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An argument between Bohr and Einstein on the meaning of quantum 
mechanical reality is given a significant twist in Bohr’s favour by Bell’s 
inequality and its experimental refu tation. I attempt to employ APL in 
the elucidation of quantum mechanical description of physical reality. 

 

Two articles in Vector by Sylvia Camacho [1, 2] prompted  me, eventually, to 
respond. After a few recent personal letters, books and  emails between Sylvia and  
myself, I decided  to write an article for Vector which, although it might raise more 
questions than it answers, at least demonstrates that I too am very interested  in the 
whole business of reality.  

Bell’s Theorem 
No theory can give (a) contingent general predictions of the individual results of 
measurements, (b) be compatible with the statistical predictions of quantum mechanics 
(even to within say 5%) and (c) satisfy local causality. 

This means that you can’ t rationally believe, as Einstein d id , in both determinism 
(that every effect is uniquely caused) and  locality (that things are separable) while 
at the same time accepting the pred ictions of quantum theory. Einstein believed  
that quantum theory is like statistical mechanics and  that hidden variables would  
eventually be d iscovered  which reveal an underlying local deterministic structure.  

A mathematical inequality, based  on some very general assumptions about the 
nature of reality, was derived  by John Bell [3] in 1964. Yet, as Bell pointed  out, this 
innocent-looking inequality is violated  by the pred ictions of quantum mechanics 
regard ing, for example, two-component spinors. As such, the inequality violation 
should  be visible in many departments of optical, atomic, nuclear and  sub-nuclear 
physics. A number of experiments with electrons, photons and  protons have been 
performed to test the valid ity of the inequality. The first experiments were 
performed in 1969 by Clauser in Berkeley and  Holt at Harvard  using photons. The 
experimental and  theoretical conclusions clearly favour quantum theory over all 
classical (local deterministic) versions of reality. 
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Bell showed that whatever hidden variables one might care to introduce, if they 
are constrained  to be local to the environment of the object to which they refer 
then such a hidden variable theory will never be able to reproduce all the 
pred ictions of quantum mechanics. In particu lar, if two two-state (quantum 
binary) systems interacted  for a time and  ‘separated ’ , the correlations which are 
pred icted  by quantum mechanics, and  which have been observed  in experiments, 
are stronger than can be accounted  for by theories which are realistic in the sense 
proposed  by Einstein, Podolski and  Rosen [4] (who were immediately, in 1935, 
rebuffed  by Bohr [5]). 

Bell’s Inequality 
A simple account of Bell’ s inequality is given by David  Harrison of Toronto 
University in his web page [6]. Accord ing to Harrison the essence of Bell’ s 
inequality can be summarized  as follows.  

The number of objects which have property A  but not property B plus the number of 
objects which have property B but not property C is greater than or equal to the number 
of objects which have property A  but not property C.  

If this appears trivially obvious then that’s good  because now you can see the 
paradox, namely: this common sense does not necessarily hold  sway in quantum 
mechanics. (Neither does an uncritical application of Boolean algebra!)  The crux 
of the problem revolves around the assumption that objects have properties 
independent of their observation. 

If one tries to describe two systems, which have interacted  in the past and  have 
then separated , by disjoint probability distributions involving arbitrary local hidden 
variables, then this leads to pred ictions d ifferent from those of quantum mechanics. 
Accord ing to quantum mechanics, two (or more) systems can retain observable 
properties which are indefinitely outrageously strongly correlated  even after the 
two systems have completely ‘separated ’  in the usual sense of the word  (including 
all requirements of relativity theory). There are correlations between observables 
that are stronger than can be imagined  in classical physics. Such (classically 
independent) systems are said  to be entangled.  

Another way of expressing Bell’s inequality in words may be as follows. 

If the joint probability distributions of correlated observables are assumed to become 
disjoint distributions by the addition of arbitrary local hidden variables, some 
correlations predicted by quantum theory are greater than can be achieved by any such 
local hidden variable theory. 

Consider the implications of a conservation law, such as conservation of energy or 
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momentum (or angular momentum in the case described  by Bell). If an object with 
zero initial momentum spontaneously splits in two parts, then measurement of 
the momentum of one part will imply exactly an equal and  opposite momentum 
of the other part – by conservation of momentum. This necessitates a strong 
deterministic relationship between functions describing the states of the two 
supposedly-separate parts. In the case of the intrinsic sp in angular momentum of 
an electron, or the polarization vector of a photon, there are only two possible 
ou tcomes, up (measures +1) or down (measures -1) which makes the product of 
the two results necessarily ±1.  

Note that we are here, and in what follows, using units in which Planck’s constant 
d ivided by 4Ã is equal to one unit of spin angular momentum (action).  

1 Bell unit = 0.527295…10-27 erg sec 

Consider two identical quantum systems labelled  I and  II that interacted  and   
separated . Measure some two-component quantum observable of system I by 
some experimental arrangement described  by instrument vector a (for example, the 
orientation of a polarizer). This measurement will be represented  mathematically 
in a deterministic theory by some unspecified  function A(a), or a function A(a, λ) 
where λ represents any local hidden variables or functions, but not by a function 
A(a, b) nor a function A(a, b, λ), by the locality postulate. Measure the same 
property of system II with instrument vector b. A deterministic theory should  be 
able to pred ict the result from some unspecified  function B(b), or a function B(b, λ) 
where λ represents any local hidden variables or functions, but not by a function 
B(a, b) nor a function B(a, b, λ), by the locality postulate.   

The expectation value of the product of the two results, written P(a, b), should  be 
given in terms of a separable product of two disjoint distributions (A (a, λ) for 
system I and  B(b, λ) for system II) as opposed  to a single joint d istribution 
describing I and  II together (as a superposition of states in quantum theory). Any 
arbitrary d istribution, ρ(λ), of local hidden variable(s), λ, can be added  without 
changing the following conclusion. 

The most general local deterministic formula for the product of the results of 
measurements of I at a and  II at b is 

P a b A a B b d( , ) ( ) ( , ) ( , )= ∫ ρ λ λ λ λ  

Introducing a third  orientation, c, Bell showed that this d isjoint integral 
expression, plus the assumption that P(a, a) = -1, mathematically implies that 

1 + ≥ −P b c P a b P a c( , ) ( , ) ( , )  
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He then proceeded  to show that the quantum mechanical pred iction for the 
product of polarizations measured  at orientation a for I and  b for photon II when 
the pair are in the singlet state,  ΨI,II 〉, is given by the joint d istribution 

P(a, b) = 〈 ΨI,II  V . a ⊗ V . b  ΨI,II 〉 = - a . b 

This does not always satisfy the inequality, even to within 5%. Try, for example, a 
and  b at 30° and  b and  c at right angles which would  imply 1 ≥ √3. 

Bell’s inequality is important because it highlights the philosophically shocking 
nature of quantum mechanics [7, 8]. Bell’s result – sometimes called  passion at a 
distance – is, however, not of huge significance to most working physicists because 
physicists have accepted  for over 50 years that quantum mechanics works 
perfectly well and  they have already d iscovered  that modern physics has many 
amazing consequences.  

Bell’s theorem necessitates a view of reality, or world view, in which the dramatic 
and  astonishing revelations of quantum theory become intelligible, or at least 
acceptable. So let’s try to do some simple quantum mechanics and  see if we can 
derive any sense from it. 

Matrix Mechanics 
Just to keep alive those world ly readers who would  turn off at the mention of 
reality, I offer the tantalizing hypothesis that at least some of the correlations found 
empirically in stock market series [9] might be quantum correlations. Quantum 
correlations involve joint d istributions that produce correlations between 
observables which are stronger that can be imagined in terms of any local deterministic 
model. 

There are at least three d istinct formulations of quantum mechanics. There is the 
original 1925 d iscrete matrix mechanics of Heisenberg, then there is the Schrödinger 
continuous d ifferential wave mechanics of 1926. There is also the rationalized  
notation of Dirac in 1930 which formulates quantum theory in abstract Hilbert 
space. All three theories are equivalent and  give the same pred ictions. Matrix 
mechanics is closest in sp irit to APL. You can think of wave mechanics as 
involving d ifferential operators or infinite matrices which are not conducive for 
APL. Dirac notation is more symbolic and  accommodates all mathematical 
representations. Hilbert space is a ‘complete inner product space’  which can be 
infinite dimensional. And each point in a Hilbert space can correspond to a function. 
We shall use some Dirac notation to annotate our simple APL model of matrix 
mechanics. Forgive me – some symbols used  in the comments are not in n$9. 
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Qubits 
A two-state (Boolean) system can be represented  by one bit which can be either 0 
or 1 in value – you ’re with me so far? Quantum mechanically a two-state system is 
represented  by one quantum bit, or qubit. A qubit can be _�! or _�! or any linear 
combination of these two states, often written as _Æ!� ��_�!���Á_�! in Dirac 
notation. A good working account of this formalism is given by Nielsen and  
Chuang [10]. (I am excited  to see from comp.lang.ap l that Paul Chapman is 
studying quantum computation – I hope he will help me over some of my own 
conceptual d ifficulties with quantum information one day.) 

In APL terms, a qubit, _Æ!� can be written as a two element vector ���Á� with 
vector space basis elements _�!���� and  _�!����. Consider the stationary 
state of a one qubit system represented  by APL vector Æ: 

������Æ�f��������_Æ!� ��_�!����_�!�
Let me show you the font I’m using (APL99.TTF). If I use an unfamiliar symbol, you can 
work out what it corresponds to in the usual Dyalog Std  font. For example, Æ is my font 
substitu te for Ç. 

�������������¹���h��in$9�
�
� BDEFGHIJKLMNOPQRSTUVWXYZ[\]BB�������������B�����s$%&'�
()*+,-./0123456789:;<=BBß��q£¤¥©ª¬®¯°±²´µ¶·»¼½¿ÀÅÎÒÔ×^�`�
c��¢¦§¨à«³¸º¾ÁÂÃÄÆÇÈÉÊËÌÍÏÐÑÓ>�|?{�j k!��A��Ù¹"��ahi��yz�
t��}~��ed_��mlvu������wxr���ÕÖØÚv��	BBBBBBBBBBBB#ÛÜÝBÞCB��
��¡��fg��@��noá�
Note that Æ above is not a unit vector – its length is not one. Quantum mechanical 
states can always be normalized  to unit vectors without loss of generality because 
all vectors can be multiplied  by an arbitrary phase factor w ithout changing any 
pred ictions. All calculations of observable values involve multiplying the state by 
its complex conjugate which cancels the arbitrary phase. (The arbitrary phase is 
however fundamental to the introduction of electromagnetism through Yang-
Mills gauge theory via this exact rotation symmetry.)   

Using orthonormal basis vectors – unit vectors which are orthogonal to each other 
– considerably simplifies quantum mechanical calculations. In APL notation, with 
a comment in Dirac notation, the orthonormality is clear from 

������������¹���������_�!� ���������������¹���������_�!� ���������������¹���������_�!� ���������������¹���������_�!� ���
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or, in a single expression which returns the required  2 ¹ 2 unit matrix, 

����������������������¹������������������L_M!���δ ��� �
We normalize a vector by d ivid ing by its norm (length).  

������nfÆfÆÙ�Æ��¹Æ������_Æ! _Æ!��Æ_Æ!½� ���_�!��_�!���½ 

������������
Alternatively, we could  return this normalized  state from a normalization 
function applied  to the relative weights of the superposition: 

������Æ�f^ Ù���à��¹à `����
Note the new monadic monistic Dyalog implementation of commute (à). Check 
that Æ is now a unit vector, i.e. that Æ��¹Æ is unity.  

In matrix mechanics a measurable (observable) quantity is represented  
mathematically by an n × n matrix. This matrix acts on an n-component state 
vector (via inner products) to yield  the possible values of the measurement and  
the relative weights of these possible outcomes. Normalized  states which do not 
change when multiplied  by the observable’s matrix ‘operator’  are called  
eigenvectors and  correspond to states of definite (deterministic) measured  value. 
The value measured  for an eigenvector state (the eigenvalue) is the scaling factor of 
the eigenvector after inner product with the matrix. (In wave mechanics matrix 
‘operators’  become d ifferential operators, and  in abstract quantum theory they 
become abstract operators acting on vectors in Hilbert space – but the concept of 
eigenvectors (now eigenfunctions) and  eigenvalues  remains fundamental.) 

In the case of measurement of two-component spin states (spinors), the matrix 
used  to represent measurement of the z component of spin is the Pauli matrix  

������Ä�f������������������σ � �3DXOL�]�PDWUL[�
Clearly, this matrix, acting on the basis states leaves them unchanged , apart from 
a scaling factor. The scaling factor is interpreted  as the result of the measurement. 

������Ä��¹������σ � _�! �_�!�����
������Ä��¹������σ � _�! ��_�!������
There is a function called  Eigen, based  on LAPACK and to be found in the Dyalog 
d istributed  workspace …\ ws\ math.dws, that calculates the eigenvalues and  
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eigenvectors for any given square positive-definite matrix. We define 

������Çf^(LJHQ� `���(LJHQ�IXQFWLRQ�IURP�0$7+�ZRUNVSDFH�
Then applying this to Ä (σ � ) yields the expected  row of eigenvalues above the 
corresponding columns of eigenvectors. 

������Ç�Ä����(LJHQYDOXHV�(LJHQYHFWRUV�RI�Ä (σ � )����������������
We can form a matrix from our state Æ above using outer product. This will 
produce a matrix whose action will definitely leave Æ unchanged  (through 
normalization). So the matrix 

������Æ��¹Æ���_Æ!�Æ_�2XWHU�3URGXFW�RI�FRO�	�URZ�YHFV�����������������
represents an observable that will definitely yield  value 1 and  leave the state 
unchanged .  

������Ç�Æ��¹Æ������������������������������������
What is the significance of the other eigenvector of this observable? Check that �������������� is normal and  orthogonal to Æ, with eigenvalue 0. 

Entangled Qubits 
When a state is described  by two qubits, the four basis states correspond to the 
normalized  outer product of two single qubit basis states, _Ψ! _Æ!⊗_ϕ!. The 
combined  system now has � �

 component state vectors.  

For example a two qubit state, », in which each qubit is in state Æ is  

������»�f��Æ��¹Æ����_Æ!⊗_Æ!�
Generally, therefore, an n-qubit state will have � �   components (a real APLer 
would  want to keep  these d imensions d istinct rather than ravel them).  

The Fourier transform of a quantum state is also a quantum state in a 
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complementary basis. The d iscrete Fourier transform transforms the elements of a 
vector of 1 numbers _Æ! into another vector of 1 numbers _ϕ! via  

ϕ π ψj k
k

N

N
i j k N=

=

−

∑1
2

0

1

exp( / )  

There is a transform function called  Fourier, based  on FFTW and to be found in 
the Dyalog d istributed  workspace …\ ws\ math.dws, that calculates the d iscrete 
Fourier transform of any vector. We define 

������Ë�f^��)RXULHU� `���)RXULHU�WUDQVIRUP�IURP�0$7+�':6�
������ËÈ�f^���)RXULHU� `����,QYHUVH�)RXULHU�WUDQVIRUP�
Applying Ë to » we get  

������·�f�Ë�»��
where we note that · has become complex in a notation where �-� is now }��� 

������·������������������������������������������
· is now a complex vector. Check that ËÈ�·� is » .  

We must define a multiplication function for complex numbers to use in the inner 
product (in Hilbert space ¥ �

). 

������[�f^��������������¹������h����¹�h `���0XOWLSO\�
Test that · is still a unit vector using [ in place of ¹. 

������·��[�·����·_·!"��������
The length is real but not unity!  The reason for the erroneous result is that the 
definition of inner product �·_·! involves complex conjugation – the dual vector �·_ is the complex transpose of _·!. This ensures that length �·_·! is always a 
real number. We define a conjugation function, 

������F�f^ ¹}����`����&RPSOH[�&RQMXJDWH�
and  check that the correct definition of inner product gives unity. 

�������F�·���[�·����·_·! ����� 
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Since all measurements yield  real numbers, eigenvalues must be real numbers. 
This implies mathematically that matrix ‘operators’  corresponding to 
measurements must be Hermitian, i.e. equal to their complex transpose.  

Returning to the quantum mechanical derivation for P(a, b), here is a vector of 
Hermitian matrices with an algebra suitable for representing angular momentum 
measurements.  

σ σ σ σ≡ =








−





 −

















( , , ) , ,x y z

i

i

0 1
1 0

0
0

1 0
0 1

 

Here is a normalized  circularly polarized  singlet state in terms of which the 
combined  system I + II is described: 

_Ψ I,II!� ��_��!�_��!��√��
������ ��_�!⊗_�!�_�!⊗_�!��√� 

This ‘Bell state’  is written in APL as 

������¤f�������¹�����������¹������������nf¤f�h�¤Ù������QRUPDOL]LQJ�	�FRPSOH[LI\LQJ������������������������������
We can now begin to see the meaning of the expression 〈 ΨI,II V . a ⊗ V . b ΨI,II 〉 
for calculating the quantum mechanical values in Bell’s inequality. The orientation 
of polarizer I is at angle θ to the x axis in the x-y plane. Therefore a = (Cos(θ), 
Sin(θ), 0). Similarly, b = (Cos(φ), Sin(φ), Z). The matrix operators representing the 
measurement of spin angular momentum (in Bells) with instruments at 
orientations a and  b involves generalized  inner products V . a and  V . b . 

σ
θ

θ
θ

θ
⋅ =







 +

−





 = −

+








a

Cos

Cos

i Sin

i Sin
i

i

0
0

0
0

1
2

0 3
3 0

( )
( )

( )
( )

( )
( )

 

σ ⋅ = +
− −









b

i
i

1
2

1 000 000 3
3 1 000 000

, , ( )
( ) , ,

 

when θ = 30°, φ = -30° and  the d istance between the two instruments, Z, is 1 
million units, say. The final correlation matrix for the joint observation of a for I at 
angle 30° and  b for II at -30° is the outer p roduct of V . a and  V . b. In APL 

������ÄDf�������¹������������������������ �V . a �������ÄEf�������¹�(����������������������(���� �V . b �������$%f������������ÄD��[�ÄE���� �V . a ⊗ V . b�
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The expectation value for this observable in state  ΨI,II 〉 should  be - a . b which is 
equal to - Cos(θ-φ) or, in this case, - Cos(60°) = -Â . 

�������F�¤���[�$%��[�¤����〈 ΨI,II V . a ⊗ V . b ΨI,II 〉��������
There is, of course, another inequality – that could  be called  Heisenberg’s inequality, 
but is actually known as the uncertainty principle – which we should  be able to 
demonstrate from two complementary matrix ‘operators’  such as 

������ÄS�f�·��[�F�·�����ÄT�f�»��[�»�
which are Hermitian, ÄS�F�ÄS���ÄT�F�ÄT, and  don’ t commute. 

The uncertainties (or standard  deviations) can be calculated  for any given state. In 
particu lar, a linear combination of eigenvectors, from Ç�ÄT or Ç�ÄS, should  yield  
a state for which the product of uncertainties is not insignificant.�
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