J Localintranet

Despite obvious font restrictions, ascii still allows parentheses, brackets, quotes and some primitives such as
+ - % ! 2| , ~<=> a1\ /& . and # tobetyped indirectly.

177

R &

onv Day2: Fourth Generation Dyalog APL - The Internet o

Other APL primitives would be usable (with different symbols such as + for o or w» for 1 or, for <), if only
they could be typed or pasted into a TextBox in IE. What can be typed into a typical Windows application
depends on the Windows Language in operation. In XP, this is found in [Control Panel][Regional and
Language ...][Languages][Details][Settings]. Notice the Dyalog APL New Keyboard is installed here. It
enables you to write APL scripts in Notepad. Note, however, that the Input Method Editor is only present
on a computer that has Dyalog installed and is unavailable in a general web setting. The availability of
different scripts in IE is constantly improving, as can be seen from Microsoft web site:
http://www.microsoft.com/windows/ie/ie6/downloads/recommended/ime/ . Perhaps, in Dyalog APL 12
under Vista, Unicode will be fully supported for input into IE in any language, but keyboard limitations are
likely to be a constraint until they move from 8 bit to 16 bit devices. (Even applications such as Microsoft
Word that store text in Unicode generally rely on 8-bit keyboards.)

Recipients of mail to the dyalogusers group on Yahoo and readers of \Vector (the Journal of the British APL
Association - see http://www.Vector.org.uk) will know that Stephen Taylor has developed an APL
‘sandbox’ along the lines outlined above, accessible through the Internet.

§ 19.3 Remote Applications

The future of most APLer’s will be programming APL applications for the Internet platform. Dyalog APL
can already support this in a number of ways.

We first saw this achieved using TCPSoc ket objects in §§15.2.3 in the workspace APLSERVE.DWS.
The main hurdle there was interpretation of the Hypertext Transfer Protocol that surrounds browser packets
(as most recently defined in RFC2616 for HTTP/1.1, dated June 1999). This is what IIS handles and is
therefore not necessarily a hurdle for an APL Windows web server. However, we still have to converse
with browsers, which basically talk in Hypertext Markup Language (HTML, including scripting).

Then we executed APL remotely through dyalog.ASPSRV, an OLEServer control that we called through a
classic ASP page in a file called Dyalog.asp written in VB Script. But the OLEServer has to be installed
and registered on each local computer, and VB Script has to be enabled on the browser.

Now we are running APL and ASP.NET through IIS. This assumes very little about the client browser.
The ability to support zero-footprint clients would seem to be the main road to ‘everywhere’ ©.

All specifically APL web site considerations have been forced onto the server side. Browsers may therefore
be viewed as extensions of APL-supported hardware - like keyboards, screens or printers - and the business
of writing APL programs on the Internet platform now can begin without client-side impediments.

The primary thrust of .NET would seem to be ASP.NET, ADO.NET and the facilitation of web services.
Microsoft has been aiming at the Internet since 1996, first through its abstract DNA (Distributed interNet
Architecture) methodology - a way to think about writing applications — and then through ASP whereby a
set of technologies implementing a DNA solution are glued together and distributed over the web.

The novelties in .NET seem to mostly concern the Internet. System.Web is the primary new functionality
in .NET. The first Microsoft Internet site was born in early 1993 and Microsoft launched its public Internet
Web domain with a home page in 1994. In 1995 Bill Gates commented, "Amazingly, it is easier to find
information on the Web than it is to find [the] information on the Microsoft Corporate Network!" And in
the same year Microsoft Internet Explorer 1.0 barged into Windows. As has been said of the evolution of
mankind, Bill might say, "We got here as soon as we could!"

http://www.microsoft.com/windows/ie/ie6/downloads/recommended/ime/
http://www.vector.org.uk/

f& Module19: Dyalog.Asp.Net Q

OBERTSON ROBERTSON

§§ 19.3.1 The C:\Inetpub\wwwroot\ Directory

Who is going to serve your Active APL Host (Aah!)? In order to follow the route outlined above, you will
need an ISP that supports the .NET framework, and ASP.NET under IIS (ie Windows), and runs Dyalog
APL. Each requirement reduces the choice of providers and increases the cost of the web site. The best
solution is to host you own site on a dedicated box in the cellar, suitably isolated, and protected.

193110ptain a static IP address that can be pinged from outside world. Give your IP address an available
name, such as apl4.net, and register the name with a Domain Name Server. But, for limited use on a
private intranet you may instead use your computer’s full name as given in [Control Panel][System].

19312 eploy your web site by copying files such as index.aspx into directory C:\Inetpub\wwwroot\. Try
to access your site from the outside world by typing http://apl4.net. Once you are able to run APL like this
then it is time to prepare your welcome to visitors from outer-cyberspace.

In the mid '80s there was a debate within I.P.Sharp Associates (IPSA) of Canada as to which was the more
important; the Sharp Communications Network which encircled the World and carried electronic mail and
data, or Sharp APL, the leading APL language of the time. APL timesharing collapsed with the appearance
of PCs and STSC APL*PLUS/PC. Sharp APL/PC proved too slow to be useful and Reuters bought out
IPSA in 1987. Not surprisingly, Reuters primarily desired the international network, not Sharp APL.

In fact, one complements the other. A communication system without storage of state information, like the
old telephone system, is of great but limited use. And an undistributed computer language has great but
limited value. The early manifestation of the Internet was like the old telephone network. Information was
passed around but little if any input was saved and processed. The move now is towards a stateful Internet
that remembers the prior state between messages.

If you look at [View][Source] in IE for a .aspx page you will find that <asp: ..> contols are converted to
hidden standard HTML controls when the page is sent. These hidden controls store information about the
state of the ASP.NET controls. For example, you might find source HTML like:

<form name="_ctl0" method="post" action="page.aspx" id="_ctl0">
<input type="hidden" name="__VIEWSTATE"
value="dDwtNTIOODU5MDE10zs+ZBCF2ryjMpeVgUrY2eTj79HNI4Q="/>...

The _VIEWSTATE field holds the detailed status of the page sent by the server. The status is defined through
this hidden field placed by the server on each page which has a <form runat="server"> control.

(A separate attempt to save basic state data is by way of local cookies. Therefore note that while developing
a web page it is sometimes necessary to delete all saved cookies in IE by way of [Tools][Internet
Options...][Delete Cookies...] in order to get IE to respect your program changes.)

ASP.NET adds another mechanism for storing state information. There is a .NET session class called
System.Web.SessionState.HttpSessionState ¢. Itallows storage between transactions. The
excellent tutorial in http://localhost/dyalog.net/tutorial/ shows examples of the Sess ion object.

Another important leg of Microsoft's .NET march onto the web is ADO.NET. This is all about how to store
and retrieve larger volumes of information. But once inside APL, storage of data is not a problem. Either
native or APL component files are suitable for voluminous permanent records, although many other
database systems can be handled through APL eg via SQAPL. The parent namespace of the current
AppDoma in (##) may also be used to store temporary individual user information...

179

http://apl4.net/
http://localhost/dyalog.net/tutorial/

K

onv Day2: Fourth Generation Dyalog APL - The Internet Q

§§ 19.3.2 The System. Drawing Namespace
19321Convert the vscribb Lev function in §17.3.1 into a drawing on your web site.

Sierpinski's gasket is named after Polish mathematician Waclaw Sierpinski (1882-1969). His gasket, or
fractal triangle, is constructed by taking an equilateral triangle, dividing it into four smaller equilateral
triangles, removing the centre triangle and repeating the process with each of the smaller triangles.

An algorithmic version for creating an approximation to Sierpkinski's gasket goes something like this:

Create a triangle, labelling each point of the triangle as P1, P2, and P3.

Pick a point within the triangle - call it CurrentPoint.

Randomly choose a number between 1 and 3.

If the value is 1, move CurrentPoint to the mid-point of the line between CurrentPoint and P1.
If the value is 2, move CurrentPoint to the mid-point of the line between CurrentPoint and P2.
If the value is 3, move CurrentPoint to the mid-point of the line between CurrentPoint and P3.
Draw a pixel at the new CurrentPoint.

Return to Step 3 (more returns give a sharper the image).

N Ga~wWNE

This algorithm is implemented in C# script. It may be run under 11S from IE to produce the picture below.

C:\Inetpub\wwwroot\serp.aspx

<% @ Page Language="c#" %>
<% @ import Namespace="System.Drawing" %>
<% @ import Namespace="System.Drawing.Imaging" %>
<script runat="server">
void Sierpinski(int width, int height, int iterations)
{ // create the Bitmap
Bitmap bitmap = new Bitmap(width, height);
// Create our triangle's three Points
Point top = new Point(width / 2, 0),
bottomLeft = new Point(0,height),
bottomRight = new Point(width, height);
// Now, choose our starting point
Point current = new Point(width / 2, height / 2);
// Iterate iterations times
Random rnd = new Random();
for (int iLoop = 0; iLoop < iterations; iLoop++)
{ // draw the pixel
bitmap.SetPixel(current.X, current.Y, Color.Red);
// Choose our next pixel
switch (rnd.Next(3))
{ case 0:
current.X -= (current.X - top.X) / 2;
current.Y -= (current.Y - top.Y) / 2;
break;
case 1:
current.X -= (current.X - bottomLeft.X) / 2;
current.Y -= (current.Y - bottomLeft.Y) / 2;
break;
case 2:
current.X -= (current.X - bottomRight.X) / 2;
current.Y -= (current.Y - bottomRight.Y) / 2;
break;
b

b
// Save the image to the OutputStream

iQ Module19: Dyalog.Asp.Net Q

OBERTSON ROBERTSON

Response.ContentType = "image/jpeg";
bitmap.Save(Response.OutputStream, ImageFormat.Jpeg);
// clean up...
bitmap.Dispose();
b
void Page_Load(Object senter, EventArgs e)
{
Sierpinski(200,200, 10000);
b
</script>
<htmlI>
<head></head>
<body></body>
</html>

19322Rewrite serp.aspx in ‘Dyalog.Asp.Net’.
Hint: Consider incorporating the DFn below, beautifully
crafted by Nicolas Delcros and Gérard Langlet.

m sienpinski

File Edit Yiew
[0l Eierpinski«{010+0 # from Gérard Langlet's Algorithm
[1] wesupl 0 A start
[21 w0t ="[1e] f final display
[3] (fe# o),) (w-13 A following line is #< previous line
[4] 3

Mew Function Last saved by: Pos: 0,1

§§ 19.3.3 The System.Web.Services Namespace

A .aspx file is a prescription for a Web Page via classes in the System.Web.UI namespace. The client-
server communication can then be considered at the HTML level. A Web Page is a class that expresses its
functionality (properties/methods/events) through a standard web browser.

A .asmx file is a prescription for a Web Service via classes found in the System.Web.Services nhamespace.
The client-server communication can be considered at the XML level (rather than the deeper HTTP level).
A Web Service is a class that exposes its functionality (properties/methods/events) over the Internet. IE can
give a basic rendering of such a service, but generally the client is expected to cater for the service through
an explicit local client interface application.

For both Web Pages and Web Services, Dyalog APL code is controlled and run by the ASP.NET engine
inside Microsoft IIS.

More generally, web services form the foundation of Microsoft's interoperability efforts. Thus Windows
Vista supports XML level interaction with web-service-enabled devices, such as printers, digital cameras,
and home control systems.

A .asmx file defines a class. It looks rather like a .apl file which defines a namespace in script form, except
that it begins with a line looking like the opening line of a .aspx file. In the case of .asmx, this opening
statement in the script file declares the language and the name of the service. For example, the following
statement declares a Dyalog APL Web Service named GolfService.

<% @ WebService Language="Dyalog" Class="GolfService" %>

Details of this excellent example may be found in the Dyalog.Net Interface manual, chapters 6 and 7, and
working code may be called from C:\Program Files\Dyalog\Dyalog APL 11.0\Samples\asp.net\golf\.

181

K

e Day2: Fourth Generation Dyalog APL - The Internet

The following very simple example of a web service is to be found amongst the many good samples
distributed with Dyalog APL.

C:\Program Files\Dyalog\Dyalog APL 11.0\Samples\asp.net\webservices\egl.asmx

<% @ WebService Language="Dyalog" Class="APLExample" %>

:Class APLExample: System.Web.Services.WebService
:Using System
:Access public
V R«Add arg
:Access WebMethod
:Signature Int32«Add Int32 argl,Int32 arg2
R«+/arg
v
:EndClass

The precise interpretation of this script is deferred until Module 20.

19331Call this service in your browser by typing http://localhost/dyalog.net/eq1.asmx?op=Add.

Here is a summary of the various types of files that we have encountered here, and their possible contents.

We introduce here the symbol § to indicate the end of a control statement or tag.
Note the double and triple dot single-character symbols for implied missing code and other shorthands:

e ooa... must end with (implicit or explicit)),], }, ', ¢, T or 8.
e ooa..ww can march right through () < or v’s but not o 7 or 8.
e ..ww can have been through () < v’s ¢ or I but not 8.

File Type Script Summary {optional}

*.html <html>«...</html>

*.aspx <script...Tv...§<html>...§

*.aspx <%@Page.. *.apl"%><html>... 8

*.aspX <% @Register..<html>..<dyalog: ...§... A for custom control
*.apl {:Namespace...T }:Class...TOUSING...TV...T :Property...§

*.apl :Namespace...70LX...7V...7..0WC... A for console appl”
*.dws #.0.[0WC'NetType' 'Page' containing VPage_Load... and other exported methods...
*.asmx <% @WebService..Class=..%>..7:Class..:Base...1...§

*.asax <script...TVApp_Start...§

*.asmx <% @WebService Class="n1.¢"§ A call pre-defined .dll
*.dws #.0.0.0WC'NetType' 'WebService' and exported web methods... A export to .dll

rows are signposts to the way ahead. We shall explore in some detail the new APL semantics
introduced for writing primitive APL classes in the next and final module of this course.

1933.2p|aase demand the final module ®.

http://localport/dyalog.net/eg1.asmx?op=Add

N '

ROBERTSON ROBERTSON

Module20:

§ 20.1 User defined Classes
§§ 20.1.1 The : Class Structure

In Object-Oriented terminology, a class is a blueprint, or scripted template, describing how to build an
instance of a certain type of object from a general programmatic definition. Such an instance, having been
created from the class template, has certain properties and can perform certain methods.

In Dyalog APL, a class is created from a script in much the same way as a traditional user-defined program
(function or operator) is created from a script. Both are editable via OeD, both may be fixed from a character
representation and both may be run or traced.

In a sense there already are classes in Dyalog. The 70+ built-in GUI ‘objects’ are really object factories for
particular types of objects (Form, Button, Group etc...). However, it is not currently possible to examine
their class definitions directly. (The property named Type is essentially the dataType of an instance.)

Dyalog version 11 allows you to write classes of your own and generate instances without replicating the
underlying program code. Classes have a lot in common with pure namespaces, but with extra
functionality. For example, editing and fixing a class, immediately changes all existing instances.

The essence of a class is a control structure in which methods, properties and fields (class members) may be
defined between the opening and closing keywords. (A structure is an essentially multi-line construct that
may or may not be amenable to diamondization, depending on the vagaries of the implementation.)

:Class MyClass¥..7:EndClass8§ a Basic class structure wherein members will be defined

In an analogous manner to)ED vMyFunction, a new class may be edited by the circle (o) key symbol.
JED oMyClass

File Edit Wiew

Ll iClass HuClass
[1] :EndClass

Mew Namespace Pos: 1,0

All class-specific details are defined inside this control structure.

{RefSc}«{BSc}IFIX VecCharVec a Fixa visible (if BSc=default=1) class (with Ref)

Alternatively, like function definition by 0OF X, a character representation of a class may be fixed by OF IX.
OFIX':Class MyClass' .. ':EndClass'
This creates a new sort of OO program called MyClass that is reported by objects and classes commands.

yClasses a Lists all classes in the space

)OBS
MyClass

)CLASSES
MyClass

As yet there exist no instances of our class, only the (empty) class definition and its reference (name).

InstRefSc«[INEW ClassRefSc A Creates an instance of a class (here with no arguments)

New instances of a class may be created (instantiated) with ONEW, and what is more, like 0bq,
YOU CAN TRACE INTO IT!

In this way you can follow the steps in the formation of an instance of a class.
MyInst<[JNEW MyClass

183

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

)Classes
MyClass

)Obs
MyClass MyInst

InstRefVec<«[JINSTANCES ClassRefSc a Return allinstances of a class

All the instances of a particular class (and their ancestry) are returned by OINSTANCES.
OINSTANCES MyClass
#.[MyClass]

pOINSTANCES MyClass b 1

We can create a vector of instances
MyInsts<[INEW '5pMyClass

MyInsts b #.[MyClass] #.[MyClass] #.[MyClass] #.[MyClass] #.[MyClass]
pMyInsts L 5

whose names are reported by the Name List system function applied to the given name class.
ONL 2 5 MyInsts

{ONL 9 5 MyClass Mylnst

OldCharArr<«[IDF NewCharArr A Sets the display form of the current space

The display form of all objects - namespaces, GUI objects, classes or instances — may be assigned to any

character array. For example,
MyInsts.[ODF 5t2p 0A

MyInsts v A4A BB CC DD FEE

Class definitions may be nested within broader classes, and class definitions may specify other (base)
classes or interfaces from which methods and properties may be inherited.

:Class MyClass : MyBase7..7:EndClass a Classes with inherited characteristics from a base class

The base class may be a Dyalog user-defined class, a .NET class, an interface or a Dyalog GUI class. In
this case the object following the irrational second colon in the first line of the class structure must be
surrounded by quotes as in, for example, :Class MyGUI : 'Form' Note that GUI objects may be
created with ONEW (in addition to Owc) by again surrounding the class name in quotes, eg by ONEW< ' Form'.

VecCharVec+[JSRC ClassRefSc A Returns a character representation of a class
By analogy with
"foo'=[JFX (CR'foo' &1
we can write

MyClass=[FIX [OSRC MyClass b 1

RefSc«[JTHIS A Returns a reference to the current space

This system variable may be defined by either identity
OTHIS=e''ONS'"' &1

or
OTHIS=e[CS'"' & 1

20L11create some instances of a particular class and investigate the extent to which they mirror the
behaviour of namespace clones.

iQ Module20: Dyalog APL Classes Q

OBERTSON

§§ 20.1.2 The : F i e L d Statement
A class is like a namespace, and a field in a class is like an APL variable in the namespace.

[Privatew (Instancew
:Field 9 r ¢ {Readonly} MyField a Defines a field called MyField
lPubtic J [shared J

The keystrings in the field statement may be pPrivate (the default if elided) or Public, Instance (the
default if elided) or shared. A public field is visible outside an instance or outside a class (if Shared). It
may also be defined as Readon Ly in which case it behaves rather like an ENUM.

The initial value of a field may be assigned in the : Fie L d statement through any APL expression.

:Field Public MyField<«expr A Defines a predefined public field called MyField

This is the most usual form of definition of a field. It is accessible from outside an instance of the class in
which it is specified, and it is initialised by an assigned expression at the end of the : Field statement.

If the field statement includes the keystring pub i c and also the keystring shared then the field is
accessible from outside an instance of the class and from outside the class itself.

2012\ rrite a class definition such as F LdCLass below and attempt to read and assign the values of the fields
A, B, ¢ and D directly from the class, and from an instance of the class. Find the result of ONL -2 in the class
and in an instance. Is there any operational difference between field A and variable £?

:Class FldClass

:Field A

:Field Public B

:Field Public C<«1

:Field Public Shared D<«2
E«3
:EndClass

20122Explain the resulting values of fields ¢ and b after

RefArr<[ONEW'3 3pFldClass
RefArr.C«3 3p16
RefArr.D<«3 3p16
RefArr.A<3 3pi16
IsrRefArr.A above a field? Set the display form of each instance in RefArr individually.

201231 instances of the nested classes below, change the value of both of the fields.

:Class MyClass!
:Field Public MyFieldl«1l
:Class MyClass2
:Field Public MyField2<«2
:EndClass
:EndClass

20L24Make the fields shared and note the difference. Is the value of a field in an instance always the same
as that in the corresponding class?

185

Q Day2: Fourth Generation Dyalog APL - The Internet Q

§8§ 20.1.3 Name sub Classifications of [INC

In version 11, names are sub classified. Below is one attempt to categorise these sub classifications.

[INC Instantiated by

Canonical 3.1 el
Dynamic 3.2 {1
.
Derived 33 opr
External 3.6 [INA
Canonical 11 del
Dynamic 12 0
Event 8.6 assign
Name Classification
Label 1 L:
Variable 2.1 assign
Dualities},' Field 22 Field
Property 2.3 Propernty
Objects Shared Variable 2.6 [Isvo
Namespace 9.1 [INS
GUI Object 9.2 [wc
= Instance 9.3 [INEW
Spaces | Class 9.4 Class
Interface 0.5 dInterface
.NET Class 0.6 by using
NET Interface a9.7 by using

The above view of the new classification scheme is not authoritative but may be helpful in gaining a feel for
the relative meanings of the new categories introduced in 3" and 4™ generation APLs. In particular events
are categorised under operators as they essentially take an operand of a user defined (callback) function.
Nameclass 2.6 also applies to external properties, eg properties of OLECLient objects or .NET instances.
(Note that external properties have to be used or accessed first before they become visible to NC.)

As well as by some script editor, categories 3.1 and 4.1 may also be created using OF x, and categories 9.1
and 9.4 may also be created using OFIx. And category 9.4 may alternatively be viewed as a program.

20131y amine the differences in, for example, ws ..\samples\OO4APL\Chapter9.dws, between the results
of (ONC ONL 19) and (ONC ONL -19).

APL namespaces can be defined in script files via the : Namespace structure. We first came across this

structure in a .apl script file in 819. This structure can contain all the usual elements of namespaces as
previously introduced, including classes and other namespaces.

:Namespace MyNamespace?...7:EndNamespace a Basic namespace script structure

Conversely, classes may include namespaces by means of the : Inc lude keyword in a class definition.

:Include A a Makes contents of 7 accessible within a class

Classes that invoke .NET classes may incorporate the :Using keyword as an alternative to the system
variable QuSING inside a class definition.

:Using 7i{,ass} A OJUSING<«7r{,ass}

EQ Module20: Dyalog APL Classes Q

OBERTSON

§ 20.2 Methods and Properties in Classes
§§ 20.2.1 The v (Method) Structure

An APL function may be defined inside a class definition between del (v) symbols, like in APL 1. Itis also
possible to define dynamic functions using braces, or to fix a function definition with 0OF X.

VMyFunctionHeader{...9V a Basic function definition structure

(Privatew (Instancew
:Access 19 r 3 F A Declares the access attributes of a function
lpublic J [shared

A method is a non-dyadic function with proscribed access. Only pPub L ic methods may be called from an
instance (or directly from a class if : Access Public Shared).

VMyFunctionHeaderf:Access Public¥...9V a Basic method definition structure

2021150 that it is possible to call a Public Shared method, such as MyMethod1 below, from instances or
directly from the class. Add a field and include it in the method, perhaps as the left argument of iota (<).

:Class MyClassl!

V R«MyMethodl Int
:Access Public Shared
R«1Int

\'4

:EndClass

MyClassi1.MyMethodl 9 - 1 2 3 4 5 6 7 8 9
(ONEW MyClass1).MyMethodl 9 - 1 2 3 4 56 7 8 9

Classes may be fixed from vectors of character vectors. Control words and key strings are not case

sensitive.
OFIX':class c1' ':field public shared var<0' 'Vr«foo w' 'r«wx2' 'v' ':endclass'

If a method is to be called from a language other than then it is necessary to define precisely
the dataType of the arguments and result. This definition is achieved by means of the :Signature
statement which makes use of the .NET dataTypes outlined in 8§0.

:Signature FunctionSyntax A Signature declaration statement

An example of its use is given below. Notice that a : Using statement is required in order to access the
System.Int32 object from .NET.

:class c2
tusing System
:field public shared var<0
V r«foo w
tAccess public shared
:Signature Int32«foo Int32
rewx2
v
tendclass

187

Q Day2: Fourth Generation Dyalog APL - The Internet Q

When exploring ASP.NET in §19.3, with Dyalog APL as the scripting language, we came across a web
service script, egl.asmx, that contained a class based on the .NET System.Web.Services.WebService.
The details of this script, in particular the :signature statement, should now be clear.

20212) 5ad workspace ..\Samples\asp.net\tutorial \fruit.dws and examine the FruitSelection ¢.

:Class FruitSelection: Page
tUsing System.Web.UI,System.Web.dll

:Using
tAccess Public
vV Page_load

tAccess Public
:Signature System.Void<«Page_Load
:If 0=IsPostBack
list.Items.Add<'Raspberries'
list.Items.Addc'Blackberries’
list.Items.Addc<'Grapes'
list.Items.Addc'Mangoes'
:EndIf
v
V Select args
tAccess Public
:Signature System.Void«Select System.Object obj, System.EventArgs e
out.Text«'You selected ',list.SelectedItem.Text
v
:EndClass

Navigate to http://81.187.162.51/tutorial.net/frintro6.htm. This tutorial example is based on a version of file
..\Samples\asp.net\tutorial\intro6.aspx which invokes the above class.

<% @Page Language="Dyalog" Inherits="FruitSelection" Src="Fruit.dws" %>
<html>..</html>

Run the tutorial online and study the explanations given. Notice that the class inherits from the .NET class
System.Web.UI.Page. Hence the need for the first : Using statement. The second (empty) :Using
statement is needed so that the : Signature Statements can locate all dataTypes derived from
System.Object class.

§§ 20.2.2 The : Imp Lement s Statement
The Page_Load function is rather special in that, if it exists in the class definition, then it is run
automatically every time the class is instantiated.

Generally however, in a user defined class one must declare a Public method to be a constructor function in
order to have the function run on creation of an instance.

:Implements Constructor A Statement declares a method to be run on instantiation

A function which is declared to be a constructor function can not return a result and must be public. The
function may be niladic as in the case of Page_Load above, or monadic as in the case of MyClass2 below.

:Class MyClass2
:Field Public MyField2
vV MyMethod2 Int
tAccess Public
:Implements Constructor
MyField2«i1Int
v
tEndClass

When instantiated with a scalar argument of 5, say, then MyMethod2 sets the value of MyField2 to 5.
(ONEW MyClass2 5).MyField2 & 1 2 3 4 5

http://81.187.162.51/tutorial.net/frintro6.htm

EQ Module20: Dyalog APL Classes Q

OBERTSON

It is possible to employ the iota symbol as index generator with a numeric vector argument (in which case
the argument will match the shape of the result).

(ONEW MyClass2 (3 3)).MyField2
11 12 13
21 22 23
31 32 33

This behaviour is called overloading. In general it requires special treatment such as:

:Class MyClass3
:Field Public MyField2
VvV MyMethod2 Int
:Access Public
:Implements Constructor
MyField2«i1Int
\'4
vV MyMethod3(Intl Int2)
tAccess Public
:Implements Constructor
MyField2«1Intl Int2
v
:EndClass

Tracing the statement

p (ONEW MyClass3(5 5)).MyField2 Fle Edit Wiew
shows that the constructor with 2 arguments Z2TUMD P D
is selected in this case, giving
55

[2]

3] HuF :
Function TMPEG13:31/0... Pos: 3,0

In this way many monadic constructor functions may be specified in a class definition, each with a different
right argument structure. The one that is actually run in any given situation is determined by the structure of
the given argument. (This is what happens under the covers in the case of many primitive APL functions,
such as the index generator, which encapsulate more than one underlying algorithm.)

2022\rite a simple class that has a niladic constructor which initialises the value of some field. Change the
constructor function valence to monadic and initialise the field with the argument given to the constructor
(the second element of the argument given to ONEW).

:Implements Constructor :Base expr a Calls base constructor with arg given by expr

The :Implements Constructor statement may be supplemented with :8ase followed by an APL
expression. The result of this expression is taken as the argument to the constructor function of the class
from which the current class inherits its behaviour (viz the class name, assuming there is one, following the
irrational colon after the class name in the : class header line). The constructor of the base class is
immediately run with this argument.

[Constructor}
:Implements {Destructor A Implements Statements

LTrigger J

A method can contain a : Implements Destructor Statement in which case the method is run when the last
reference to an object is expunged.

189

& &

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

A function can containa : Implements Trigger Namei,Name2,..Statement in which case the function is
executed if any of the variables in the list Name1,Name2,... is changed.

20222\\rrite a simple function with a trigger statement and show that this is run when the trigger variable is
changed. See Dyalog version 11 [Help][Latest Enhancements] for an explanation of how to access the old
and new values of the variable.

The primitive GUI objects built into Dyalog APL behave very like APL classes except that the name of the
object must be placed in quotes when given as an argument to ONEW, or when referenced as a base class in a
: Class definition.

20223Create an instance of a Form Using syntax ONEW 'Form' ' ' OF[ONEW <'Form'. Hence rewrite
vmakeGridv on the cover (page 1) of this course using ONEW rather than Owc.

20224Create a class based on a Form using syntax :Class MyClass : 'Form'. In the constructor function,

create a black static on the Form. Check the hierarchy using new system function [JCLASS.
Hint: ST<ONEW'Static'(<'BCol'(0 0 0))

§§ 20.2.3 The : Property Structure

A property is like an adjective that describes some attribute of an object. (A method is like a verb that
specifies some action that an object can perform, and a field (and an object itself) is like a noun, which has
some value.)

:Property MyPropertyd..7:EndProperty A Property Structure

A property of an object is implemented as a :Property structure. Inside the structure isa :Access Public
statement in order to make the property accessible outside an instance. Also, within the property structure
may be a case insensitive niladic vgetv function that returns the value of the property, and a case insensitive
monadic vsetv function whose (internal instance) argument contains the new property value in the field
NewValue.

For example, the class definition below bases the simple property MyProp on the value of a hidden variable
XX.

2 MyClass
File Edit ‘Wigw

Class MuClass
Property MyProp
tAccess Public

= Heget
Ferk
=
= zet Arg
A¥eArg.Mewllalue
=
‘EndProperty
EndClass

Madified Mamesp... Pas; 1,0

MyInst<[JNEW MyClass
MyInst.MyProp<«i19

MyInst.MyProp -1 2 3 4 5 6 7 8 9

Of course, any amount of processing could be included in the vgetv and vsetv functions (whose names are
allowed to be postfixed with other characters).

OBERTSON ORERTSON

EQ Module20: Dyalog APL Classes Q

As well as simpLe properties (the default if elided), there are Numbered properties and Keyed properties. In
the case of a Numbered property, the property structure normally has a monadic vgetv function and a
niladic or monadic vshapev function.

(Simple |
:Property {Numbered } Namel{,Name2,..} T:Access Publicq...7:EndProperty
Keyed J

The definitions of these types of properties, and the extra befaul t keystring for Numbered properties should
be explored in the [Help][Latest Enhancements] or in the new and very informative
to be found in the file ..\manuals\OO for APL 'ers, 2006-06-22.pdf

20231Gjven a class with the Numbered property 5 MyClass
defined in the window on the right, trace and Fie Edt Vew

interpret the results of expressions: iClass MyClass
‘Property Mumbered HuProp

‘Access Public

(ONEW MyClass) .MyProp = E+§hgpi
and e
(ONEW MyClass).MyProp«2 3 4p199 v Reget Arg

RefArg.Indexers
=
= set Arg
O«Arg.Newlalue
=
‘EndPropertuy
EndClass

Mamespace Shape: Pos: §,49

20232Create a class having a monadic constructor that takes an argument of a file name and ties the file,
creating it if necessary. Introduce a property that returns or sets the value of the first component of the file.

7 :Namespace..: EndNamespace Class S paces

—(]

¢ Class..:EndClgss :Access nclude :Using

— f | cretd
ﬂ :Praperty...EndProperty :Access
(v]
Variables
Clazs spaces may reside in vanilla

namespaces of i mnstances of GUT objects.

Implements :Using :Access :Signature :Attribuie

4|I| :Interface Instances of classes behave lilkce instances of
GUI objects and may contain memebers
- such as methods and properties as well as
“ 'GUI Objects’ ordinary APL variables and fimctions.
ﬂ - - — Instances of classes may encqueue events in

a base class but events may not vet be
defined m user-defined APL classes.

191

K

somrmr Day2: Fourth Generation Dyalog APL - The Internet somemr

§ 20.3 Architecture with Class Factories
§§ 20.3.1 Designing an Object Model

When writing an APL function, it is generally a good idea to carefully consider the header line. What goes
in and what comes out and what to call the function and what to call the arguments and result. The first two
questions are most important, and determine the functionality completely. The other questions are
significant in that they facilitate use; you wouldn’t invent a new verb meaning “to tidy up your garage” and
call it xyxy, and you wouldn’t call a new type of garden hose a ttttttt, would you?

Likewise when constructing a new application based on classes it is a good idea to carefully consider what
objects are needed and how they will fit together. A good layout for object-related concepts is given in the

manual. Objects are summarised by their potential parent and child types and lists
of the object’s properties, events and methods. Once the basic idea of a GUI object has been grasped, a
glance at such a summary often supplies all the information required to proceed with the application.

For example, let us imagine that we are designing a multi-dimensional application that uses an Index object
to group dimensions into those on pages, those on rows and those on columns, in the manner shown on the
MDI subForm below.

&3 SuperSpace flﬁ|§|
File Edit Wiew Insert Format Tools Window Help
| M5 Sans Seri v v B I U D EHE 2R o @@ @ N2
ord5D. VO L]
Page [Roaws]I[Calumn]l
2 WMonths 3 Froduct 4 Factary 5 Account
1| 2003 T | January a | 1 | Standard Cars 1 Michigan 1 |&wag. Unit Cost A
2 | 2004 2 February 2 | Family Saloon Cars 2 Califarnia 2 Sales Yolume
3 | 2005 3 bdarzh 3 | Small Trucks 3 Ohia 3 Cost aof Goods Se
4 | 2006 4| Apil 4 | Large Trucks 4| llincis 4 | Sales Reverus
5 | 2007 5 [GEW 5 | Total Trucks 5 Kentucky 5 Gross Profit
§ | 2008 5 |June & | Total Vehicles § | Mizsouri § | Sales Expenzes
7 July 7 “Wirginia 7 Adwert. Expense:
8 | August & | Minnesota & | Distrib. Expenzes
] September a New Jersey a Admin. Expenses
10| Qetober 10| Total Factaries 10| Total Expenses
11| Hovember A 11| Earnings from Op o
1 | B, 17 PP 0 | R o T
w Coaordinates | @ Array = Deductioh I iew % Induction

We wish to use this same Index object in other contexts such as that below, and therefore it makes sense to
build an Index class that blueprints an entire Index object (made up of SubForms, Buttons, Splitters
etc...) for any suitable context (ie on any valid parent).

- B
2. Manths 3. Product 4 .Factary 5. Account
1 helay a1 GRS 1 | hichigan A Salez Reve A
@ |2004 June P Family Saloon I
3 [2005 July 2 Small Trucks 2 Ohio
4 Apigqust 4 | Large Trucks % | lllinais
5 September § | Tatal Trucks 5
G Dctober G| Total Wehicles 8 | Mizsour
_ Mowember 7| %irginia
w 8

Minnesota Earnitigs fr s

| ok | | cCanca | | Eoo0] [100% 2]

Therefore, before diving in to write APL code (which we should defer until we know reasonably well what

we are supposed to be implementing), we should take a little time to specify exactly where we intend to go

so that we are less likely to hit unforeseen design faults and other unnecessary limitations. We could start to
do this by filling in the object summary below.

f& Module20: Dyalog APL Classes Q

OBERTSON ROBERTSON

Index Object

Purpose The Index object is a container for three Dimensions collections. Each
Dimensions collection contains a number of Dimension objects that specify
labels along one axis.

Parents Volume, Variable
Children Dimensions

Properties Type, PageRowSplitPosn, RowColumnSplitPosn, Event, SplitterColours,
PRC, PRCColours

Events SelectPage, SelectRow, SelectColumn, DragPageRowSplitter,
DragRowColumnSplitter

Methods AutoPosnSplitters

Designing systems based on classes introduces this new architectural discipline that can assist in specifying
and coding applications. This OOP tool of thought is analogous to the familiar arguments and results
design model for functional programming that can and does assist with lower level coding.

With these building blocks a top-level model might be constructed that summarises the entire application.
Getting this object model ‘right’ is usually an iterative process.

Robertson Giant Objects

| Application

CommandBars

Dialogs

Volumes

Volume

Variables

Variable

Index

See the Word and Excel help files such as VBAWRD9.CHM and VBAXL10.CHM for classic examples.

193

R &

onv Day2: Fourth Generation Dyalog APL - The Internet o

§§ 20.3.2 Building with Objects

The Dyalog GUI affords some simple examples of GUI objects built from simpler GUI objects (themselves
from the old API?). Consider for example the G id object, built from But ton and Ed i t objects.

203211 5ok at some other Dyalog GUI objects and try to find examples of multi-object constructs. Write a
class definition that instantiates a new multi-GUI-object construct, for example a LabelEdit object.

The question arises, “Where in the workspace should I place my class definitions?”” Should they be in
namespaces in a hierarchy that mirrors the object model? No, because there is no unique position for
objects that are used in more than one context. Should they be on file? Not initially, at least. Then where?
Paul Mansour’s flipdb application (see http://www.flipdb.com) is beautifully designed and suggests that
classes are placed at the root level and then simply need a #. in front of their name in order to invoke them
in any part of the application. This seems a nice simple suggestion — in general classes have no absolute
hierarchy until instantiated, therefore we may, not unreasonably, define them all at the root level.

§§ 20.3.3 Encapsulating, Inheriting and Morphing

Encapsulation, Inheritance and Polymorphism are said to be the three pillars of Object Oriented
Programming (OOP). APL 1 (core APL) already had significant examples of encapsulation and
polymorphism, and APL 3 (GUI) has fine examples of inheritance. Classes in Dyalog version 11 bring
explicit examples of OOP that are immediately recognisable to C++ and VB programmers.

Encapsulation is the practice of hiding internal workings from external scrutiny and revealing only those
aspects that have been chosen as relevant to the outside world. This concept is most explicit in OOP where
an object reveals its characteristics and behaviour through a set of well-defined ‘members’. The concept is,
however, already well understood in APL 1 where good function definition encourages localisation of all
variables that are irrelevant to the intended use. Even the simple plus sign (+) in any digital computer
language hides the internal binary processes, whose revelation would confuse rather than enlighten the user.

Inheritance is a concept indicating that certain characteristics at one level are passed on to the next level.
We have seen how classes may be based on other classes and acquire their members; for example
System.Int32 ishased on System.Object. Even in APL 1 we can surmise that matrix divide (g) is based
on simple division — even the symbol face has a family resemblance! Inheritance gives a new dimension to
encapsulation where functionality of ancestors may be employed by future generations without the need to
replicate the functions behind the behaviour or the data behind the family attributes.

Polymorphism means ‘having many forms’. Dogs (Canis familiaris), for example, take many forms, but
they are all dogs. So a class may be overloaded with many different possible arguments (the second
parameter in ONEW) to produce different objects with related, but not identical, attributes and behaviour.
This is one example of polymorphism in OOP. Even in APL 1 primitive functions such as replicate (/) and
expand (\) may take numeric or character right arguments and give a related, though different, form of
result. This is polymorphism of a sort. This is called operator overloading in C++. APLers experience
profound ‘operator overloading’ in APL notation; +.x a.= [.[... A ;-0

As systems grow more complex, computer science borrows more terms from biology. The analogy between
the human brain and computer systems has always been close. Now deeper analogies with life forms in
general are being forged and there seems no end to the abstract correspondence which computing in general
can achieve. APL is a powerful tool of thought with a star-studded history. The APL language still ahead
of all other executable arithmetic notations and continues to provide real solutions of all sorts of disciplines.

203315ee it as your operating system and take control of your computing needs with

http://www.flipdb.com/

Q A Practical Introduction to APL1 & APL2 @

FEEDBACK FORM

Name ... eMail ...
Date Location
COoUursSe .o vvve e Instructor

Please indicate your assessment of the following:

poor 1 2 3 4 5 excellent

‘ ‘ ‘ ‘ ‘ ‘ Location & Facilities

N Course Content (by module if possible?)

] Course Material (by module if possible?)

L] Instructor’s Knowledge (by module?)

] How useful was the course to your role?

Please suggest improvements to the course.

Any other critical comments are welcome.

Please give this form to your tutor, or send it to ROBERTSON (Publishing).

195

Day2: Fourth Generation Dyalog APL - The Internet

P

P10,

s —

YAV

A

i A,

yir.s

X 00 0001

o

X030 0905

X0

20

)03

X

A

X0

N

A AP

aJAY

A e

X105 00090

2905109 05 051 05 D1 05 DS DX O DX O 0K BX 00 X 535 655 55 X I O X0 Iﬂ?ﬁ)ﬁ’ﬁl{g
¥,
&

A

=
)
5

&
o

aeme rison Lt [é
Gr: Robertson Ltd. [?

Certificate of Achievement ‘

This s to certify that

b
has successfully completed the introduction to {5
l £29.99 UK / $59.99 Us ::J

e]
)

Signed t%J

>

IR
\

S

80952"41672 &
=)

Instructor {?

Privduced by ROBERTSON (Pubdishivg)y, 15 Litle Sering, OM Baving, Bosngaoke, RG24 $AX. UK.

A

SS9 B XN B9 B X X B BRI Y B9 B IR) R B0 B I B B0 B B B0 B9)

