DAY

Dyalog APL " for Windows

NET Interface Guide

dyalog

Dyadic Systems Ltd

Riverside View
Basing Road, Old Basing
Basingstoke
Hampshire, RG24 7AL
United Kingdom

tel: +44 (0)1256 811125
fax: +44 (0)1256 811130
email: support@dyadic.com
http://www.dyadic.com

Dyalog APL is a trademark of Dyadic Systems Limited
Copyright © 1982-2003

Copyright ©1982-2003 by Dyadic Systems Limited.

All rights reserved.

Version 10.0

First Edition March 2003

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyadic Systems Limited, Riverside View, Basing Road, Old
Basing, Basingstoke, Hampshire, RG24 7AL, United Kingdom.

Dyadic Systems Limited makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Dyadic Systems Limited reserves the right to revise
this publication without notification.

TRADEMARKS:
Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.
Windows, Windows NT, Windows 2000, Visual Basic and Excel are trademarks of Microsoft Corporation.

The Dyalog APL True Type font is the copyright of Adrian Smith.
TrueType is registered trademark of Apple Computer, Inc.

All other trademarks and copyrights are acknowledged.

Printed in the United Kingdom.

Contents

CHAPTER 1 OVEIVIEW...ocoirerccssssse s ssssssssesessssssssssssssssssens 1
g1 goTo [0 Tod 1T] o FO USSP 1
INET CIESSES vttt sttt sttt sbe st st sre e e 1

GUI Programming with System.Windows.FOrmS...........ccccoevvinennienenccnnen, 2

WWED SEBIVICES ...ttt et 2
ASP.NET and WEDFOIMS.......coviiiiiieie sttt 2
PREIBUISTEES ...ttt bbbttt et 3
The dotnet SUD-TIFECLOTYccoiiriiiiiieic e 3
CHAPTER 2 Accessing .NET CIasSesccccounmrmmmnmnesensssnmnssnssesessssssssssssesesens 5
INEFOAUCTION. ...ttt bbb e b e 5
Locating .NET Classes and ASSEMDIIES.........ccvovevieiieiieiiece e 5
USING NET CIASSES ..vveveiieeie ettt te et e e s te e ste v e e s e e e staesteesneeneeas 7
Constructors and OVErloadingcccevveeieeieeieerie e 8

How the New Function is implementedcccvvvvvveve i 8
Displaying @ .NET ODJECL........ccceiieiie e 9
EXPIOFING .NET ClaSSES.....uiiiiiiiiieitieitie st e ettt e e e et e st e steesne e 9
AdVaNCed TECANIGUESccvvevieie ettt sae e 17
ClaSS METNOMS.cueieeie et e 17

APL language extensions for .NET 0DJECtScccccvevveiviiiiie i 17
(=] 01 o] S T 21

MOFE EXAMPIES ...ttt 22
Directory and File Manipulation...........c.ccccovvvevi i 22
SeNding an BMAIL.........ccviiiiiiicicce e 24

A= Tl 1o 1 T TS 25
ENUMETALIONS ...ttt bbbttt b e b b 27
Handling Pointers with Dyalog.BYRef...........ccooiiiiiie e 29
CHAPTER 3 Using Windows.FOrmS. ..o 33
L (oo [0 Tod £ T o S 33
Creating GUI ODJECESo.vcuiiiieiiie e 33
ODbjJECt HIBFAICHY.....cv it 34
Positioning and Sizing Forms and ControlSccoceveinnnnineneseeeece, 34
MOdal DIAIOG BOXEScuvivieiiiitiiieieiirieeeie sttt 34
EXAMPIE L.ttt et 35
EXAMPIE 2 ..ot 38
NON-MOAl FOIMS....c.viieiiciice e sreene e 39
DataGrid EXAMPIES.....covciiieiciie e 39
GDIPLUS WOTKSPACEvevvieeeeerieieiesiesteseeseeaeseesiestestessesnaeeese e ssessessessens 41
TETRIS WOIKSPACE.....c.veveiveiiesieeeieiesiesiesieste e e e see e saeste s enee e sseseesnesneens 41

WEBSERVICES WOIKSPACE......coeiviiiiiesiesieseeiee s 41

Contents

CHAPTER 4 Writing .NET Classes in Dyalog APL............ccounnmmnninssresssssnens 43
INEFOAUCTION ...ttt ne e 43
Assemblies, Namespaces and ClIaSSESeoveirerriiriieineeiseee et 43
EXAMPIE L.t 44

APITNSLLCS ottt 48
Calling IndexGen from Dyalog APL.........cccociiiiininiineeeseeeeseeeeeees 49
EXAMPIE 2. 50
APITNSZ.CS ottt 53
EXAMPIE 28,0t 54
APITNS28.CS. ..ttt 54
EXAMPIE 3. bbb 56
APITNS3.CS ottt 58
EXAMPIE 4. bbb 59
APITNSALCS ot 65
EXAMPIE 5. e 66
APITNSE.CS ottt 71
INEEITACES .. ittt 73

CHAPTER 5 Dyalog APLand lIS.........ccccoommnmnnmmmnmmsssssesssssens 75
INEFOTUCTION ... 75
11S Applications and Virtual DIireCtOrieS........cccveveiieeiiee i 76
INternet SErviCeS IMANAQETcciveiieiie ettt e st e st e e e sre e e 76

The apl.net Virtual DIreCtOry.......cccooevieieeie e 77
Creating the apl.net Virtual DireCtory.........ccccvvvevieviesie i 78
Creating the apl.net Virtual SUD-DireCtories.........ccccvvvveiieeiieevieeie e 83

CHAPTER 6 Writing Web Services ... 85
g0 [1Tox 1] o P 85
Web Service (.aSMX) SCHPLS ..c.erviiiiriieiirieee e 86
COMPIALION ...ttt bbb 86
EXPOrting MENOGSccoiiiiiitiere e 87

AUL et 88
AUZ e 88
WED SErvice Data TYPES ...cveviiirieieiirieieienieie sttt 88
TG ToL U T o S 89
Global.asax and Application and Session ObJECtScccovvivvvriviverieie e 89
Sample Web Service: EGL ...t 90
Testing APLExample from 1ES........ccooviiiiiiiieeie e, 90
Sample Web Service: LOANSEIVICEcovviriiiiniiiienieeete e 93
Testing LoanService from 1ES ..., 96
Sample Web Service: GOIfSEIVICEcovviiiiiiiciiee e, 101
GolfService: GIODal.asaXcccouereiiniereeeeere e 102
GolfService: GOIFCOUISE ClIasS ... 103

GOIfSErVICE: SIOt CIASS ..eicviiicvieictii e 104

Contents iii

GolfService: BOOKING ClaSS........coeveiiiiiiiecieiie s se s 105
GolfService: StartingSheet Class.........ccovvvvveieieneie s 106
GolfService: GetCourses FUNCLIONccovviviveicisee e 107
GolfService: GetStartingSheet fuNCtion.........ccccceveviiriiscece e, 108
GolfService: MakeBooKing functioncccccevevevieieinsiecie e, 110
Testing GolfService from IES........ccccovviveieicccse e 114

Using GoIfService from CH ... 120
Sample Web Service: EG2......ocov ittt 121
Testing EG2 from IEDoovee e 125
CHAPTER 7 Calling Web Services ..o 129
L1 (oo [3Tod £ o] o FO PSSR 129
The MakeProxXy fUNCLION..........ccoiiiiiiiiei e 129
Using LoanService from Dyalog APL ... 130
Using GolfService from DYalog APL ..o 131
EXPIOring WED SEIVICES......c.viiiiiiiiiiiiici it 135
ASYNCAIONOUS USE ...ttt ettt 137
USING @ CAIIDACK. ..o 138
CHAPTER 8 Writing ASP.NET Web Pages.........cceceevenevenmnmnnesescsessssssseneens 143
INEFOAUCTION. ...ttt et b eneas 143
Your first APL WED PaQEccveiuiiiieciee ettt 144
The Page _Load EVENL.........c.ooviiiiecceee e 149
C0de BENING ... 153
WOrkspace BENiNG..........ccvoiiiiiiic i 156
The Page_Load fUNCLION.........cccooii i 161
CallbaCK TUNCLIONScueiiieiiieiieee e 163
Validation fUNCHIONS........coiiiiiic e 165
FOorcing Validationccccoveiiiieiie e 172
Calculating and Displaying ReSUILScccevveiiiiiiiiiic e 173
CHAPTER 9 Writing Custom Controls for ASP.NETcccounnmrrenmnsenennans 177
L] (oo [0 Tod £ T o SRS 177
The SIMPIECHE CONEIOL......ccuiiiiiieee e 178
USING SIMPIECEL ..o 182

The TemperatureConverterCtlL Controlccccoveiiiineiiieneceee e, 183
(@831 [0 @0 1 o] [P 184
Fahrenheit and Centigrade Values ..., 187
Responding t0 BULLON PrESSES......cvierieiierieisie ettt 189

Using the Control 0N the PAgecooeiviireiieneee e 189

The TemperatureConverterCtl2 Controlcocoveiiiniiiiineee e, 192
Fahrenheit and Centigrade Values ..., 192
Rendering the CONtrol..........c.coveeii i 195
Loading the POSted Data.........ccceverieieiiesieieie s see e 200
POSEDACK EVENESeviiciiiie e e 202

Using the Control 0N @ Pagecovvvviiveieece e 205

iv Contents

CHAPTER 10 APLSCHPL.....cccouirrrrermrmsessssssssesesesssssssssesesssssssssssssssesessasasass 209
INEFOTUCTION ...ttt b e eb e 209
The APLScript Compiler, apIC.EXEcviiiiiiiiicic e 210
Creating an APLSCIPE FIlecoooiiiiiiiiieee e 211
Transferring code from the Dyalog APL SESSION.........ccoiiiiiineiiiineneienieeeienen 212
General prinCiples of APLSCIIPLcooiiieieiieree e 213
Creating Programs (.exe) With APLSCIIPt.......ccceoiiiriiiiniieseese e 214

A Simple GUI eXamMPIe.......oooiiiiieee e 214

A simple console example..........oooiiii 215

Defining NamMESPACES.c.veiiterieieite ettt 216

Creating .NET Classes With APLSCIIPL.......ccviiiiiiiiinenesesese e 218
Exporting Functions as Methods...........coceoeiieneiiieneiseneeeee e, 218

A NET Class eXample ..o 220

DefiniNg PrOPEITIESc.oiviiiiiiieieece e 222

INAEXETS. ..ttt 225

Creating ASP.NET Classes With APLSCIIPLcoviriiniieneneeeeee e 226
WED Page LAYOUL.......coviiieiriiiciinieiecsie e 226

WED SErviCe LAYOUL.........ciiiiiiriiicirieese e 226

How APLScript is processed by ASP.NETcccvirviiiineieneneesenieeen, 227
CHAPTER 11 Visual Studio Integration.............cocourunennnensnsnsessnenessssesessenens 229
INEFOTUCTION ...t 229
Hello WOrld EXamPIe.........coviiiiicceee ettt 230
Creating an APL.EXE PrOjJeCt........ccciveiiiiii e 230

Using an EXisting WOIKSPACEccveiuieiieiiieiie s seesieeste et saesra e 236
The Component Files SOIULIONcccooi i 240
The CfileS Project (APL) ...eccieieece e 240

The ComponentFiles Project (CH)....ccvvviveiiee i 244

RUNNING the SOIULION. ..o 246
CHAPTER 12 Implementation Details..........ccorerereeersrnrnenenesesessssssssesesesesssnnns 249
INEFOTUCTION ...ttt eb e et 249
The dyalog10.dll aCtive WOIKSPACEccerieririirieiiereecte e 249
TRIEAUING ...ttt r e 252
DYALOGIL0.DLL Threading.......ccccooeererieienienieeseneee e 252
DYALOG.EXE Threading......cccccovierieiniinieeieniee s 253

Thread SWItChINGcooiiiie e 253
Debugging an APL .NET ClaSS.......cccuruiiriiiirieieineiecsie e 254
SPECITYING the DLLcviiiiiiiiiiiicirieecee e 254

FOrCING & SUSPENSIONeviieiiiieiieii sttt 255

Using the Session, Editor and Tracer........c.cccevvvevenieniesveieeiere e see e 256

CHAPTER 1

Overview

Introduction

This manual describes the Dyalog APL interface to the Microsoft .NET Framework. This
document does not attempt to explain the features of the .NET Framework, except in terms
of their APL interfaces. For information concerning the .NET Framework, see the
documentation, articles and help files, which are available from Microsoft and other
sources.

The .NET interface features include:
e The ability to create and use objects that are instances of .NET Classes

e The ability to define new .NET Classes in Dyalog APL that can then be used from
other .NET languages such as C# and VB.NET.

e The ability to write Web Services in Dyalog APL.
e The ability to write ASP.NET web pages in Dyalog APL

.NET Classes

The .NET Framework defines a so-called Common Type System. This provides a set of
data types, permitted values, and permitted operations. All cooperating languages are
supposed to use these types so that operations and values can be checked (by the Common
Language Runtime) at run time. The .NET Framework provides its own built-in class library
that provides all the primitive data types, together with higher-level classes that perform
useful operations.

Dyalog APL allows you to create and use instances of .NET Classes, thereby gaining access
to a huge amount of component technology that is provided by the .NET Framework.

It is also possible to create Class Libraries (Assemblies) in Dyalog APL. This allows you to
export APL technology packaged as .NET Classes, which can then be used from other .NET
programming languages such as C# and Visual Basic.

Microsoft .Net Interface

The ability to create and use classes in Dyalog APL also provides you with the possibility to
design APL applications built in terms of APL (and non-APL) components. Such an
approach can provide benefits in terms of reliability, software management and re-usage,
and maintenance.

GUI Programming with System.Windows.Forms

One of the most important .NET class libraries is called System.Windows.Forms
which is designed to support traditional Windows GUI programming. Unlike the current
Windows GUI, it is thoroughly object-oriented and based upon a single consistent
programming model. Visual Studio .NET, which is used to develop GUI applications in
Visual Basic and C#, produces code that uses System.Windows .Forms. Dyalog APL
allows you to use System.Windows.Forms, instead of (and in some cases, in
conjunction with) the built-in Dyalog APL GUI objects such as the Dyalog APL Grid, to
program the Graphical User Interface.

Web Services

Web Services are programmable components that can be called by different applications.
Web Services have the same goal as COM, but are technically platform independent and
use http as the communications protocol with an application. A Web Service can be used
either internally by a single application or exposed externally over the Internet for use by
any number of applications.

ASP.NET and WebForms

ASP.NET is a new version of Microsoft Active Server Page technology that makes it easier
to develop and deploy dynamic Web applications. To supplement ASP.NET, there are some
important new .NET class libraries, including WebForms which allow you to build browser-
based user interfaces using the same object-oriented mechanism as you use
Windows.Forms for the Windows GUI. The use of these component libraries replaces
basic HTML programming.

ASP.NET pages are server-side scripts, that are usually written in C# or Visual Basic.
However, you can also employ Dyalog APL directly as a scripting language (APLScript) to
write ASP.NET web pages. In addition, you can call Dyalog APL workspaces directly from
ASP.NET pages, and write custom server-side controls that can be incorporated into
ASP.NET pages.

These features give you a wide range of possibilities for using Dyalog APL to build
browser-based applications for the Internet, or for your corporate Intranet.

Chapter 1: Overview 3

Prerequisites

The Dyalog APL .NET interface requires a computer running Windows 2000 or Windows
XP Professional with the following elements installed:

e The Microsoft .NET Framework SDK V1.0.3705 or higher.
e Microsoft Internet Information Services (11S) 5.0 or 5.1

e Microsoft Internet Explorer Version 6.00.

The dotnet Sub-directory

The dotnet sub-directory contains files that are used to support the .NET interface,
namely:
e aplc.exe; the APLScript compiler that is itself written in Dyalog APL and
packaged as an executable.

e aplprovider.dll; which performs the initial processing of an APLScript
file.

e Dbridge.dl11;the interface library to the .NET framework

e dyalogl0.dl11; the developer/debug version of the dynamic link library that
hosts the execution of Dyalog APL classes and COM objects.

e dyaloglOrt.dl1l; the re-distributable run-time version of dyalog10.d11.
e dyadic.dl1; asubsidiary library
The samples subdirectory contains several sub-directories relating to the .NET interface:

e aplclasses; asub-directory that contains examples of .NET classes written in
APL.

e aplscript; asub-directory that contains APLScript examples.

e asp.net; asub-directory that is mapped to the I1S Virtual Directory apl.net,
and contains various sample APL Web applications.

e winforms; asub-directory that contains sample applications that use the
System.Windows .Forms GUI classses.

Microsoft .Net Interface

CHAPTER 2

Accessing .NET Classes

Introduction

.NET classes are implemented as part of the Common Type System. The Type system
provides the rules by which different languages can interact with one another. Types include
interfaces, value types and classes. The .NET Framework provides built-in primitive types
plus higher-level types that are useful in building applications.

A Class is a kind of Type (as distinct from interfaces and value types) that encapsulates a
particular set of methods, events and properties. An object is simply an instance of a .NET
Framework class. An object is created by calling the class’s constructor function.

Classes support inheritance in the sense that every class (but one) is based upon another so-
called Base Class.

An assembly is a logical DLL that contains all of the code and metadata for a Class or a
number of classes. Assemblies are intended to resolve the DLL Hell (version conflicts)
inherent in previous versions of Windows. Assemblies can be dynamic (created in memory
on-the-fly) or static (files on disk). For the purposes of this document, the term Assembly
refers to a file (usually with a .DLL extension) on disk.

Locating .NET Classes and Assemblies

Unlike COM objects, which are referenced via the Windows Registry, .NET assemblies and
the classes they contain, are totally self-contained independent entities. In simple terms, you
can install a class on your system by copying the assembly file onto your hard disk and you
can de-install it by erasing the file.

Although classes are arranged physically into assemblies, they are also arranged logically
into namespaces. These have nothing to do with Dyalog APL namespaces and, to avoid
confusion, are henceforth referred to in this document as .NET namespaces.

Microsoft .Net Interface

Often, a single .NET namespace maps onto a single assembly and usually, the name of the
.NET namespace and the name of its assembly file are the same; for example
System.Windows.Forms isthe .NET namespace represented by the
System.Windows.Forms.dl1l assembly.

However, it is possible for a .NET Namespace to be implemented by more than one
assembly; there is not a one-to-one-mapping between .NET Namespaces and assemblies.
Indeed, the main top-level NET Namespace, System, is spread over a number of different
assembly files.

Within a single .NET Namespace there can be any number of classes, but each has its own
unique name. The full name of a class is the name of the class itself, prefixed by the name of
the .NET namespace and a dot. For example, the full name of the DateTime class in the
.NET namespace System is System.DateTime.

There can be any number of different versions of an assembly installed on your computer,
and there can be several .NET namespaces with the same name, implemented in different
sets of assembly files; for example, written by different authors.

To use a .NET Class, it is necessary to tell the system to load the assembly (d11) in which
it is defined. In many languages (including C#) this is done by supplying the names of the
assemblies or the pathnames of the assembly files as a compiler directive.

Secondly, to avoid the verbosity of programmers having to always refer to full class names,
the C# and Visual Basic languages allow the .NET namespace prefix to be elided. In this
case, the programmer must declare a list of .NET namespaces with Using (C#) and
Imports (Visual Basic) declaration statements. This list is then used to resolve
unqualified class names referred to in the code.

In either language, when the compiler encounters the unqualified name of a class, it
searches the specified .NET namespaces for that class.

In Dyalog APL, this mechanism is implemented by the OUSING system variable. OUSING
performs the same two tasks that Using/Imports declarations and compiler directives
provide in C# and Visual Basic; namely to give a list of .NET namespaces to be searched
for unqualified class names, and to specify the assemblies which are to be loaded.

OUSING is a vector of character vectors each element of which contains 1 or 2 comma-
delimited strings. The first string specifies the name of a .NET namespace; the second
specifies the pathname of an assembly file. This may be a full pathname or a relative one,
but must include the file extension (.d11). If just the file name is specified, it is assumed to
be located in the standard .NET Framework directory that was specified when the .NET
Framework was installed (e.g. c:\winnt\Microsoft. NET\Framework\v1.0.3705)

Chapter 2: Accessing .NET Classes

It is convenient to treat .NET namespaces and assemblies in pairs. For example:

OQUSING<«'System,mscorlib.dll'
OQUSING,«c'System.Windows.Forms,System.Windows.Forms.d1l1l'
QUSING,«c<c'System.Drawing,System.Drawing.dl1'

Note that because Dyalog APL automatically loads mscorlib.d11 (which contains the
most commonly used classes in the System Namespace), it is not actually necessary to
specify it explicitly in QUSING.

Note that JuSING has Namespace scope, i.e. each Dyalog APL Namespace has its own
value of QUSING that is initially inherited from its parent space but which may be
separately modified. QuSING may also be localised in a function header, so that different
functions can declare different search paths for .NET namespaces/assemblies.

Using .NET Classes

To create a Dyalog APL object as an instance of a .NET class, you invoke the New method
of the class.

This is a monadic method whose argument depends upon the particular class. Its result is a
namespace reference to the newly created object. For example, to create a DateTime
object whose value is the 30" April 2001:

OUSING«'System'
mydt<«DateTime.New 2001 4 30

The result of the New method is a namespace reference with name class 9.
ONC 'mydt’

9

If you type the name of a .NET Object, APL calls its ToString method to obtain a useful
description or identification of the object. This topic is discussed in more detail later in this
chapter.

mydt
30/04/2001 00:00:00

If you want to use fully qualified class names instead, one of the elements of JUSING must
be an empty vector. For example:

QUSING <,c'!

mydt<«System.DatelTime.New 2001 4 30

Microsoft .Net Interface

Although, in the case of a DateTime class, it is appropriate to call the New method with a
specific argument (a date) it is common for a class not to require parameters when creating
a new instance.

Typically, to create a default object in other languages, you call the New method with no
argument. This syntax is not possible in APL, so instead you specify an argument of &
(zilde). For example to obtain a default Button object (a class exposed by
System.Windows.Forms):

mybtn<Button.New &

Notice that when you create a new instance of a .NET class, you do not have to declare the
class name in advance. Assuming that you have defined OuSING correctly, you can simply
use the .NET class name directly.

The mechanism by which APL associates the class name with a class in a .NET namespace
is described below.

Constructors and Overloading

Each .NET Class has one or more constructor methods. A constructor is a method that must
be used to create an instance of the Class. Typically, a Class will support several constructor
methods each with a different set of parameters. For example, System.DateTime
supports a constructor that takes three Tnt 32 parameters (year, month, day), another that
takes six Int 32 parameters (year, month, day, hour, minute, second), and so forth. These
different constructor methods are not distinguished by having different names but by the
different sets of parameters they accept.

This concept, which is known as overloading, may seem somewhat alien to the APL
programmer. After all, we are used to defining functions that accept a whole range of
different arguments. However, type checking, which is fundamental to the .NET
Framework, requires that a method is called with the correct number of parameters, and that
each parameter is of a predefined type. Overloading solves this issue.

When you create an instance of a class in C#, you do so using the new operator. This is
automatically mapped to the appropriate constructor method by matching the parameters
you supply to the various forms of the constructor. A similar mechanism is implemented in
Dyalog APL using the New function.

How the New Function is implemented

The first time that Dyalog APL encounters a reference to a non-existent name (i.e. a name
that would otherwise generate a VALUE ERROR), it searches the .NET
namespaces/assemblies specified by OuSING for a .NET class of that name. If found, the
name (in this case DateT ime) is recorded in the APL symbol table with a special name
class of 10 and is associated with the corresponding .NET namespace.

Chapter 2: Accessing .NET Classes 9

Subsequent references to that symbol (in this case DateT ime) are resolved directly and do
not involve any assembly searching.

The resolution of the New method is also special. First, APL searches the class for a static
method called New and, if it is found, calls it. If not, it calls the constructor method in the
class and associates the symbol New (in the class) with the constructor.

If you call New with an argument of & (zilde), APL will attempt to call the version of the
constructor that is defined to take no arguments. If no such version of the constructor exists,
the call will fail witha DoMAIN ERROR. Otherwise, APL will call the version of the
constructor whose parameters match the argument you have supplied. If no such version of
the constructor exists, the call will fail witha ZI¥IT ERROR.

Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString method
and displays the result. All objects provide a ToString method because all objects
ultimately inherit from the .NET class System.Object. Many .NET classes will provide
their own ToString that overrides the one inherited from System.Object, and returns
a useful description or identifier for the object in question. ToString usually supports a
range of calling parameters, but APL always calls the version of ToString that is defined
to take no calling parameters. Monadic format (#) and monadic OFMT have been extended
to provide the same result, and provides a quick shorthand method to call ToString in
this way. The default ToString supplied by System.Object appears to return the
name of the object’s Type.

Note that if you want to check the type of an object, this can be obtained using its
GetType method.

Exploring .NET Classes

Microsoft supplies a tool for browsing .NET Class libraries called TLDASM. EXE.

As a convenience, the Dyalog APL Workspace Explorer has been extended to perform a
similar task as TLDASM so that you can gain access to the information within the context of
the APL environment.

The information that describes .NET classes, which is known as its Metadata, is part of the
definition of the class and is stored with it. This Metadata corresponds to Type Information
in COM, which is typically stored in a separate Type Library.

To enable the display of Metadata in the Workspace Explorer, you must have the Type
Libraries option of the View menu checked.

10 Microsoft .Net Interface

To gain information about one or more Net Classes, open the Workspace Explorer, right
click the Metadata folder, and choose Load.

Bl Exploring CLEAR WS C#] - ol x|
File Edit Wiew Tools
B B X Q & | o B &2 B = 2 d a
Parent Copy Delete Find Props Tew Large Small List |Details || Name Size Date 1
|W|:urk5|:uace Tree |C0ntents of MetaData
R etalata
B Tupel ihs
|0 abjectis). 3.911Mb (4100720 bytes) Free, | 4

This brings up the Browse .Net Assembly dialog box as shown below. Navigate to the .NET
assembly of your choice, and click Open.

Note that the .NET Classes provided with the .NET Framework are typically located in
C:\WINNT\Microsoft.NET\Framework\V1.0.3705.

Browse .Met Assembly e |

Look jn: |3 v1.0.2314 x| e ®m e E-
Mame ¢ | Size | Type | Maodified :I
Micrasaft_Ysavb.dl EKE DLL File 0710842001 09:50
mscarchg.dl 1,433 KB DLL File 07/08/2001 09:50
mscordbc, dil 63 KB DLL File 06/06/2001 20:24
mscordhi, dil Z16KE DLL File 06)06/2001 20:24
mscorie, dl 47 KB DLL File 06J06/2001 20:24J
mscariit.dil 279KE DLL File 06/06/2001 20:36
mscorld, dl 53 KB DLL File 06/06/2001 20:24
mscarlib. dll 1,900 KE DLL File 07062001 09:50
mscorpe,dil S3KE DLL File 06J06/2001 20:24
mscorre.dll 132 KB DLL File 06/06/2001 20:24
n_-. e e e Al AAd LD [W = Y MENE MO A il
4 i i

File hamne: Imscorlib.dll j Open I
Files of twpe: I_Net Azzemblies [5.dl) j Cancel |
E

The most commonly used classes of the .NET Namespace System are stored in this
directory in an Assembly named mscorlib.d11, along with a number of other
fundamental .NET Namespaces.

Chapter 2: Accessing .NET Classes

The result of opening this Assembly is illustrated in the following screen shot. The
somewhat complex tree structure that is shown in the Workspace Explorer merely reflects
the structure of the Metadata itself.

Bl Exploring CLEAR HS [#1 =1olx]
File Edit Wiew Tools

(EBaXQE| o EDEE S a6

‘Workspace Tree
=%t mscorlib ;I
5%t Hodules
2Rt ciswinntsmicrosoft.netsframevorksul.0.2914vmscorl ib.d11
EJiET Namespaces
Tt Clnnamed]
%t Hicrosoft.Hindz
Bt Sustem
@ Bt System.Collections
JiET System.Configuration.Assemblies
JiET Sustem.Diagnostics
JiET Sustem.Diagnostics. Sumbol Store
JiET System.Globalization
JiET Sustem. 10
JiET System.I0.IsolatedStorage
Bt Sustem.Reflection
@ Bt Sustem.Reflection.Emit

|1 obiect(s), 3.509Mb (4099092 bytes) free., |

X

12 Microsoft .Net Interface

Opening the Classes sub-folder causes the Explorer to display the list of classes contained in
the .NET Namespace as shown in the picture below.

Bl Exploring CLEAR HS [#1 -0 x|
File Edit Wew Tools

X Q ek ’T
Parent Copy Delete Find Props =] Large Small Lisk |Details || Mame
Wiorkspace Tree |
EEEE S stem]

=Bt Classes
w8t Sustem. __ComObject J

Jil?'f system.AccessException

JiET zystem.Activator

JiET sustem.AppDoma in

JiET sustem.AppDoma ingUnloadHorker

Jil?'f sustem.AppDomainFlags

JiET sustem.AppDoma inUnloadedExcept ion

JiET sustem.Apploma inUnloadlnProgressException

JiET sustem.ApplicationException

Jil?'f system.Arglterator

JiET sustem.ArgumentExcept ion

JiET sustem.ArgumentMullException

w-Tét System. ArgumentOutOfRangeExcept ion

Jil?'f system.Arithmet icException

JiET system.Array ILI
. -

Kl

0 object(s). 3.911Mb (4100720 bytes) free. | v

Chapter 2: Accessing .NET Classes

13

The Constructors folder shows you the list of all of the valid constructors and their
parameter sets with which you may create a new instance of the Class by calling New. The
constructors are those named . ctor; you may ignore the one named . cctor, (the class

constructor) and any labelled as Private.

For example, you can deduce that DateT ime . New may be called with three numeric
(Int32) parameters, or six numeric (Int32) parameters, and so forth. There are in fact
seven different ways that you can create an instance of a DateTime.

Bl Exploring CLERR HS [#1 1o x|
File Edit View Tools
B B X Q #& o | B B B =32 o 8 &
Parent Copy Delete Find Props e Large Small List |Details || Mame Size Date Twpe
‘Workspace Tree Con
- : ; ,ﬂ
&-Jét Baze Class
Z-Ft Constructors
~digt (PrivatelUoid .ctor(inted, Int3z2)
-det Uoid Lcctord) _J
Mgt Uoid Lctor(Int3d2, Intd2, Int322
-dEt Uoid Lctor(Int32, Intdz2, Int32, Int32, Intd2, Int32)
-dgt Uoid Letor(Int32, Intd2, Int32, Intd2, Int32, Int32, Intdz22
Mgt Uoid .ctor(Int32, Intdz, Int32, Int3d2, Intd2, Int32, Int3z,
dEt Uoid Lctor(Int32, Intd2, Int32, Intd2, Intd2, Int32, Sustem.
Mgt Uoid Letor(Int32, Intd2, Int32, Sustem.Globalization.Calenda
-det Uoid .ctorClntad)
-digt Fields
F-fet Hethods
#-5ét Properties _|;I
iJ »
0 ebject(s). 3.911Mb (4100720 bytes) Free, | 4

For example, the following statement may be used to create a new instance of DateTime

09:30 in the morning on 30" April 2001):
g p

mydt<DateTime.New 2001 4 30 9 30 O

mydt
30/04/2001 09:30:00

14 Microsoft .Net Interface

The Properties folder provides a list of the properties supported by the Class. It shows the
name of the property followed by its data type. For example, the DayOfYear property is
defined to be of type Int32.

Bl Exploring CLEAR HS [#1 - o x|
File Edit Wew Tools

X Q £ el
Parent Copy Delete Find Props e Large Small List |Details || Mame

Wi orkspace Tree
|_—‘_|JiE'f system.DateT ime -
w-Jét Base Class
@78t Constructors
-t Fields
- Jét Hethods
C-fét Properties
Tt Date : Sustem.DateTime J
~J#t Day @ System.Int3dz
K&t DaulfHeek : Sustem.DauOfHeek
-5t DayOfvear : System.Int3z
Tt Hour @ Sustem. Int32
Bt Millisecond @ Sustem.Int3Z
~HEt Minute @ System.Int3z
Tt Honth : Sustem.Int32
LTt Mow @ Sustem.DateTime
Bt Second @ Sustem. Int32
KBt Ticks : System.Intéd
Tt TimeDfDay : Sustem.TimeSpan
LTt Today : Sustem.DateT ime
~H8Bt UtcMow @ Sustem.DateTime
-t Year @ System.Int32 I;I
| >

Kl

0 object(s). 3.911Mb (4100724 bytes) free. | v

You can query a property by direct reference:

mydt.DayOfWeek

Chapter 2: Accessing .NET Classes 15

Notice too that the data types of some properties are not simple data types, but Classes in
their own right. For example, the data type of the Now property is itself
System.DateTime. This means that when you reference the Now property, you get back
an object that represents an instance of the System.DateTime object:

mydt.Now
07/11/2001 11:30:48
grs
2001 11 7 11 30 48 O

The Methods folder lists the methods supported by the Class. The Explorer shows the data
type of the result of the method, followed by the name of the method and the types of its
arguments. For example, the TsLeapYear method takes an ITnt 32 parameter (year) and
returns a Boolean result.

mydt.IsLeapYear 2000

16 Microsoft .Net Interface

B1 Exploring CLEAR HS =10 x|

el
Mame
Workspace Tree

ot Hethods -~
digt (PrivatelDouble StringTolADatelSystem.String, Int
-fEt (PrivatelDouble TicksToOARDatelIntadD

gt (PrivatelInt3d? GetDatePart(Int3zl

-dEt (PrivateldInted DateToTicks(IntdZ2, Int3Zz, Int32d _J
-8t (PrivatelInted DoubleDateToTicks(Doubled

~J8t (PrivatelInted GetSuystemFileTime(D

gt (PrivatelInted TicksTolLocalClnta4)

gt (PrivatelInted TicksTolUniversalClntad?

gt (PrivatelInted TimeToTicksCInt3dZ, Int32, Int3z2l
-dEt (Privatel)System.DateTime Add({Double, Int3zl

gt (PrivatelSystem.Object HemberwiseClone(d

-8t (PrivatelUoid Finalize(D

-Jiet Boolean Equals(Suystem.DateTime, Sustem.DateTimel

- Jigt Boolean Equals(System.Object?

-fét Boolean lsleapYear{Int3z)

~det Boolean op_Equalitu(System.DateTime, Sustem.Datel
-t Boolean op_GreaterThan(Sustem.DateTime, Sustem.De.
L | Lrl

2 object(s). 1.585Mb (1665112 bytes) Free, | y

File Edit Wiew Toals

B B X Q &

Parent Copy Delete Find Props

ﬁ‘

TeEw Large 3Small List | Details

Chapter 2: Accessing .NET Classes 17

Advanced Techniques
Class Methods

Certain .NET Classes provide methods, and properties, that can be called directly without
the need to create an instance of the Class first.

The methods Now and IsLeapYear exported by System.DateTime fall into this
category. For example:

OUSING <,c'System’

DateTime.Now
07/11/2001 11:30:48

DateTime.IsLeapYear 2000
1

APL language extensions for .NET objects

The .NET Framework provides a set of standard operators (methods) that are supported by
certain classes. These operators include methods to compare two .NET objects and methods
to add and subtract objects.

In the case of the DateTime Class, there are operators to compare two DateTime
objects. For example:

DTi1<«DateTime.New 2001 4 30
DT2<«DateTime.New 2001 1 1

a Is DT1 equal to DT2 ?
DateTime.op_Equality DT1 DT2
0

The op_Additionand op_ Subtraction operators add and subtract TimeSpan
objects to DateTime objects. For example:

DT3<«DateTime.Now
DT3
07/11/2001 11:33:45

I'S<«TimeSpan.New 1 1 1
TS
01:01:01

DateTime.op_Addition DT3 TS
07/11/2001 12:34:46

18 Microsoft .Net Interface

(DateTime.op_Subtraction DT3 TS).ToString €
07/11/2001 10:32:4u

Chapter 2: Accessing .NET Classes 19

The corresponding APL primitive functions have been extended to accept .NET objects as
arguments and simply call these standard .NET methods internally. The methods and the
corresponding APL primitives are shown in the table below.

.NET Method APL Primitive Function
op_Addition +
op_Subtraction -
op_Multiply x
op_Division +
op_Equality =
op_Inequality #
op_LessThan <

op_LessThanOrEqual

IA

op_GreaterThan >

op_GreaterThanOrEqual >

So instead of calling the appropriate .NET method to compare two objects, you can use the
familiar APL primitive instead. For example:

DT1=DT2
0
DT1>DT?2
1
DT3+TS
07/11/2001 12:34:46
DT3-TS

07/11/2001 10:32:4u

Apart from being easier to use, the primitive functions automatically handle arrays and
support scalar extension; for example:

DT1>DT2 DT3
10

In addition, the monadic form of Grade Up (4) and Grade Down (v), and the Minimum (L)
and Maximum (1) primitive functions have been extended to work on arrays of references
to .NET objects. Note that the argument(s) must be a homogeneous set of references to
objects of the same .NET class, and in the case of Grade Up and Grade Down, the argument
must be a vector. For example:

ADT1 DT2 DT3

20 Microsoft .Net Interface

L/DT1 DT2 DT3
01/01/2001 00:00:00

Chapter 2: Accessing .NET Classes 21

Exceptions

When a .Net object generates an error, it does so by throwing an exception. An exception is
in fact a .Net class whose ultimate base class is System.Exception.

The system constant DEXCEPT ION returns a reference to the most recently generated
exception object.

For example, if you attempt to create an instance of a DateTime object with a year that is
outside its range, the constructor throws an exception. This causes APL to report a
(trappable) ExcEPTION error (error number 90) and access to the exception object is
provided by OEXCEPTION.

OUSING<«'System'

DT<DateTime.New 100000 0 O
EXCEPTION

DT<DateTime.New 100000 0 O

OEN
90
OEXCEPTION.Message
Specified argument was out of the range of valid values.

Parameter name: Year, Month, and Day parameters describe
an unrepresentable DateTime.

OEXCEPTION.Source
mscorlib

OEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year, Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year, Int32 month,
Int32 day)

22

Microsoft .Net Interface

More Examples

Directory and File Manipulation

The .NET Namespace System. I0 (also in the Assembly mscorlib.d11) provides
some useful facilities for manipulating files. For example, you can create a
DirectoryInfo object associated with a particular directory on your computer, call its
GetFiles method to obtain a list of files, and then get their Name and CreationTime
properties.

OQUSING «,c'System.IO'
d<«DirectoryInfo.New 'C:\Dyalogi10'

d is an instance of the Directory Class, corresponding to the directory c: \Dyalog
APL.

d
C:\Dyalog10

The GetFiles method returns a list of files; actually, FileInfo objects, that represent
each of the files in the directory: Its optional argument specifies a filter; for example:

d.GetFiles 'x.exe'
dyalog.exe dyalogrt.exe

The Name property returns the name of the file associated with the Fi1e object:

(d.GetFiles 'x.exe').Name
dyalog.exe dyalogrt.exe

And the CreationTime property returns its creation time, which is a DateTime object:

(d.GetFiles 'x.exe').CreationTime
07/11/2002 14:51:35 22/11/2002 14:46:12

If you call GetFiles without an argument (in APL, with an argument of #), it returns a
complete list of files:

files«d.GetFiles @

Taking advantage of namespace reference array expansion, an expression to display file
names and their creation times is as follows.

files,[1.5]files.CreationTime

DeIsL1.1isu 07/11/2002 14:50:58
def_us.dse 07/11/2002 14:51:05
def_uk.dse 07/11/2002 14:51:06
def_gr.dse 07/11/2002 14:51:08
def_fi.dse 07/11/2002 14:51:08

def_ fr.dse 07/11/2002 14:51:08

Chapter 2: Accessing .NET Classes

23

24

Microsoft .Net Interface

Sending an email

The .NET Namespace System.Web.Mail provides objects for handing email.

You can create a new email message as an instance of the MailMessage class, set its
various properties, and then send it using the SmtpMail class.

Please note that these examples will only work if your computer is configured to allow
you to send email in this way.

OQUSING«'System.Web.Mail,System.Web.d11'
m«MailMessage.New 8

m.From<'tony.blair@uk.gov'

m.To<«'sales@dyadic.com'

m.Subject<«'order'

m.Body<«'Send me 100 copies of Dyalog APL immediately'

SmtpMail.Send m

However, note that the Send method of the SmtpMail object is overloaded and may be
called with a single parameter of type System.Web.Mail .MailMessage as above, or
four parameters of type System. String:

So instead, you can just say:

SmtpMail.Send 'tony.blair@uk.gov' 'sales@dyadic.com' 'o
rder' 'Send me the goods'

Chapter 2: Accessing .NET Classes 25

Web Scraping

The .NET Framework provides a whole range of classes for accessing the internet from a
program. The following example illustrates how you can read the contents of a web page. It
is complicated, but realistic, in that it includes code to cater for a firewall/proxy connection
to the internet. It is only 9 lines of APL code, but each line requires careful explanation.

First we need to define DUSING so that it specifies all of the NET Namespaces and
Assemblies that we require.

OUSING<«'System,System.dl1l' 'System.Net' 'System.IO'
+0JUSING

System,System.d1l

System.Net

System.IO

The WebRequest class in the .NET Namespace System.Net implements the NET
Framework's request/response model for accessing data from the Internet. In this example
we create a WebRequest object associated with the URI http://www.cdnow.com
Note that webRequest is an example of a static class. You don't make instances of it; you
just use its methods.

wrg<WebRequest.Create 'http://www.cdnow.com'

In fact (and somewhat confusingly) if the URI specifies a scheme of "http://" or "https://",
you get back an object of type Ht tpWebRequest rather than a plain and simple
WebRequest. So, at this stage, wrq is an Ht tpWebRequest object.

wrq
System.Net .HttpWebRequest

This class has a Proxy property through which you specify the proxy information for a
request made through a firewall. The value assigned to the Proxy property has to be an
object of type System.Net .WebProxy. So first we must create a new WebProxy
object specifying the hostname and port number for the firewall. You will need to change
this statement to suit your own internet configuration..

PX<WebProxy.New 'http://dyagate.dyadic.com:8080"'
PX
System.Net .WebProxy

Having set up the WebProxy object as required, we then assign it to the Proxy property
of the HttpRequest object wrg.

wrq.Proxy<«PX

26

Microsoft .Net Interface

The HttpRequest class has a GetResponse method that returns a response from an
internet resource. No its not HTML (yet), the result is an object of type
System.Net.HttpWebResponse

wr<«wrqg.GetResponse
wr
System.Net .HttpWebResponse

The Ht tpWebResponse class has a GetResponseStream method whose result is of
type System.Net .ConnectStream. This object, whose base class is
System.IO.Stream, provides methods to read and write data both synchronously and
asynchronously from a data source, which in this case is physically connected to a TCP/IP
socket.

str«wr.GetResponseStream
str
System.Net.ConnectStream

However, there is yet another step to consider. The St ream class is designed for byte input
and output; what we need is a class that reads characters in a byte stream using a particular
encoding. This is a job for the System.I0.StreamReader class. Givena Stream
object, you can create a new instance of a StreamReader by passing it the Stream as a
parameter.

rdr«StreamReader .New str
rdr
System.IO.StreamReader

Finally, we can use the ReadToEnd method of the St reamReader to get the contents of
the page.

s<«rdr.ReadToEnd
s
L5242

Note that to avoid running out of connections, it is necessary to close the Stream:

str.Close

Chapter 2: Accessing .NET Classes 27

Enumerations

An enumeration is a set of named constants that may apply to a particular operation. For
example, when you open a file you typically want to specify whether the file is to be opened
for reading, for writing, or for both. A method that opens a file will take a parameter that
allows you to specify this. If this is implemented using an enumerated constant, the
parameter may be one of a specific set of (typically) integer values; for example, 1=read,
2=write, 3=both read and write. However, to avoid using meaningless numbers in code, it is
conventional to use names to represent particular values. These are know as enumerated
constants or, more simply, as enums.

In the .NET Framework, enums are implemented as classes that inherit from the base class
System.Enum. The class as a whole represents a set of enumerated constants; each of the
constants themselves is represented by a static field within the class.

The next chapter deals with the use of System.Windows.Forms to create and
manipulate the user interface. The classes in this .NET Namespace use enums extensively.

For example, there is a class named System.Windows.Forms.FormBorderStyle
that contains a set of static fields named None, FixedDialog, Sizeable, and so forth.
These fields have specific integer values, but the values themselves are of no interest to the
programmer.

Typically, you use an enumerated constant as a parameter to a method or to specify the
value of a property. For example, to create a Form with a particular border style, you would
set its BorderStyle property to one of the members of the FormBorderStyle class,

VIZ.
OJUSING <'System'
OUSING,«c'System.Windows.Forms,system.windows.forms.d11'
fi1<«Form.New &
f1.BorderStyle<FormBorderStyle.FixedDialog
FormBorderStyle.FixedDialog

FixedDialog

An enum has a value, which you may use in place of the enum itself when such usage is
unambiguous. For example, the FormBorderStyle.Fixed3D enum has an underlying
value is 2:

Convert.ToInt32 FormBorderStyle.Fixed3D
2

You could set the border style of the Form f1 to FormBorderStyle.Fixed3D with
the expression:

f1.BorderStyle<2

28 Microsoft .Net Interface

However, this practice is not recommended. Not only does it make your code less clear, but
also if a value for a property or a parameter to a method may be one of several different
enum types, APL cannot tell which is expected and the call will fail.

Chapter 2: Accessing .NET Classes 29

For example, when the constructor for System.Drawing.Font is called with 3
parameters, the 3" parameter may be either a FontStyle enum or a GraphicsUnit
enum. If you were to call Font.New with a 3" parameter of 1, APL cannot tell whether this
refersto a FontStyle enum, or a GraphicsUnit enum, and the call will fail.

Handling Pointers with Dyalog.ByRef

Certain .NET methods take parameters that are pointers.

APL does not have a mechanism for dealing with pointers, so Dyadic provides a .NET class
for this purpose. This is the Dyalog.ByRef class, which is a member of the dyadic
Assembly that is loaded automatically by the Dyalog APL program.

An example of a .NET method that requires pointers is the nGetVversion method that is
provided by the System.Reflection.Assembly class. This method may be used to obtain the
major version, minor version, and build and revision numbers associated with a .NET
Assembly. The following example illustrates how this works.

Firstly, to gain access to the Dyalog .Net Namespace, it must be specified by JUSING.
Note that you need not specify the Assembly (DLL) from which it is obtained
(dotnet\bridge.dl1l), because (like mscorlib.d11l) itis automatically loaded by
DYALOG.EXE.

OUSING<«'System' 'Dyalog'

System.AppDomain.CurrentDomain represents the collection of Assemblies that is
loaded into the current process. The first of these ismscorlib.dll.

ass<AppDomain.CurrentDomain.GetAssemblies[1]
ass.GetType &
System.Reflection.Assembly
ass
mscorlib, Version=1.0.3300.0, Culture=neutral, PublicKeyToken
=b77a5c561934e089

The version information is in fact shown when you display the object and could be derived
programmatically by parsing the character vector returned by format (). However, the
nGetVersion method, which produces this information in numerical form, is more
convenient. The problem is that it takes four parameters, each of which is a pointer to an
Int32. When you call nGetVersion, it enters the major, minor, build and revision
numbers into the addresses that you have provided as its parameters.

The Dyalog.ByRef class represents a pointer to an object of type System.Object. It
has a number of constructors, some of which are used internally by APL itself. You only
need to be concerned about two of them; the one that takes no parameters, and the one that
takes a single parameter of type System.Object. The former is used to create an empty
pointer; the latter to create a pointer to an object or some data.

30 Microsoft .Net Interface

For example, to create a empty pointer:
ptri<«ByRef.New &
Or, to create pointers to specific values,

ptr2<«ByRef.New 0
ptr3<ByRef.New <110
ptru<ByRef .New (DateTime.New 2000 4 30)

Notice that the parameter can be any scalar APL array, so you must enclose it.
Alternatively, the parameter may be a .NET object.

The ByRef class has a single property called value.

ptr2.value

ptr3.Value
123 456 7 89 10

ptru4.Value
30/04/2000 00:00:00

Note that if you reference the Value property without first setting it, you get a
VALUE ERROR.

ptri.value
VALUE ERROR
ptri.value

A

Returning to the example, we recall that the nGetVersion method takes as its
parameters, 4 pointers into which it will insert Int 32 values. Using ByRef, we can call it
as follows:

args<ByRef .New 'Lpc8
args.Value
VALUE ERROR
args.Value
A

ass.nGetVersion args

args.Value
1 0 3300 O

Chapter 2: Accessing .NET Classes 31

In some cases a .NET method may take a parameter that is an Array and the method expects
to fill in the array with appropriate values. In APL there is no syntax to allow a parameter to
a function to be modified in this way. However, we can use the Dyalog.ByRef class to
call this method. For example, the System.IO.FileStream class containsa Read
method that populates its first argument with the bytes in the file.

Ousing<«'System.IO' 'Dyalog' 'System!'
fs<«FileStream.New'c:\tmp\jd.txt'FileMode.Open
fs.Length
25
fs.Read(arg«ByRef.Newc25p0)0 25
25
arg.Value
i04 101 108 108 111 32 102 114 111 109 32 106 111 104 110 32
100 97 105 110 116 114 101 101 10

33

CHAPTER 3

Using Windows.Forms

Introduction

Creating

System.Windows.Forms isa.NET namespace that provides a set of classes for
creating the Graphical User Interface for Windows applications. For languages such as C#
and Visual Basic, this mechanism replaces the Windows API as the means to write the GUI.
For Dyalog APL developers, System.Windows .Forms is an alternative to the Dyalog
APL built-in GUI, which will continue to be maintained for the foreseeable future.

The main advantage of using System.Windows.Forms is that it provides immediate
access to the latest Microsoft GUI components. Whenever Microsoft develops a new
Windows.Forms component, it can immediately be incorporated into a Dyalog APL
application; you do not need to wait for Dyadic to cover it. The same applies to GUI
components developed by third parties.

Unless otherwise specified, all the examples described in this Chapter may be found in the
samples\winforms\winforms.dws workspace.

GUI Objects

GUI objects are represented by .NET classes in the .NET Namespace
System.Windows.Forms. In general, these classes correspond closely to the GUI
objects provided by Dyalog APL, which are themselves based upon the Windows API.

For example, to create a form containing a button and an edit field, you would create
instances of the Form, Button and TextBox classes.

34 Microsoft .Net Interface

Object Hierarchy

The most striking difference between the Windows . Forms GUI and the Dyalog GUI is
that in Windows . Forms the container hierarchy represented by forms, group boxes, and
controls is not represented by an object hierarchy. Instead, objects that represent GUI
controls are created stand-alone (i.e. without a parent) and then associated with a container,
such as a Form, by calling the Add method. Notice too that Windows . Forms objects are
associated with APL symbols that are namespace references, but Windows . Forms objects
do not have implicit names.

Positioning and Sizing Forms and Controls

The position of a form or a control is specified by its Location property, which is
measured relative to the top left corner of the client area of its container.

Location has a data type of System.Drawing.Point. To set Location, you must
first create an object of type System.Drawing.Point then assign that object to
Location.

Similarly, the size of an object is determined by its Size property, which has a data type of
System.Drawing.Size. Thistime, you must create a System.Drawing.Size
object before assigning it to the Size property of the control or form.

Obijects also have Top (Y) and Left (X) properties that may be specified or referenced
independently. These accept simple numeric values.

The position of a Form may instead be determined by its DeskTopLocation property,
which is specified relative to the taskbar. Another alternative is to set the
StartPosition property whose default setting is WindowsDefaultLocation,
which represents a computed best location.

Modal Dialog Boxes

Dialog Boxes are displayed modally to prevent the user from performing tasks outside of
the dialog box.

To create a modal dialog box, you create a Form, Set its BorderStyle property to
FixedDialog, setits ControlBox, MinimizeBox and MaximizeBox properties to
false, and display it using ShowDialog.

A modal dialog box has a DialogResult property that is set when the Form is closed,
or when the user presses OK or Cancel. The value of this property is returned by the

ShowDialog method, so the simplest way to handle user actions is to check the result of
ShowDialog and proceed accordingly. Example 1 illustrates a simple modal dialog box.

Chapter 3: Using WinForms 35

Example 1

Function EG1 illustrates how to create and use a simple modal dialog box. Much of the
function is self explanatory, but the following points are noteworthy.

EG1[1-2]setQUSING toinclude the .NET Namespaces System.Windows.Forms
and System.Drawing

EG(6,8,9] create a Form and two But ton objects. As yet, they are unconnected. The
constructor for both classes is defined to take no arguments, so the New function is called
with an argument of zilde(e).

EG[14] shows how the Location property is set by first creating a new Point object
with a specific pair of (x,y) values.

EG[18] computes the values for the Point object for button2.Locat ion, from the
values of the Left, Height and Top properties of but t on1; thus positioning but ton?2
relative to buttont.

Vv EGl1;formi;buttonl;button2;true;false;QUSING;Z

[1] OQUSING<«,c'System.Windows.Forms,
System.Windows.Forms.dll'

[2] OQUSING,<c'System.Drawing,System.Drawing.dl1'

[3] true false<«1 0

(4]
[5] @ Create a new instance of the form.

[6] formi«Form.New 8

[7] ~a Create two buttons to use as the accept and cancel
buttons.

(8] buttoni<«Button.New &

[9] button2«Button.New &

[10]

[11] a Set the text of buttoni to "OK".

[12] buttonl.Text<'0K'

[13] o Set the position of the button on the form.

(1] buttonil.Location<«Point.New 10 10

[15] a Set the text of button2 to "Cancel".

[16] button2.Text<«'"'Cancel!'

[17] a Set the position of the button based on the
location of buttoni.

(18] button2.Location«Point.New buttoni.Left
buttoni.(Height+Top+10)

[19]

36 Microsoft .Net Interface

EG[21,23] setsthe DialogResult property of buttoni and button2 to
DialogResult.OKand DialogResult.Cancel respectively. Note that
DialogResult is an enumeration with a predefined set of member values.

Similarly, EG[32] defines the BorderStyle property of the form using the
FormBorderStyle enumeration.

EG1[38 40] definesthe AcceptButton and CancelButton properties of the Form
to buttont and but t on2 respectively. These have the same effect as the Dyalog GUI
Default and Cancel properties.

EG1[u2] setsthe StartPostion of the Form to be centre screen. Once again this is
specified using an enumeration; FormStartPosition

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[271]
[28]
[29]
[30]
[31]

[32]
[33]

[34]
[35]

[36]
[37]
[38]
[39]
[40]
(41

[42]
[u43]

Make buttoni's dialog result OK.
buttoni.DialogResult<«DialogResult.0OK
Make button2's dialog result Cancel.
button2.DialogResult<+DialogResult.Cancel

Set the title bar text of the form.
formi.Text<«'My Dialog Box'

Display a help button on the form.
formi.HelpButton<«true

Define the border style of the form to that of a
dialog box.

formi.BorderStyle«FormBorderStyle.FixedDialog

Set the MaximizeBox to false to remove the maximize
box.

forml.MaximizeBox<«false

Set the MinimizeBox to false to remove the minimize
box.

formi.MinimizeBox<«false

Set the accept button of the form to buttonli.

forml.AcceptButton<buttonl

Set the cancel button of the form to button2.

formi.CancelButton<«button?

Set the start position of the form to the center of
the screen.

formil.StartPosition«FormStartPosition.CenterScreen

Chapter 3: Using WinForms 37

EG1[u5,u6] associate the buttons with the Form. The Controls property of the Form
returns an object of type Form.ControlCollection. This class has an Add method
that is used to add a control to the collection of controls that are owned by the Form.

EG[50] callsthe showDialog method (with no argument; hence the). The result is an

object of type Form.DialogResult, which is an enumeration.

EG[52] compares the result returned by ShowDialog with the enumeration member
DialogResult.OK (note that the primitive function = has been extended to compare

objects).

(us] m Add buttoni to the form.

[(45] formi.Controls.Add buttoni

(6] m Add button2 to the form.

(47] formi.Controls.Add button2

[us]

[49] m Display the form as a modal dialog box.

[50] Z<formi.ShowDialog ®

[51] m Determine if the OK button was clicked on the dialog

box.

[52] :If Z=DialogResult.OK

[53] @ Display a message box saying that the OK button
was clicked.

[54] Z<+MessageBox.Showc'The 0K button on the form was

clicked.'

[55] :Else

[56] @ Display a message box saying that the Cancel
button was clicked.

[57] Z<MessageBox.Showc'The Cancel button on the form
was clicked.'

[58] :EndIf

38

Microsoft .Net Interface

Example 2

Functions £G2 and EG2 4 illustrate how the Each operator (") and the extended namespace
reference syntax in Dyalog APL may be used to produce more succinct, and no less
readable, code.

(1]

[2]
(3]
(4]
(5]
(6]
(7]
(8]
(9]
[101]
[11]
[121]
[13]
[14]
[15]
[16]
[17]
[181]
[19]

[20]
[21]

[221]
[23]
[24]
[25]

v

v

EG2;forml;labell;textBox1l;true;false;JUSING;Z
OQUSING<«,c'System.Windows.Forms,

System.Windows.Forms.d1l1'
OUSING,«c'System.Drawing,System.Drawing.dl1l'
true false<«1 0

a Create a new instance of the form.
formi«Form.New &

textBox1<TextBox.New &
labeli«Label.New &

@ Initialize the controls and their bounds.
labell.Text<«'First Name'
labelil.Location<Point.New 48 u8
labell.Size«Size.New 104 16
textBox1l.Text<«""
textBoxl.Location«Point.New 48 6u4
textBox1.Size«Size.New 104 16

a Add the TextBox control to the form's control
collection.

formi.Controls.Add textBox1

a Add the Label control to the form's control
collection.

formi.Controls.Add labelil

n Display the form as a modal dialog box.
Z<formil.ShowDialog #®

EG2AT[7] takes advantage of the fact that .NET classes are namespaces, so the expression
(Form TextBox Label) isa vector of namespace refs, and the expression
(Form TextBox Label).Newc runsthe New function in each of them.

Similarly, EG24[10 11 12] combine the use of extended namespace reference and the
Each operator to set the Text, Location and Size properties in several objects
together.

Chapter 3: Using WinForms 39

V EG24;forml;labell;textBoxl;true;false;[JUSING;Z

[1] a Compact version of EG2 taking advantage of ref
syntax and

[2] OQUSING<«,c'System.Windows.Forms,

System.Windows.Forms.d11l'

(3] OUSING,<c'System.Drawing,System.Drawing.dl1"'

(4] true false<1 0

(5]

[6] a Create a new Instance of the form, TextBox and
Label.

(7] formi textBox1l labelil<«(Form TextBox Label).Newcé

(8]

[9] @ Initialize the controls and their bounds.

[10] (labell textBox1).Text<«'First Name' "'

(11] (label1l textBox1).Location<«Point.New (48 48) (48 6Uu4)

[12] (labell textBox1).Size<«Size.New (104 16)(104 16)

(13]

[1u] o Add the Label and TextBox controls to the form's
control collection.

[15] formi.Controls.AddRangeclabell textBox1

[16]

[17] @ Display the form as a modal dialog box.

(18] Z<formi.ShowDialog ®

Non-Modal Forms

Non-modal Forms are displayed using the Run method of the
System.Windows.Forms.Application object. This method is designed to be
called once, and only once, during the life of an application and this poses problems during
APL development. Fortunately, it turns out that, in practice, the restriction is that
Application.Run may only be run once on a single system thread. However, it may be
run successively on different system threads. During development, you may therefore test a
function that calls Application.Run, by running it on a new APL thread using Spawn
(&). See Chapter 13 for further details.

DataGrid Examples

Three functions in the samples\winforms\winforms.dws workspace provide
examples of non-modal Forms. These examples also illustrate the use of the
WinForms.DataGrid class.

Function Grid1 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Betal. The original code has been slightly modified to
work with the SDK Beta2.

40 Microsoft .Net Interface

Function Grid2 is an APL translation of the example given in the help file for the
DataGrid class in the .NET SDK Beta2.

Chapter 3: Using WinForms 41

Function ¢Grid is an APL translation of the example given in the file:

C:\Program Files\Microsoft.Net\FrameworkSDK\Samples\...
...QuickStart\winforms\samples\VB\Data\Grid\Grid.vb

This example uses Microsoft SQL Server 2000 to extract sample data from the sample
NorthWind database. To run this example, you must have SQL Server running and you
must modify function Grid_Load to specify the name of your server.

GDIPLUS Workspace

The samples\winforms\gdiplus.dws workspace contains a sample that
demonstrates the use of non-rectangular Forms. It is a direct translation into APL from a C#
sample (WinForms-Graphics-GDIPlusShape) that is distributed on the Visual Studio .NET
Beta 2 Resource CD.

TETRIS Workspace

The samples\winforms\tetris.dws workspace contains a sample that
demonstrates the use of graphics. It is a direct translation into APL from a C# sample
(WinForms-Graphics-Tetris) that is distributed on the Visual Studio .NET Beta 2 Resource
CD.

WEBSERVICES Workspace

An example of a non-modal Form is provided by the WFG o LF function in the
samples\asp.net\webservices\webservices.dws workspace. This function
performs exactly the same task as the Go LF function in the same workspace, but it uses
Windows.Forms instead of the built-in Dyalog GUI.

WFGOLF, and its callback functions WFB0OOK and WFSS perform exactly the same task, with
almost identical dialog box appearance, of GoLF and its callbacks Book and SsS that are
described in Chapter 7.

Note that when you run wFGOLF or GO LF for the first time, you must supply an argument
of 1 to force the creation of the proxy class for the GolfService web service.

43

CHAPTER 4

Writing .NET Classes in Dyalog APL

Introduction

Dyalog APL allows you to build new .NET Classes, components and controls. A component
is a class with emphasis on cleanup and containment and implements specific interfaces. A
control is a component with user interface capabilities.

With one exception, every .NET Class inherits from exactly one base class. This means that
it starts off with all of the behaviour of the base class, in terms of the base class properties,
methods and events. You add functionality by defining new properties, methods and events
on top of those inherited from the base class or by overriding base class methods with those
of your own.

Assemblies, Namespaces and Classes

To create a .NET class in Dyalog APL, you start with an APL workspace. This should
contain a single top-level namespace whose name represents the name of the NET
Namespace that will be stored in your assembly. Under this namespace, you create one or
more objects (namespaces) of Type 'NetType' each of which represents a .NET class.
When you create a Net T'y pe object, you specify the name of the base class from which it
inherits (the default is System.Object).

Within each of the Ne t Ty pe namespaces, you define functions and variables as usual. If a
function is to be exported as a method, you must define the number of parameters, their data
types, and the data type of the result. You may also specify names for these items. This
information can be entered through the Net Properties tab of the Properties dialog box, or
established programmatically using SetMet hodInfo and Set PropertyInfo. The
information is necessary to allow a client application to use your classes.

44 Microsoft .Net Interface

Once you have defined the functionality of your .NET classes, you are ready to save them in
an assembly. This is simply achieved by selecting Export from the Session File menu.

You will be prompted to specify the directory and name of the assembly (DLL) and it will
then be created and saved. Note that the workspace itself is not saved at the same time.
Your .NET class is now ready for use.

When an APL .NET class is invoked by a client application, it automatically loads
dyalogl0.dll ordyaloglOrt.dl1l, the developer/debug or run-time dynamic link
library version of Dyalog APL. You decide which of these dlls is to be used according to
the setting of the Runtime application checkbox in the Create bound file dialog box. See
User Guide for further details.

Example 1

This example builds an Assembly called APL.Classes1.d11 inthe sub-directory
samples\aplclasses, which contains a .NET Namespace called APL.Classes.

APLClasses contains a single .NET Class called Primitives that exports a single
method called ITndexGen.

First we create a container namespace # . APLC lasses that will represent the .NET
Namespace in the assembly:

clear ws
)NS APLClasses
#.APLClasses

Next, using OwC, we create a NetType object called #.APLClasses.Primitives.
Note that the default BaseClass for a Net Ty pe object is System.Object.

)CS APLClasses
#.APLClasses
"Primitives'OWC'NetType'

Then, inside the Primit ives namespace, we set JUSING so that the code inside this
object can reference the .NET base types such as Int32.

)CS Primitives
#.APLClasses.Primitives
OUSING<'System'

Next, we write the Primit ives.IndexGen function. As we will see later, it is not
necessary for a function to have the same name as the exported method that it implements,
but it is the default.

V R<IndexGen N
[1] R<1N

Chapter 4: Writing .NET Classes 45

The next step is to define the public characteristics for the exported method . This is done
using the .Net Properties page of the Properties dialog box for the TndexGen function as
shown below.

1. To make the function available to a client application, check the Public check box.

2. To export the function as a method (as opposed to a Web Method, or a Property
Get/Set function), select the Method radio button.

3. Enter Int32[] in the box for Result Type. This says that IndexGen returns an
array of integers.

4. Enter Int32 inthe box for the Paraml Type and (optionally) rename the
parameter Paraml, in this case, to "number".

5. Click OK.

\
-@ #.APLClasses.Primitives.IndexGen - Properties

Faram Mame Type | M odifier | Optional |

Result Int3z(] | |
Murnber Int32 ﬂ ﬂ [

Help [|

(* Method " web Method © PropGet ¢ Prop Set |

v Public [Static [Wirkal I Constructar
| Protected

k. | Cancel

46

Microsoft .Net Interface

Note that APL will at this stage check the data types you have specified for the result and
for the method's parameters. If one or more of the data types are not recognised as available
.NET Types (Classes), you will be informed by a message box. If you see such a warning
you have either entered an incorrect data type, or you have not set OUSING correctly. In
this case, the only data type used is Int 32, which is a Type, defined in the .NET
Namespace System, and QUSING issetto ' System', so all will be well.

The next step is not strictly necessary, but it does make good sense to) SAVE the
workspace at this stage. The name you choose for the workspace will be the default name
for the assembly

)CS
#
)JWSID samples\APLClasses\aplclassesi
was CLEAR WS
)SAVE
samples\APLclasses\aplclassesl saved Wed Nov 21 12:30:38 2001

Now you are ready to create the assembly. This is done by selecting Export... from the
Session File menu. This displays the following dialog box.

Chapter 4: Writing .NET Classes

47

-

Create bound file

Save in:

[
iy Recent
Documents

Dezktop

'}

ty Documents

ty Computer

.

b M etk

) aplclaszes

,j:] aplclasses1.dl
,E:] aplclassesZ.dl
,:;_I aplclasses3.di
,:;_I aplclasses4.dl
,j:] aplclassess,dl
,i;] aplclassesa.dl
,:;_I aplclasses7.dl

File name:

Save az ype:

aplclazzesl

Microzoft MNet sszembly [*.dl)

Save
Cancel

This gives you the opportunity to change the name or path of the assembly. The Runtime

application checkbox allows you to choose to which if the two versions of the Dyalog APL
dynamic link library the assembly will be bound. See User Guide for further details.

Finally click Save.

APL now makes the assembly and, as it does so, displays information in the Status window
as shown below. If any errors occur during this process, the Status window will inform you.

48

Microsoft .Net Interface

ﬁ Status E]@

File Cptions

Declared Assembly aplclassesl
Declared HModule aplclassesl in file C:isDyalog.Metwsamplessaplclasseswaplclassesl.dll
Declared Tupe APLClasses.Primitives
Compiling Method "IndexGen"
Parameter tupe "Int32" resolved to Sustem.Int3dz
Result tupe "Int3201" resoluved to Sustem.Int3zC]
Compiled Method "IndexGen"
Emitted Tupe APLClasses.Primitives
Emitted Assembly to file "C:wDualog.Metwsamplessaplclasseswaplclassesl.dll”

Lloze

Note that when APL makes a .NET Assembly, it does not save the workspace at the same
time.

aplfns1.cs

The following C# source, called samples\APLClasses\aplfnsl.cs, may be used
to call your APL .NET Class.

The using statements specify the names of .NET namespaces to be searched for
unqualified class names.

The program creates an object named apl of type Primitives by calling the new
operator on that class. Then it calls the ITndexGen method with a parameter of 10.

using System;
using APLClasses;
public class MainClass
{
public static void Main ()
{
Primitives apl = new Primitives();
int[] rslt = apl.IndexGen (10);

for (int i1=0;i<rslt.Length;i++)
Console.WriteLine (rslt[i]);

Chapter 4: Writing .NET Classes 49

Then, to compile and run the program from a DOS command shell, change directory to the
samples\aplclasses sub-directory, and then type the following commands shown in
bold type. The first command is required to set up environment variables and your PATH.
Note that all this assumes that you have Visual Studio.NET installed.

APLClasses>setpath.bat

Setting environment for using Microsoft Visual C++.NET
7.0 tools.

(If you also have Visual C++ 6.0 installed and wish to
use its tools

from the command line, run vcvars32.bat for Visual C++
6.0.)

APLClasses>csc /r:APLClassesl.dll aplfnsl.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR
version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights
reserved.

APLClasses>aplfnsl

P OO0 -Jo 0l W

Calling IndexGen from Dyalog APL

OUSING<«'APLClasses,samples\APLclasses\aplclassesl.dll'
PR«Primitives.New &
PR.IndexGen 10

12 3 456 7 89 10

50

Microsoft .Net Interface

Example 2

In Example 1, we said nothing about a constructor used to create an instance of the
Primitives class. In Example 2, we will show how this is done.

In fact, in Example 1, APL supplied a default constructor, which is inherited from the base
class (System.Object) and is called without arguments.

Example 2 will extend Example 1 by adding a constructor that specifies the value of 010.

First, we will) LoAD the aplclasses1 workspace we saved in Example 1, and change to
the APLClasses.Primitives namespace.

)LOAD samples\APLClasses\aplclassesi
samples\APLClasses\aplclassesl saved Wed Nov 21 12:30:38 2001
)CS APILClasses.Primitives
#.APLClasses.Primitives

Next, we will define a function called cToRr that simply sets 010 to the value of its
argument. The name of this function is purely arbitrary.

v CTOR IO
(1] 0ro<ro

Chapter 4: Writing .NET Classes 51

Then we will export this function as a constructor. This is done using the .Net Properties
page of the Properties dialog box for the ¢ T0oR function as shown below. Note that in
addition to checking Public and selecting Method, the Constructor box is also checked. The
data type of the result is defined to be void (no result) and that of its parameter to be
Int32.

£ #.APLClasses.Primitives.CTOR - Properties

]

Faram Mame Type | M odifier | Optional |

Result Woid | |

IndexOrigin Inta2 =] ~

Help [|

(* Method " web Method © PropGet ¢ Prop Set |

v Public [Static [Wirkal Iv Constructor
| Protected

k. | Cancel

52 Microsoft .Net Interface

Then we rename and save the workspace:

JWSID samples\APLClasses\aplclasses?
was samples\APLClasses\aplclassesi
)SAVE
samples\APLClasses\aplclasses2 saved Wed Nov 21 12:39:10 2001

Finally, we can build a new .NET Assembly using File/Export... as before.

Create bound file E]“
Sawve jn: |l.ﬂ aplclaszes [v] €] 1,"‘ i mv

|_f}] aplclassesl.dil

-

&

ﬁ}] aplclassesz. dil

My Recent |_ﬁ] aplclasses3.dil
Documents | %] aplclasses4.di
7 | %] apiclassess.di

|. |_ﬁ] apldassesa.dil
Desktop |_ﬁ] aplclasses?.dil

My Documents

File narme: |aplclasses2 [V] I Save l

Save as lupe: |Micrnsnft.Net.&ssembl}l [*.dll [v] l Cancel]

tdy Metwork,

Please note that, in this case, it is essential (for Example 2a) that the Build runtime
assembly checkbox is not checked. We will need the development version for debugging
purposes.

Chapter 4: Writing .NET Classes 53

ﬁ Status E]@

File Options

Declared Assembly aplclasses?
Declared Module aplclasses? in file C:i~Dualog.MetssamplessaplclassessaplclassesZ.dll
Declared Tupe APLClasses.Primitives
Compiling Constructor “"CTOR"
Parameter tupe "Int32" resolved to Sustem.Int3z
Result tupe "Uoid" resolwved to Sustem.Uoid
Compiled Constructor "CTOR"
Compiling Method "IndexGen"
Parameter tupe "Int32" resolved to Sustem.Int3z
Result tupe "Int3201" resclved to Sustem.Int3ZzC]
Compiled Hethod "IndexGen"
Emitted Tupe APLClasses.Primitives
Emitted Assembly to file "C:vDualog.MetwsampleswaplclassestaplclassesZ2.dll”

LCloge

aplfns2.cs

The following C# source, called samples\APLClasses\aplfns2.cs, may be used
to call your APL .NET Class.
using System;

using APLClasses;
public class MainClass

{

public static void Main ()
{
Primitives apl = new Primitives (0);
int[] rslt = apl.IndexGen (10);
for (int i1=0;i<rslt.Length;i++)
Console.WritelLine(rslt[i]);
}

}

The program is the same as in the previous example, except that the code that creates an
instance of the Primitives class is simply changed to specify an argument; in this case
0.

Primitives apl = new Primitives(0);

When the code is compiled, this call is matched with the various constructors available in
the Primitives class, namely the default constructor (which takes no arguments) and the
CTOR constructor, which takes a single integer argument. The latter matches, so the
program compiles successfully with this line compiled to call ¢T0R with a parameter of 0.
When the program runs, the output is 0-9 as expected.

54 Microsoft .Net Interface

Example 2a

APLClasses>setpath.bat

APILClasses>csc /r:APLClasses2.dll aplfns2.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR
version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights
reserved.

APLClasses>aplfns2

WO Jo Ul WN RO

In Example 2, the argument to CTOR, the constructor for the Primitives class, was
defined to be Int32. This means that the .NET Framework will allow a client to specify
any integer when it creates an instance of the Primitives class. What happens if the
client uses a parameter of 2? Clearly this is going to cause an APL DOMAIN ERROR when
used to set 0I0.

aplfns2a.cs

The following C# source, called samples\APLClasses\aplfns2a.cs, may be used
to demonstrate what happens.

using System;
using APLClasses;
public class MainClass
{
public static void Main ()
{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen (10);

for (int 1=0;i<rslt.Length;i++)
Console.WritelLine(rslt([i]);

}

Chapter 4: Writing .NET Classes 55

The code is the same as in the previous example, except that the line that creates an instance
of the Primitives class specifies an inappropriate argument; in this case 2.

Primitives apl = new Primitives (2);
Then, when the program is compiled and run ...
APLClasses>setpath.bat

APLClasses>csc /r:APLClasses2.dll aplfns2a.cs
Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR

version 1.0.2914]
Copyright (C) Microsoft Corp 2000-2001. All rights

reserved.

APLClasses>aplfns2a

... the APL Session appears, and the Tracer may be used to debug the problem. You can see
that the constructor CT0OR has stopped with a DOMAIN ERROR. Meanwhile, the C#
program is still waiting for the call (to create an instance of APLClasses.Primitives)
to finish.

5 CLEAR WS {AppDomain_aplfns2a_exe.Assembly_aplclasses2. APLClasses.Primitives)- Dyalog APLAW - |04
File Edit View ‘Windows Session Log Action Options Tools Help
wi OB E S | object B B B 7 Tool € G & b W ||Edit B @ v o
Dualog.het (release 0)] | =
Pent ium %‘
Tue Mar 19 16:00:25 2002
1:D0OMAIN ERROR
CTORC1] OIO+I0
A
151
Applomain_aplfnsZa_exe.fAssembly_aplclassesZ2. APLClasses.Primitives.CTORC1]=
HainClass.HMainl] o
&1 (sustem thread:2116) =
=g
Debugger - AppDomain_aplfns2a_exe Assembly_aplclasses2 APLClasses. Primitives. CTOR [Tid:1] -1o] x|
? CTORC11=010<10 =
1 4
«“
Readu. .. Ins |Apl
Curbbj: 31 CUndefinedl g:2 Opbg:o OTRAP O3I:1 OI0:1 OML:@

In this case, debugging is simple, and you can simply type:

I0+«1
-~0LC

56 Microsoft .Net Interface

This causes the APL Session to disappear; the apl fns2a program continues successfully
and the output is displayed.

=

OO Joy Ul WN

0

Notice that in Dyalog APL, the) ST System Command provides information about the
entire calling stack, including the .NET function calls that are involved. Notice too that the
cToR function, the constructor for this APL .NET class, is running here in APL thread 1,
which is associated with the system thread 2116. See Chapter 12 for further information on
debugging APL classes.

Example 3

The correct .NET behaviour when an APL function fails with an error is to throw an
exception, and his example shows how to do it.

In the .NET Framework, exceptions are implemented as .NET Classes. The base exception
is implemented by the System.Exception class, but there are a number of super
classes, such as System.ArgumentException and
System.ArithmeticException that inherit from it.

OSIGNAL has been extended to allow you to throw an exception. To do so, its right
argument should be 90 and its left argument should be an object of type
System.Exception or an object that inherits from System.Exception. (Other
options for the left argument may be implemented later).

When you create the instance of the Exception class, you may specify a string (which
will turn up in its Message property) containing information about the error.

Starting with the APLCLASSES2.DWS workspace, the following changes add exception
handling to the cToR function.

)JLOAD samples\APLClasses\aplclasses?2
samples\APLClasses\aplclasses2 saved Wed Nov 21 12:39:10 2001
)CS APLClasses.Primitives
#.APLClasses.Primitives

Then modify the cToRr function to perform exception handling in the approved manner.

Chapter 4: Writing .NET Classes

57

v CTOR IO;EX

(1] :If I0e0 1

[2] 0ro<ro

[3] :Else

[u]

1[

[5] EX OSIGNAL 90
[6] :EndIf

JWSID

EX<ArgumentException.New'IndexOrigin must be 0 or

samples\APLClasses\aplclasses3

was samples\APLClasses\aplclasses2

)SAVE

samples\APLClasses\aplclasses3 saved Wed Nov 21 13:32:14 2001

and make a new .NET Assembly called aplclasses3.dll.

Create bound file

D

My Recent
Documents

=
[
Desklop

9

ty Documents

o

tdy Camputer

b

by M etk

Save in: | =) aplclasses

] © 2 e @E-

_"!ﬂ aplclasses1.dil
_’-ﬂ aplclassesz.dil
L’jﬂ aplclasses3.dil
L‘iﬂ aplclasses4.dil
_"!ﬂ aplclassess.dil
_’-ﬂ aplclassese.dil
L‘lﬂ aplclasses?.dil

File name:

Save az type:

[Save]

| Microzoft Met Aszembly [*.dl)

][]

[Cancel]

58

Microsoft .Net Interface

ﬁ Status E] @ 1

File Options

Declared Assembly aplclassesd
Declared Module aplclassesd in file CisDualog.Metssamplessaplclasses~aplclasses3.dll
Declared Tupe APLClasses.Primitives
Compiling Constructor "CTOR"
Parameter tupe "Int32" resolved to Sustem.Int3dz
Result tupe "Uoid" resolved to Sustem.Uoid
Compiled Constructor "CTOR"
Compil ing Hethod "IndexGen"
Parameter tupe "Int32" resolved to Sustem.Int3dz
Result tupe "Int3201" resolved to Sustem.Int320]
Compiled HMethod "IndexGen"
Emitted Tupe APLClasses.Primitives
Emitted Assembly to file "C:~Dualog.Metssamples-aplclassessaplclasses3d.dll”

LCloze

aplfns3.cs

The following C# source, called samples\APLClasses\aplfns3.cs, may be used

to invoke the new cToR function. apl£fns3. cs contains code to catch the exception and

to display the exception message.

using System;
using APLClasses;
public class MainClass

{

public static void Main ()

try
{
Primitives apl = new Primitives(2);
int[] rslt = apl.IndexGen (10);
for (int 1=0;i<rslt.Length;i++)
Console.WriteLine (rslt[i]):;
}

catch (Exception e)
{
Console.WritelLine (e.Message) ;
}

}

Then, when the program is compiled and run ...

APLClasses>setpath.bat
APIClasses>csc /r:APLClasses3.dll aplfns3.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR

version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights
APLClasses>aplfns3

IndexOrigin must be 0 or 1

Chapter 4: Writing .NET Classes 59

Example 4

This example builds on Example 3 and illustrates how you can implement constructor
overloading, by establishing several different constructor functions.

By way of an example, when a client application creates an instance of the Primitives
class, we want to allow it to specify the value of 010 or the values of both 070 and OmrL.

The simplest way to implement this is to have two public constructor functions cToRr1 and
CTOR2, which call a private constructor function CTOR as listed below.

JLOAD samples\APLClasses\aplclassess3
samples\APLClasses\aplclasses3 saved Wed Nov 21 13:32:14 2001
)CS APLClasses.Primitives
#.APLClasses.Primitives

v CTOR1 IO
[1] CTOR IO O

v CTOR2 IOML
[1] CTOR IOML

v CTOR IOML;IO;ML;EX

[1] I0 ML«IOML
(2] :If ~I0e0 1
[3] EX<ArgumentException.New'IO must be 0 or 1'
(4] EX OSIGNAL 90
[5] :EndIf
(6] :If ~MLeO 1 2 3
[7] EX«<ArgumentException.New'MigrationLevel must be
0, 1, 2 or 3!
(8] EX OSIGNAL 90
(9] :EndIf
[10] 0I0 OML<IO ML
v

The .Net Properties for these three functions show that cToR1 is defined as a constructor
that takes a single Int 32 parameter, CTOR?2 is defined as a constructor that takes two
Int32 parameters, and CTOR has no .NET Properties defined at all.

Note that in .NET terms, CTOR is not strictly a Private Constructor; it is simply an internal
function that is invisible to the outside world.

60

Microsoft .Net Interface

NET Properties for CTOR1

-@ #.APLClasses.Primitives.CTOR1 - Properties

e

Pruperties] Yalue] Monitar |

Param Mame Type | b adifier | Optional |

Result Yaid ~| |

Indexrigin Int32 =] -
Help [od |

i+ Method (" web Method © Prop Get ¢ Prop Set |

[v Public [Static [Wirtual [v Construchor
[Protected

o]

Cancel

Chapter 4: Writing .NET Classes

.NET Properties for CTOR2

-,

£ #.4PLClasses.Primitives.CTOR2 - Properties

FParam Mame Type | b4 odifier | Optional |
Result Woid | |
IndexDrigin | Int32 | =~
MigrationLe...| [nt32 ﬂ ﬂ [
Help o |
* Method " web Method ¢ PropGet ¢ Prop Set |
[v Public [Static [Wirtual [v Constructor
[Pratected

k. | Cancel

62 Microsoft .Net Interface

NET Properties for CTOR

1 #.APLClasses.Primitives.CTOR - Properties 2JE3

Prupertiesl Yalue I Monitar |

Pararn Name| Tupe I M odifier I Dptiu:unall
Reszult | Swyztem. Aray j j

Help | D |

™ Methed " web Method ¢ Prop Get ¢ Prop Set I

[Public [Static [Wirtual [Constructar
[~ Protected

| ()4 I Cancel

Chapter 4: Writing .NET Classes 63

Next, a function called Get ToML is defined and exported as a Public Method. It simply
returns the current values of 010 and OML.

V R<GetIOML
(1] R<0I0 OML
v

£ #.APLClasses.Primitives.GetlOML - Properties

Faram Name| Type | M odifier | Optional |

Resul | Int21] -] |

F'ru:uperties] WYalue] M anitor

Help 1D|

(* Method " web Method © PropGet ¢ Prop Set |

v Public [Static [Wirkal I Constructar
| Protected

k. | Cancel

Having done this, the workspace is renamed aplclasses4.dws, and saved, and a new
Assembly aplclasses4.dll is built.

JWSID samples\APLClasses\aplclasseslk
was samples\APLClasses\aplclassesh
)SAVE
samples\APLClasses\aplclasses4 saved Wed Nov 21 13:51:22 2001

64

Microsoft .Net Interface

Create bound file

My Recent
Documents

E

Dezktop

My Documents

&L

My Computer

&

tdy Metwork,

Sawve n: | =3 aplclasses

x O 2 2@

aplclasses1.dil
aplclassesz,dil
apldasses3.dl
aplclasses4,dll
aplclassess,dil
aplclassesé,dil
apldasses7.dl

File narme:

Save as lupe:

| aplclaszesd.dl

[Save]

| Microzoft Met dzzembly [*.dll)

][]

l Cancel]

ﬁ Status

-I:Im

File Options

Declared Assembly aplclassesd
Declared Module aplclassesd in file Ci~Dualog.Metssamplessaplclasses~aplclasses4.dll
Declared Tupe APLClasses.Primitives
Compiling Constructor "CTORL"

Parameter tupe "Int32" resolved to Sustem.Int3dz
Result tupe "Uoid" resolved to Sustem.Uoid

Compiled Constructor "CTORL™
Compiling Constructor "CTORZ"

Parameter tupe "Int32" resolved to System.Int32
Parameter tupe "Int32" resolved to Sustem.Int3dz
Result tupe "Uoid" resolved to Sustem.Uoid

Compiled Constructor "CTORZ"
Compiling Hethod "GetIOML"

Result tupe "Int3201" resolved to Sustem.Int320]

Compiled HMethod "GetIOHL"
Emitted Tupe APLClasses.Primitives
Emitted Assembly to file "C:~Dualog.Metssamples-waplclassessaplclasses4.dll”

LCloze |

Chapter 4: Writing .NET Classes 65

aplfnsd.cs

The following C# source, called samples\APLClasses\aplfns4.cs, may be used
to invoke the two different constructor functions cTOR1 and CTOR2 in the new
aplclasses4.dll Assembly .

using System;

using APLClasses;

public class MainClass
{

public static void Main ()
{
Primitives apll0 = new Primitives(1l);
int[] rsltl0 = apll0.GetIOML() ;
for (int i=0;i<rsltl0.Length;i++)
Console.WritelLine (rsltl1l0[1]);

Primitives apl03 = new Primitives(0,3);
int[] rslt03 = apl03.GetIOML() ;
for (int i=0;i<rslt03.Length;i++)
Console.WritelLine (rslt03[1]);
}
}

In this example, the code creates two instances of the Primitives class named ap110 and
apl03. The first is created with a constructor parameter of (1) ; the second with a
constructor parameter of (0, 3). The C# compiler matches the first call with CTOR1,
because cTOR1 is defined to accept a single Int32 parameter. The second call is matched
to CTOR2 because cTORz2 is defined to accept two Int32 parameters

Then, when the program is compiled and run ...

APLClasses>setpath.bat

APLClasses>csc /r:APLClasses4.dll aplfns4d.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR
version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights
reserved.

APLClasses>aplfns4
1

0
0
3

66 Microsoft .Net Interface

Example 5

This example takes things a stage further and illustrates how you can implement method
overloading.

In this example, the requirement is to export three different versions of the IndexGen
method; one that takes a single number as an argument, one that takes two numbers, and a
third that takes any number of numbers. These are represented by three functions named
IndexGeni, IndexGen2 and IndexGen3d respectively. Because monadic 1 performs
all of these operations, the three APL functions are in fact identical. However, their public
interfaces, as defined in their .NET Properties, are all different.

The overloading is achieved by entering the same name for the exported method
(IndexGen) in the box provided, for each of the three APL functions.

Chapter 4: Writing .NET Classes 67

JLOAD samples\APLClasses\aplclassess5
samples\APLClasses\aplclasses5 saved Wed Nov 21 12:23:18 2001
)CS APLClasses.Primitives
#.APLClasses.Primitives
JENS
CTOR CTOR1 CTOR2 IndexGen1 IndexGen2 IndexGens

V R«<IndexGeni N
[1] R<1N
v

This is the version we have seen before. The method is defined to take a single argument of
type Int32, and to return a 1-dimensional array (vector) of type Int32.

-@ #.APLClasses.Primitives.IndexGen1 - Properties

F'ru:uperties] Walue] Manitar | .

FParam Mame Type | b odifier |Dpﬁunm|

Result Int32[] | -

Mumber Int32 j j [
Help D |

{+ Method [webtethod © PropGet (Prop Set ||FIE|EHGEFI

[v Public [Static [Wirtual [Constructor
[Pratected

k. | Cance

68 Microsoft .Net Interface

V R«IndexGen2 N
[1] R<«1N
v

This version is defined to take two arguments of type Int 32, and to return a 2-dimensional
array, each of whose elements is a 1-dimensional array (vector) of type Int32.

-@ #.APLClasses.Primitives. IndexGen2 - Properties
F"ru:uperties] " alue] Manitar
Param Mame Type | kd adifier | Optional |
Result et 32[]L.] ~| ~|
Mumber] Int32 - - [
Mumberz | Int32 | ~|
Help [o] |
i+ Method (" web Method © Prop Get ¢ Prop Set ||ﬂdEHGEf'I
[v Public [Static [Wirtual [Construchar
[Protected

| ()4 | Cancel

Chapter 4: Writing .NET Classes

69

V R<«IndexGen3 N

(1] R<1N
v

In principle, we could define 7 more different versions of the method, taking 3, 4, 5 etc
numeric parameters. Instead, this method is defined more generally, to take a single

parameter that is a 1-dimemsional array (vector) of numbers, and to return a result of type

Array. In practice we might use this version alone, but for a C# programmer, this is harder
to use than the two other specific cases.

Ax]

-@ #.APLClasses.Primitives.IndexGen3 - Properties
Properties | Value | Monitor |t Fiopeities |
Faram Mame Type | M odifier |Dpﬁund|
R eszult Aray j j
Numbers Int32]] | ~|
Help o
i+ method " wehMethod © PropGet © Prop Set ||ﬂdEHGEﬂ
[+ Public [Static [Wirkual I Constructar
| Pratected
1[4 |

Cancel

70 Microsoft .Net Interface

Create bound file W

Sawve n: |E aplclaszes Ii] J l’} = v

aplclasses1.dil
apldasses2.dil
My Recent apldasses3.dl
Documents aplclasses4.d

s aplclassess, dil

L_ aplclassesa. dil
aplclasses7.dil

Dezktop

My Documents

&L

My Computer
File narme: |aplclassesE Iil [Save]

Save as lvpe: |Micrnsnft.Net.&ssembl_l,l [*.di M l Cancel]

tdy Metwork,

CIfuntme apolicatior

&

Chapter 4: Writing .NET Classes

71

ﬂ Status E]@

File Options

Declared Assembly aplclassesD
Declared Module aplclassesS in file C:i~Dualog.MetssamplessaplclassessaplclassesS.dll
Declared Tupe APLClasses.Primitives
Compiling Constructor "CTORLY
Parameter tupe "Int32" resolved to Sustem.Int3z
Result tuype "Uoid" resolved to Sustem.Uoid
Compiled Constructor "CTOR1™
Compiling Constructor "CTORZ"
Parameter tupe "Int32" resolved to Sustem.Int3z
Parameter tupe "Int32" resolved to Sustem.Int3z
Result tupe "Uoid" resolwved to Sustem.Uoid
Compiled Constructor "CTORZ"
Compiling Method "IndexGenl”
Parameter tupe "Int32" resolved to Sustem.Int3z
Result tupe "Int3201" resclved to Sustem.Int3ZzC]
Compiled Hethod "IndexGenl"
Compiling Method "IndexGenz"
Parameter tupe "Int32" resolved to Sustem.Int3z
Parameter tupe "Int32" resolved to Sustem.Int3z
Result tupe "Int32CLI10,1" resolved to Sustem.Int32C1C, 1
Compiled Hethod "IndexGenz"
Compiling Method "IndexGen3"”
Parameter tupe "Int32[1" resolved to Sustem.Int3Z2C]
Result tupe "Arrau” resolved to Sustem.Arrau
Compiled Hethod "IndexGen3"
Emitted Tupe APLClasses.Primitives
Fmitted Azzembly to file "C:vDualog.MetwsampleswaplclassessaplclassesS.dll”

Lloze |

aplfns5.cs

The following C# source, called samples\APLClasses\aplfns5.cs, may be used
to invoke the three different variants of IndexGen, in the new aplclasses5.dll Assembly .

using System;
using APLClasses;
public class MainClass

{

static void PrintArray(int[] arr)

{

for (int i=0;i<arr.Length;i++)

{

Console.Write(arr[i]);

if (i!=arr.Length-1)Console.Write(",");

}

72 Microsoft .Net Interface

public static void Main ()
{
Primitives apl = new Primitives(0);
int[] rslt = apl.IndexGen (10);
PrintArray(rslt);
Console.WriteLine ("");

int[,][] rslt2 = apl.IndexGen(2,3);
for (int i=0;i<2;i++)
{
for (int j=0;3<3;j++)
{

int[] row = rslt2[i,j];
Console.Write (" (") ;
PrintArray (row) ;
Console.Write(")");
}

Console.WriteLine ("");

}

int[] args = new int[3];

args[0]=2;

args[1]1=3;

args([2]=4;

Array rslt3 = apl.IndexGen (args);
Console.WriteLine (rslt3);

}
Then, when the program is compiled and run ...

APLClasses>setpath.bat

APLClasses>csc /r:APLClasses5.dll aplfns5.cs
Microsoft (R)Visual C# Compiler Version 7.00.9254
version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights
reserved.

APLClasses>aplfns5
0,1,2,3,4,5,6,7,8,9
(0,0) (0,1) (0,2)
(1,0) (1,1) (1,2)
System.Object[,,]

[CLR

Chapter 4: Writing .NET Classes 73

Interfaces

Interfaces define additional sets of functionality that classes can implement; however,
interfaces contain no implementation, except for static methods and static fields. An
interface specifies a contract that a class implementing the interface must follow. Interfaces
can contain static or virtual methods, static fields, properties, and events. All interface
members must be public. Interfaces cannot define constructors. The .NET runtime allows an
interface to require that any class that implements it must also implement one or more other
interfaces.

When you create a Net Ty pe object using OwC you may specify which interfaces it
provides by specifying a value for the Interfaces property. You must do this when you
create the object; you cannot subsequently change the value of the Tnterfaces property.

The value of Interfaces is a character vector containing a comma-separated list of
Interface names. Each of these must be the full name of an existing Interface, which is
defined in one of the .NET Namespaces installed on your computer. Note that QUSING is
not used to locate an Interface name; you must specify it fully. However, the .NET
Assembly that defines the Interface must be included in QUSING.

If you specify that your class implements a certain Interface, you must provide all of
the members (methods, properties, and so forth) defined for that Interface. However,
some Interfaces are only marker Interfaces and do not actually specify any members.

An example is the TemperatureControlCtl11 custom control described in Chapter
10. This is built on top of the System.Web.UI.Control class, which defines an
optional Interface called INamingContainer. A class based on Control that
implements ITNamingContainer specifies that its child controls are to be assigned
unique ID attributes within an entire application. This is a marker interface with no methods
or properties defined for it.

The TemperatureControlCtl2 custom control example described in Chapter 10
implements two interfaces named IPostBackDataHandler and
IPostBackEventHandler. These interfaces are required for a custom control that
intends to render the HTML for its own form elements in a Web page. These interfaces
define certain methods that get called at the appropriate time by the page framework when a
Web page is constructed for the browser. It is therefore essential that the class implements
all the methods specified by the interface, even if they do nothing.

See these examples in Chapter 10 for further details.

74 Microsoft .Net Interface

75

CHAPTER 5

Dyalog APL and IIS

Introduction

Microsoft Internet Information Services (11S) is a comprehensive Web Server software
package that allows you to publish information on your Intranet, or on the World Wide
Web. 11S comes with NT XP Professional and Windows 2000; all you need add is a
network connection to run your own Web site.

I1S includes Active Server Page (ASP) technology. The basic idea of ASP is to permit web
pages to be created dynamically by the web server. An ASP file is a character file that
contains a mixture of HTML and scripts. When 1S receives a request for an ASP file, it
executes the server-side scripts contained in the file to build the Web page that is sent to the
browser. In addition to server-side scripts, ASP files can contain HTML (including related
client-side scripts) as well as calls to COM components that can perform a variety of tasks
such as database lookup, calculations, and business logic.

Basically, each script inside an ASP page generates a stream of HTML. The server runs the
scripts and assembles the resulting HTML into a single stream (Web page) that is sent to the
browser.

ASP.NET is a new version of ASP and is based upon the Microsoft .NET Framework
technology. It offers significantly better performance and a host of new features including
support for Web Services.

76 Microsoft .Net Interface

IS Applications and Virtual Directories

11S supports the concept of an Application. An application is a logically separate service or
web site. 1S can run any number of Applications concurrently. The files associated with an
application are stored in a physical directory on disk, which is linked to an IIS Virtual
Directory. The name of the Virtual Directory is the name of the Application or Web Site.

The Dyalog APL distribution contains a directory named
DyaloglO\Samples\asp.net and a set of sub-directories each of which contains a

sample application.

During the installation of Dyalog APL, these are automatically registered as I1S Virtual
Directories named apl .net, apl.net/Golf, and so forth. When you want to run the

Web Services and Web Page examples, you do so by specifying the URL
http://localhost/apl.net/..

Internet Services Manager

As its name suggests, Internet Services Manager is a tool for managing I1S. If you are going
to develop Web Pages and/or Web Services, you will be using this tool a lot, and it makes
sense to add it as a shortcut on your desktop.

To do this, open Control Panel, then open Administrative Tools, right-click Internet
Services Manager, and select Send To Desktop (create shortcut).

Chapter 5: Dyalog APL and IS 77

The apl.net Virtual Directory

Following a successful installation of Dyalog APL, the apl.net Virtual Directory should
appear in Internet Services Manager as shown below.

% Internet Information Services E]@
File Action \Mjew Help
e~ mm X 2
- 8 epinet] [data (8] web. config
+-[_] data epidernic
+-[_7] epidemic golf
+ @ golf inkro
+ I:I inkro loan
+-7 lnan 3 id
spider
+-[_1] spider Terp
+ @ Temp wap
#- wap actfns
+-_] actfns)
+ @ webservices WEbSF‘fW'EES
+-[] codeview [v] codeview
£ | 1 | [*] < | i [*]

In case you need to set up your own I1S Virtual Directories yourself, the procedure is
described below.

78

Microsoft .Net Interface

Creating the apl.net Virtual Directory

Start Internet Services Manager, open the icon associated with your computer (in this case,
pdport) and select Default Web Site (or whatever it is called).

?';f Internet Information Services

Jﬂctiun Yiew |J<}= -P|||@

=10l x|

|81y m |

Tree I

% Internet Information Services
El--- * pdport
{5- Defaulk SMTP Virkual Server
-4a) Default FTP Site
é Default i

Weh Site

Marne | Path =
I:i Scripks cinekpublscripks

@ II5Admin CH TN T Swskem32yine
@ 1I55amples c:hinetpubljiissamples

B Msanc
& 115Help
@ Webpub
l:i Printers
g _vti_bin
@ pdcdermno
@ dyadic
@ Crvalog
@ CouicksSkark
@ Rothlra
@ CrossLang
%Clsh‘iew

4

c:program filesycommon__
cwinntihelplishelp

A Inetpubiwebpub
W IRMNT ek printers
C:\Program FileshComm
chinekpubl deroot pdede
c:hdvadic
CiDrvaloga0iaspsywr

i \Program Files\Micros
CAProgram Filesi\Microm
C:AProgram Filesi\Micros

C:AProgram FiIes'l,Micfln;I
e Bl

Chapter 5: Dyalog APL and IS

79

Select New Virtual Directory from the Action menu or from the item’s context menu. This
brings up the Virtual Directory Creation Wizard. Click Next to bring up the first page and
enter apl.net into the Alias field.

¥irtual Directory Creation Wizard x|

Virtual Directory Alias Lo,
'ou must give the wirtual directon a short name, or aliaz, for quick, reference.

Type the aliaz you want to uze to gain access ko thiz Web wirtual directory. Use the
£ame haming cofventions that you would for naming a directon.

Blas:
Iapl. red]

< Back I Hest » I Cancel

Click Next, then enter the full pathname to the Dyalogl0\samples\asp.net
directory as shown below.

80 Microsoft .Net Interface

¥irtual Directory Creation Wizard x|

Web Site Content Directory e
YWwhere iz the content wou want to publish on the web site?

Enter the path to the directomy that containg the content,

Diirechony:

C:hDpalog MethS ampleshasp net Browse. .. I

< Back

Cancel |

Chapter 5: Dyalog APL and IS

81

Accept the default Access Permissions, as shown below, and click Next.

¥irtual Directory Creation Wizard

Access Permizsions
YWhat access permizzions do you want bo get for thiz vitual directon?

x|

=

Allov the fallowing:

¥ Head

¥ Fun soripts [such az ASP)

[~ Execute [such as 1SAP| applications or LGl
[wiite

[~ Browse

Click Hext to complete the wizard.

< Back I Hest = I

Cancel

Then finally, click Finish.

82

Microsoft .Net Interface

¥irtual Directory Creation Wizard x|

You have successfully
completed the Virtual
Directory Creation Wizard.

Click Finish to continue.

< Back

[Canzel |

Chapter 5: Dyalog APL and IS 83

Creating the apl.net Virtual Sub-Directories

The golf, temp and webservices sub-directories in apl.net represent separate 11S
Applications, so these need to be registered as 11S Virtual Directories too.

Open the newly created apl.net item shown in the left pane of Internet Services Manager,
bring up the context menu of the Golf sub-directory, and select Properties.

Click the Create button; this turns the sub-directory into an IS Virtual Directory (a separate
I1S application) named Golf.

Diirectory | Du:u:umentsl Dhirectarny Securityl HTTP Headersl Custom Erru:ursl
YWhen connecting ta thiz rezource, the content should come from:
' The designated directory
= & share located on another computer
" A redirection to a URL

Laocal Path: hapl. et Golf

[Script zource access v Log visits

v Bead ¥ Index this resource
[wirite

™ Directory browsing

Application Settingz

Application name: IGDIf
Starting point: <Default ‘Web Sitexha.. \Golf

Configuration. .. |
Execute Pemissions: I Scripts anly j

Application Protection; IMedium (Pooled) j [rlzad |

] | Cancel | Amply | Help |

Note that the Application Protection entry dictates whether your application is loaded into
the 11S process (Low), a shared DLLHost task (Medium) or its own DLLHost task (High).
The last choice isolates your application from all other IIS applications, and is the safest
option.

Follow the same procedure to define Temp and webservices as Virtual Directories (as
sub-directories of apl .net).

84 Microsoft .Net Interface

It is not necessary to do this now, but you will need to do this during development and it
won’t hurt now.

Restart 11S. You can do this from the context menu of the item associated with your
computer at the top of the tree. Restarting I1S causes it to unload all the assemblies
associated with your Applications.

85

CHAPTER 6

Writing Web Services

Introduction

A Web Service can be thought of as a Remote Procedure Call. However, it is a remote
procedure call that can be made over the Internet using simple character-based messages.

Web Services are implemented using Simple Object Access Protocol (SOAP), Extensible
Mark-up Language (XML) and Hypertext Transfer Protocol (HTTP). Web Services do not
require proprietary network protocols or software. Web Service calls and responses can
successfully be transmitted around the Internet without the need to specially configure
firewalls.

A Web Service is a programmable class that may be called by any program running on the
computer, any program running on a computer on the same LAN, or any program running
on any computer on the internet.

Web Services are hosted (i.e. executed) by ASP.NET running under Microsoft I11S. Any one
Web Services sits on a single server computer and runs there under ASP.NET/IIS. The
messages that invoke the Web Service, pass its arguments, and return its results, utilise
standard HTTP/SOAP/XML protocols.

A Web Service consists of a single text script file, with the extension . asmx, inan IS
Virtual Directory on the server computer.

A Web Service may expose a number of Methods and Properties. Methods may be called
synchronously (the calling process waits for the result) or asynchronously (the calling
process invokes the method, continues for a bit, and then subsequently checks for the result
of the previous call).

86

Microsoft .Net Interface

Web Service (.asmx) Scripts

Web Services may be written in a variety of languages, including APLScript, the
scripting version of Dyalog APL (see Chapter 10).

The first statement in the script file declares the language and the name of the service. For
example, the following statement declares a Dyalog APL Web Service named
GolfService.

<%@ WebService Language="apl" Class="GolfService" %>

Note that Language="apl” is specifically connected to the Dyalog APL script compiler
through the ASP.NET system file Machine.config.

The syntax of this first line is common to all Web Services, regardless of the language in
which they are written.

A Dyalog APL Web Service script starts with a : ¢ 1as s statement and ends with an
: EndC1ass statement. These statements are directives used by the Dyalog APL script
compiler and are specific to Dyalog APL.

The : C lass statement declares the name of the Class (which must be the same as the name
declared in the WebService statement) and the Base Class from which it inherits, which
isnormally System.Web.Services.WebService.

:Class GolfService:System.Web.Services.WebService

Following the : ¢ 1ass statement, there may appear any number of APL expressions and
function bodies. Following these there must be a : EndC Iass statement. Internal sub-
classes (nested classes) may also be defined within the main : Class ... :EndClass
block.

Compilation

When the Web Service, specified by the . asmx file, is called for the first time, ASP.NET
invokes the appropriate language compiler (in this case, the Dyalog APL Script compiler)
whose job is to produce an Assembly that defines and describes a class. When the Web
Service is used subsequently, the request is satisfied by creating and using an instance of the
class. However, ASP.NET detects if the . asmx script has been modified, and recompiles it
in this case.

The Dyalog APL Script compiler creates a DLL containing a workspace, which itself
contains a single namespace that represents the Web Service class. The class namespace
contains all the functions, which are defined within the script, together with any variables
that were established by expressions in the script. A single function comprises all the
statements enclosed within a pair of del(v) symbols

Chapter 6: Writing Web Services 87

For example, the following script would result in a namespace running with
OmI<2 containing a single function 700 and a variable X.

:Class
OML<2
X<10
VZ<F00 Y
Z<Y+X

v
:EndClass

Note that all expressions are executed by the script compiler when it creates the class
namespace. They are not executed when the Web Service is invoked.

If your script contains a OCY statement, it will be executed by the compiler when
establishing the class namespace. This may be used to import functions from other
workspaces and obviate the need to include them in the . asmx file.

Exporting Methods

Your Web Service will be of no use unless it exports at least one method. To export a
function as a method, you must include declaration statements. Such declarations may be
supplied anywhere within the function body, but it is recommended that they appear
together as the first block of statements in your code. All declaration statements begin with
the colon (:) character and the following declaration statements are supported:

:Access WebMethod

This statement causes the function to be exported as a method and must be present.

:Returns (type

This statement declares the data type of the result of the method where type may specify any
valid .NET type that is supported by Web Services.

:Parameterlist Cypel namel, lype2 namnez,

This statement declares one or more input parameters to the method with specified type and
name. The declaration of each parameter is separated from the next by a comma (,). Each
type may specify any valid .NET type that is supported by Web Services. Each name may
be any ASCII character string. Note that names are optional.

:Implements C(ype name

This statement supports method overloading and Property Get/Put functions. The type may
be one of the terms Met hod, PropGet or PropSet. The name specifies the public name
of the method that this function is exported as, or the public name of the property that this
function gets or sets.

88

Microsoft .Net Interface

Add1

Vv R«Add1 args

:Access WebMethod

:ParameterlList Int32 argl,Int32 arg2
:Returns Int32

R<+/args

v

The 4dd1 function defined above is exported as a method that takes exactly (and only) two
parameters of type Int 32 and returns a result of type Int32. Armed with this definition,
that is recorded in the metadata associated with the class, the .NET Framework guarantees
that the method will only be called in this way.

Add2

V R«<Add2 arg

[1] :Access WebMethod

[2] :ParameterList Doublel[] argi
[3] :Returns:Double

(4] R<+/arg

v

The 4dd 2 function defined above is exported as a method that takes an array of Double
and returns a result of type Double.

Web Service Data Types

In principle, Web Services are designed to support most, if not all, of the data types
supported by the .NET Framework, and to support any new .NET classes that you choose to
define.

In practice, the current set of data types supported by Web Services is somewhat restricted;
in particular:

1. Multi-dimensional arrays are not supported; only vectors.
2. Arbitrary nested arrays are not supported.

However, despite these restrictions, it is possible to build effective Web Services, as you
will see in the following examples.

Chapter 6: Writing Web Services 89

Execution

When your Web Service is invoked, ASP.NET requests an instance of the corresponding
Class from the Assembly (DLL) that was created when it was compiled. The first time this
happens for any Dyalog APL Web Service or Web Page, the Dyalog APL dynamic link
library (see Chapter 12) is loaded into the ASP.NET host process and the namespace
corresponding to your Web Service class is) CoPYed from the Assembly. the Dyalog APL
dynamic link library then delivers an instance of this namespace to the client (calling)
process.

In general, every call on a method in a Web Service causes a new instance of the Web
Server class namespace to be created. If you need to maintain/update variables between
calls, you have to put the variables in the parent namespace (##) of the class.

If a client invokes a different Dyalog APL Web Service or Web Page, its class namespace is
ycoPryed from its Assembly into the workspace managed by the Dyalog APL dynamic link
library. All Dyalog APL Web Services (and Web Pages) share the same workspace when
they are invoked. This has implications for the way that you access and manage global
resources such as component files.

Global.asax and Application and Session Objects

When a Web Service runs, it has access to the Application and Session objects. These are
objects provided by ASP.NET through which you can manage the execution of the Web
Service. ASP.NET creates an Application object when it first starts the Application, i.e.
when any client requests any Web Service or Web Page stored in the same IS Virtual
Directory. It also creates a Session object for each client process.

When the first request comes in for an ASP.NET application, ASP.NET checks for an
optional file named global.asax, and if it is there it compiles it. The application’s
global.asax instance is then used to apply application events.

global.asax typically defines callback functions to be executed on the various
Application and Session events, such as Application Start,
Application End, Session_ Start, Session_ Endand so forth.

Dyalog APL allows you to use APL functions in the global . asax script. This allows
you to initialise your APL application when it is first invoked, and to close it down cleanly
when it is terminated.

For example, you can use global.asax to tie a component file on start-up, and untie it
on termination.

90 Microsoft .Net Interface

Sample Web Service: EG1

The first APLExample sample is supplied in
samples\asp.net\webservices\egl.asmx which is mapped via an IIS Virtual
Directory to the URL http://localhost/apl.net/webservices/egl.asmx

<%@ WebService Language="apl" Class="APLExample" %>
:Class APLEXample:System.Web.Services.WebService

V R«<Add args
(1] :Access WebMethod
[2] :ParameterlList Int32 argl, Int32 arg2
[3] :Returns Int32
[u] R<+/args
v
:EndClass

The Add function defined above is exported as a method that takes exactly (and only) two
parameters of type Int32 and returns a result of type Int32.

Line [4] could in fact be coded as:
(u] R<argslil+argsl[2]

because .NET guarantees that a client can only call the method by providing two 32-bit
integers as parameters.

Testing APLExample from IE5

If you connect, using Internet Explorer 5, to a URL that represents a Web Service, it
displays a page that displays information about the service and the methods that it contains.
In certain cases, but by no means all, the page also contains form fields that let you invoke a
method from the browser.

The screen shot below shows the page displayed by IE5 when it is pointed at egl . asmx. It
shows that the Web Service is called APLExample, and that it exports a single method
called Add. Furthermore, the Add method takes two parameters of type int, named argl
and arg2.

Chapter 6: Writing Web Services

91

& APLExample Web Service - Microsoft Internet Explorer g@
-

File Edit “iew Fawarites Toals Help

I
Address E:l http: fflocalhost)apl. netfwebservices/egl . asmx?op=~Add VI (0

APLExample

Click here for a complete list of operations,

Add

Test

To test the operation using the HTTP GET protocol, click the 'Invoke’
button,

Pararmeter “alue

argl: 23

arg2: 19|

9

£ | i (3]

&] Done % J Lacal intranet

92 Microsoft .Net Interface

The following screen shot shows the result of entering the values 23 and 19 into the form
fields and then pressing the Invoke method.

In this case, the method returns an int value 42.

@ http:{flocalhostfapl. netfwebservicesfegl.asmxfAdd?argl =23&a... E]@
File Edit View Favorites Toaols Help f,"

Address iéj hktpsfflocalhostfapl. netfwebservicesfeql, asmxfAdd?argl=23%arge=19 | % Go

<tsml version="1.0" encoding="utf-8" 7=
<int xmlns="http:/ ftempuri.org/"=42</int=

2] Dane &J Local inkranet

It is important to understand what is happening here.

Accessed in this way from a browser, a Web Service appears to be behaving like a Web
Server; this is not the case.

It is simply that the browser detects that the target URL is a Web Service, and invokes an
ASP+ page named DefaultSdlHelpGenerator.aspx that inspects the compiled
class and returns an HTML view of the Web service.

Chapter 6: Writing Web Services 93

Sample Web Service: LoanService

The LoanService sample is supplied in
DyaloglO\Samples\asp.net\Loan\Loan.asmx, which is mapped via an IIS
Virtual Directory to the URL http://localhost/apl.net/Loan/Loan.asmx

This APLScript sample defines a class named LoanService that is based
upon System.Web.Services.WebService.The LoanService class defines a
sub-class called LoanResult and a method called CalcPayments.

<%@ WebService Language="apl" Class="LoanService" %>
:Class LoanService:System.Web.Services.WebService

:Class LoanResult
:Field Public Int32[] Periods
:Field Public Doublel[] InterestRates
:Field Public Doublel] Payments
:EndClass

V R«CalcPayments X;LoanAmt;LenMax;LenMin;IntrMax;
IntrMin; PERIODS ; INTEREST ;NI ;NM
[1] :Access WebMethod
[2] :ParameterList Int32 LoanAmt, Int32 LenMax,
Int32 LenMin, Int32 IntrMax,
Int32 IntrMin

[3] :Returns LoanResult

(4]

[5] ~a Calculates loan repayments

[6] a Argument X specifies:

(7] = LoanAmt Loan amount

[8] a LenMax Maximum loan period
(9] = LenMin Minimum loan period
[10] a IntrMax Maximum interest rate
[11] a IntrMin Minimum interest rate
[12]

[13] LoanAmt LenMax LenMin IntrMax IntrMin<X

[1u4] R<LoanResult .New &

[15] R.Periods<« 1+LenMin+i11+LenMax-LenMin

[16] R.InterestRates<0.5x 1+ (2xIntrMin)+11+2x

IntrMax-IntrMin

(171 NI<pINTEREST<R.InterestRates+100x12

[18] NM«pPERIODS<«R.Periodsx12

[19] R.Payments<,(LoanAmt)x((NI,NM)pNM/INTEREST)+
1-1+(1+INTEREST)o .xPERIODS

94 Microsoft .Net Interface

:EndClass

Chapter 6: Writing Web Services 95

CalcPayments takes five integer parameters (see comments for their descriptions) and
returns an object of type LoanResult.

Note that the block of APLScript that defines the sub-class (LoanResult) must reside
between the : C lass and : EndC lass statements of the main class, (LoanService),
but you may define any number of internal classes in this way.

The LoanResult class is made up only of Fields and it does not export any methods or
properties. Furthermore, there are no constructor methods defined and it relies solely on its
default constructor that is inherited from its base class, System.Object. The default
constructor is called without any parameters and in fact does nothing except to create an
instance of the class. In particular, the fields it contains are not initialised. In this case, that
is sufficient, as all the fields will be filled in explicitly later.

:Class L[oanResult
:Field Public Int32[] Periods
:Field Public Doublel[] InterestRates
:Field Public Doublel] Payments
:EndClass

The : CIass statement starts the definition of a new class and specifies its name. The
: EndC lass statement terminates it definition.

The three : F ie 1d declaration statements specify the names and data types of three public
fields. The Public attributes are necessary to make the fields visible to methods within the
LoanService class as a whole, as well as to external clients.

The Periods field is defined to be an array of integers; the InterestRates field an
array of Doub1le. Both these arrays are 1-diemsional, i.e. vectors. These will contain the
numbers of years, and the different interest rates, to which the repayments matrix applies.

Notice however that Payments is also defined to be 1-dimensional when in fact it is, more
naturally, a 2-dimesional matrix. The reason for this is that, currently, Web Services do not
support multi-dimensional arrays. This is a .NET restriction and not a Dyalog restriction.

CalcPayments[14] getsanew instance of the LoanResult class by calling
LoanResult.New. It then assigns values to each of the three fields in lines [157, [16]
and [191.

96 Microsoft .Net Interface

Testing LoanService from IES

Like the methods exported by the APLEXample Web Services described above, the
CalcPayments method exported by LoanService is callable from a browser and the
page that is displayed when you point IE5 at it is shown below

43 LoanService Web Service - Microsoft Internet Exp -10| x|

File Edit YWiew Favorites Tools Help ﬁ

EBack ~ = - () ﬁ-| [EPersonal Bar Tl Search []Favorites (4

Address @ http: fflocalhostfapl.netfloan/loan, asmxrop=CalcPayments j vf‘J}GD

F

LoanService

Clicl here for a complete list of operations.

CalcPayments
Test

Tao test, click the 'Invake' buttan,

Parameter Walue

LoanArt: (100000

LenMax: |2IZI

LenMin: |1IZI

IntrMazx: |15

IntrMin: 2l

w
4| | b

] C || B Localintranet Z

Chapter 6: Writing Web Services

To test the CalcPayments method, you can enter numbers into the form fields in this

page, as shown in the screen shot above, and then press the Invoke button. The result of the

method is then displayed in a separate window as illustrated below.

Notice that the result is described using XML, which is in fact the very language used to
invoke a Web Service and return its result.

You can see that the result is of type LoanResult, and it contains 3 fields named
Payments, InterestRates and Periods. This information was derived by our
definition of the LoanResult class inthe APLScript file.

; http:/ /localhost /apl.net/loan/loan.asm=/CalcPayn - | I:Ilil
[—

File Edit View Favorites |http:,I',I'Icucalhcust,l'apl.net,l'l-:uan,l'l-:uan.asmx,l'CaIcF‘a';.fments?Lnan.i
$=Eack - = - () i | [PersonalBar QhSearch [GFavorites o4
Address @ hl:l:p:,l',l'll:n:alhl:ust,l'apl.net,l'luan,l'luan.asmx,l'CaIcPayments?LDan.ﬁ.mt=j @GD

=)

<?aml version="1.0" encoding="utf-8" 7=
- =LoanResult
smlns: xsi="http:/ Hvwrve o w3.0rg /2001 / XMLSchema-

instance"
srnlns: xsd="http:/ fvwwow o w3.0rg/ 2001/ XMLSchema"
smlns="http:/ /tempuri.org/"=

+ «<Paymentsxz

+ «<InterestRates:=

+ «Periods=

</Loankesult=

b
4| | »

|@ l_ l_ l_ (5 Local intranet o

98 Microsoft .Net Interface

Opening the Periods field causes the page to display its value. As you can see, it contains
a vector of integers from the minimum period to the maximum period that we specified on
the input form, in increments of 1.

a http:/ /localhost/apl.net/loan/loan.asmz/CalcPayme - | Ellﬂ

File Edit Miew Favorites Tools Help ﬁ
d=Eack -~ = - () i | [Personal Bar Q) Search [Favorites ¢4

Address @ http:,l',l'Iu:u:th-:ust,l'apI.net,l'lu:uan,l'lu:uan.asmx,l'CaIu:F'ayments?Luan.ﬁ.mt=j E')?GD

.

=Tuml version="1.0" encoding="utf-8" 7=
- =lLoanResult
zmins: =si="http: / Svwvew o w3.org /2001 /XMLSchema-
instance"
zmins:xsd="http:/ /vrw.w3.0rg/2001/XMLSchema"
zmins="http:/ /tempuri.org /">
+ <Payments=
+ <InterestRates=
- =Periodsz
<int=10</nt=
Zint=11</int=
Zint=12</int=
Zint=13</int=
Zint=14</int=
<int=15</nt=
<int=16</nt=
<int=17</nt=
<int=18</int=
Zint=19</int= -
Zint=20</int=

=/Peariodsz -
4| | »

] " || 2 Localintranet 4

Chapter 6: Writing Web Services

99

Similarly, opening the InterestRates field shows that it contains a vector of floating-
point values (double) from the minimum rate to the maximum rate that we specified on

the input form. This time, the increment is 0.5.

File

Edit

a http:/ /localhost/apl.net/loan/loan.asmxz/CalcPayme

=10l x|

Views Faworites

Mt

localhostfapl.netfloan/loan. asme/CalcPayments?Lo.

$=Eack - = - () i | [PersonalBar QhSearch [GFavorites o4

Address

@ http:,l',l'Iu:u:thu:ust,l'apI.net,l'lu:uan,l'lu:uan.asmx,l'CaIcPayments?LDan.ﬁ.mt=j @GD

4]

zdouble=2</double=
zdouble=2.5</double:=
<double=3</double=
<double=3.5</double:
<double=4</double=
<double=4.5</doublez
zdouble=5</double=
zdouble=5.9</double:=
zdouble=6</double=
<double=6.5</doublaz
<double=?</double=
<double=7.5</double:
<double=8</doublez

=?aml wersion="1.0" encoding="utf-8" 7=
- zLoanResult
umins:xsi="http:f fvevew w3 .org /2001 /XMLSchema-
instance"
umins:xsd="http:/ fwww . w3.org/2001/XMLSchema"
xmins="http:/ ftempuri.org/">

+ <Paymentsz
- «<InterestRates>

Y

I_ I_ I_ {5 Local inkranet

100

Microsoft .Net Interface

Finally, the Payments field contains the calculated repayment values.

a http:/ /localhost/apl.net /loan/loan.asmx/CalcPay

File Edit iew

=101 %]

Favorites Tools Help

dmEBack - = - (5 ﬁ-| [EPersonal Bar Qi Search [(fFavorites ©4 >

Address

@ http:,I',I'In:n:alhcnst,l'apl.net,l'ln:nan,l'ln:nan.asmx,l'CaIcPayments?Laan.ﬁ.mt=j E'J?GD

<double=920

<double=781
<double=728
<double=-682
<double=643
<double=609
<double=578
<double=551
<double=527
<double=505
<double=942
<double=867

=Tuml version="1.0" encoding="utf-8" 7=
- =lLoanResult
zmins: =si="http: / Svwvew o w3.org /2001 /XMLSchema-
instance"
zmins:xsd="http:/ /vrw.w3.0rg/2001/XMLSchema"
zmins="http:/ /tempuri.org /">

- «<Payments=
1345384255726/ double=
<double=844.

59078506699518=/double>

6836918508993 2</doublex
A49706746561492</double=
9479150151534 /double=

.80870055770292=/double=
.03377094293069=/double=
64703594271668</double=
B667082967229351</double=
8559778790203 6</doublex
.88333504510018</double=
.69901703959488</double=
.29464305512761</double=
<double=804.

52938380979788</doublex

.

l_ l_ l_ 5 Local inkranet

Chapter 6: Writing Web Services 101

Sample Web Service: GolfService

GolfService is an example Web Service that resides in the directory
DyaloglO\samples\asp.net\Golf and is associated with the IIS Virtual Directory
apl.net/Golf. This example makes extensive use of internal classes to define data
structures that are appropriate for a client application, such as C# or VB.

The directory contains a global . asax script, which is used to initialise the application.

The Golf Web Service example manages the reservation of tee-times at golf courses. All the
data is held in a component file called GolfData.dcf. This file may be initialised using
the function Go I f . INITFILE in the workspace
samples\asp.net\webservices\webservices.dws. You may need to alter the
file path first.

Each golf course managed by the application has a unique code (integer) and a name
(string). This is handled by defining a class (structure) called Gol fCourse with two
fields, Code and Name.

GolfService provides 3 methods:
GetCourses ()

Returns a list of Golf Courses (CourseCode and CourseName). The result of this
method is an array of Gol fCourse objects.

GetStartingSheet (CourseCode,Date)

Returns the starting sheet for a specified golf course on a given day. A starting
sheet is a list of starting times with a list of the golfers booked to start their round
at that time. The result of this method isa StartingSheet object.

MakeBooking (CourseCode,TeeTime,GimmeNearest,
Namel ,Name2,Name3,Name4))

Requests a tee reservation at the course specified by CourseCode. TeeTime is
a DateTime object that specifies the requested date and time. GimmeNearest
is Boolean. If 1, requests the nearest tee-time to that specified; if 0, requests only
the specified tee-time. Namel-4 are strings specifying up to 4 players. Note that all
parameters are required. The result of this method is a Booking object.

102

Microsoft .Net Interface

GolfService: Global.asax

<script language="apl" runat=server>

v Application_Start;GOLFID

[1] :Access Public
[2] GOLFID<«'c:\Dyalogio\samples\asp.net\golf\GolfData'
OrFTIE ©
[3] Application.Item 'GOLFID' GOLFID
v

v Application_End;GOLFID

(1] :Access Public

(2] :Trap 6

[3] GOLFID«Application.Item'GOLFID'
[u] OFUNTIE GOLFID

[5] :EndTrap

v

</script»>

The Application_Start function is called when the GolfService Web Service is
invoked for the first time. It ties the Go1 fData component file, and then stores the tie
number in a new ltem called GOLFID in the Application object. This item is then
subsequently available to methods in the GolfService for the duration of the
application.

The Application_End function is invoked when the GolfService Web Service
terminates. It unties the Go1 £Data component file.

This example may be considered slightly weak in that the location of the data file is hard-
coded in the application's Global . asax file. An alternative is to store this information in
the <appsettings> section of the appropriate web . config file or in the global
machine.config file. This is preferable if the resource (in this case a file name) is to be
accessed from more than one script. For further information on ASP.NET config files, see
the documentation for the .NET Framework SDK.

Note that the Go1l fData file may be initialised using the function GoIf.INITFILE in
the samples\asp.net\webservices\webservices.dws workspace. You may
need to alter the file path first.

Chapter 6: Writing Web Services 103

GolfService: GolfCourse class

The GolfCourse class is effectively a structure with two fields named Code and Name.
Code is an integer code that provides a shorthand way to refer to a specific golf course;
Name is a String containing its full name.

:Class GolfCourse
:Field Public Int32 Code
:Field Public String Name

V ctor args

(1] :Access Constructor
(2] :ParameterList Int32, String
[3] Code Name<args
ctor_def
(1] :Access Constructor
[2] ctor "1 !
v
:EndClass

The Gol fCourse class provides two constructors. The first, named ctor_def, takes no
arguments and therefore overrides the default constructor that is inherited from
System.Object. ctor_def calls ctor toinitialise the instance with a Code of ~1 and
an empty Name.

The constructor named c ¢ or accepts two parameters named CourseCode (an integer)
and CourseName (a string), and simply assigns these values into the corresponding fields.

Therefore, valid ways to create an instance of a Gol fCourse are:

GC«GolfCourse.New &
GC.(Code Name)<«1 'St Andrews'

Or, more simply
GC<«GolfCourse.New 1 'St Andrews'

Note that the names of the constructor functions are not visible outside the class.
Constructors are identified by their signatures (basically, their parameters) and not by their
names.

104

Microsoft .Net Interface

GolfService: Slot class

The Slot class is effectively a structure with two fields named Time and Players.
Time isa DateTime oObject that represents a time that can be reserved on the first tee.
Players isan array of (up to 4) strings that contains the names of the golfers who have
reserved to start their round of golf at that time.

:Class Slot
:Field Public DateTime Time
:Field Public Stringl] Players

vV ctorl arg
[1] :Access Constructor
[2] :ParameterList DateTime
[3] Time<arg
(4] Players< 0pc''

VvV ctor2 args
[1] :Access Constructor
[2] :ParameterList DateTime, Stringl]
(3] Time Players<args

V ctor_def
[1] :Access Constructor
v
:EndClass

This class provides two constructor functions named ctor1 and ctor2. However, for
internal reasons, if a class defines any constructor functions, it is currently necessary to
provide a dummy default constructor (the form of the constructor that takes no parameters);
hence ctor_def.

The constructor ¢t or1 accepts a single DateTime parameter, which it assigns to the
Time, field, and initialises the P1ayers field to an empty array.

The constructor ctor2 accepts two arguments, a specified tee time, and an array of strings
that contains golfers names. It assigns these parameters to Time and Players
respectively.

Chapter 6: Writing Web Services 105

GolfService: Booking class

The Booking class represents the result of the MakeBooking method. It contains 4
fields named OK, Course, TeeTime and Message

OK is Boolean and indicates whether or not the attempt to make a reservation was
successful. If OK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a Gol fCourse object, and the
TeeTime field contains an instance of a S1ot object. Together, these objects identify the
reserved golf course and starting slot. The latter specifies both the starting time, and the
names of all the golfers who have been allocated that starting time and who will therefore

play together.

:Class Booking
:Field Public
:Field Public
:Field Public
:Field Public

Boolean OK
GolfCourse Course
Slot TeeTime
String Message

V ctor args
(1] :4ccess Constructor
[2] :ParameterList Boolean, GolfCourse, Slot, String
[3] OK Course TeelTime Message<args

vV ctor_def

[1] :Access Constructor

v
:EndClass

This class provides a single constructor method, which must be called with values for all

four fields.

106

Microsoft .Net Interface

GolfService: StartingSheet class

The StartingSheet class represents the result of the GetStartingSheet method. It
contains 5 fields named OK, Course, Date, Slots and Message. OK is Boolean and
indicates whether or not a starting sheet is available for the specified course and date.

If OK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a Gol £Course object, the
Date field contains the date in question, and the S1ots field contains an array of S1ot
objects. Each S1ot object specifies a starting time and the names of golfers who are
booked to play at that time.

:Class StartingSheet

:Field
:Field
:Field
:Field
:Field

Public
Public
Public
Public
Public

Boolean OK
GolfCourse Course
DateTime Date
Slot[] Slots
String Message

V ctor args

(1]
[2]
(3]

[1]
v
:EndClass

:Access Constructor
:ParameterList Boolean,

OK Course Date<«args

ctor_def
:Access Constructor

GolfCourse,

DateTime

Like the Booking class, the StartingSheet class provides a single constructor
method. In this case, the constructor is called with values for just 3 of the fields; the values
of the other fields are expected to be assigned later.

Chapter 6: Writing Web Services 107

GolfService: GetCourses function

V R«GetCourses;COURSECODES;COURSES;INDEX;GOLFID

(1]]

[2] :Access WebMethod

[3] :Returns GolfCoursel]

[u]

[5] GOLFID<«Application.Item'GOLFID'

[6] COURSECODES COURSES INDEX<«[FREAD GOLFID 1
(7] R<GolfCourse.New +8§+4COURSECODES COURSES

v

The GetCourses function retrieves the tie number of the Gol fData component file from
the Application object and reads its first component.

The function then creates a Gol fCourse object for each of the courses recorded on the
file, and returns the array of Gol fCourse objects as its result.

108 Microsoft .Net Interface

GolfService: GetStartingSheet function

The GetStart ingSheet function retrieves the tie number of the GolfData
component file from the Application object and reads its first component. Line [11]
creates an instance of a StartingSheet object and uses it to initialise the result r. The
value of the OK field is set to O to indicate failure.

It then validates the requested CourseCode. If invalid, it simply sets the Message field
in the result and returns it. Similarly, it checks to see if there is a starting sheet on file for
the requested date. If not, it sets the Message field to indicate this, and returns.

Note that line[16] extracts the Year, Month and Day properties from the requested tee
time, a DateTime object, and converts to an IDN. This is used to index the component
containing the starting sheet for that day.

V R<GetStartingSheet ARGS;CODE;COURSE;DATE;GOLFID;
COURSECODES ; COURSES ; INDEX ;
COURSEI ;IDN;DATES;COMPS;
IDATE ;TEETIMES ;GOLFERS;I;T

[1] A

[2] :Access WebMet hod

[3] :ParameterList Int32 CourseCode, DateTime Date
(4] :Returns StartingSheet

[5]

[6] CODE DATE<ARGS

(7] GOLFID«Application.Item'GOLFID'

[8] COURSECODES COURSES INDEX<[FREAD GOLFID 1
[9] COURSEI«COURSECODES1CODE

[10] COURSE«GolfCourse.New CODE (COURSEI>COURSES,c''")
[11] R«StartingSheet .New 0 COURSE DATE

[12] :If COURSEI>pCOURSECODES

[13] R.Message<'Invalid course code'

[1u] :Return

[15] :EndIf

[16] IDN<2 [ONQ'.' 'DateToIDN',DATE.(Year Month Day)

[17] DATES COMPS<[FREAD GOLFID,COURSEI>INDEX
[18] IDATE«DATES 1 IDN

[19] :If IDATE>pDATES

[20] R.Message<«'No Starting Sheet available'
[21] :Return

[22] :EndIf

[23] TEETIMES GOLFERS<[FREAD GOLFID,IDATE>COMPS

[2u] R.0OK<«1

[25] T<DateTime.New (<DATE.(Year Month Day)),
+[1]24 60 1TTEETIMES

[26] R.Slots«Slot.New' T,oc YyGOLFERS

Chapter 6: Writing Web Services 109

110

Microsoft .Net Interface

Line[24] sets the OK field of the result to 1 (success).
Line[25] converts the stored tee times (in minutes) to DateTime objects.

Line[26] combines the tee times and golfers into a vector of 2-element arrays, and creates a
Slot object for each of them. The result is assigned to the S1ots field of the result R.

GolfService: MakeBooking function

The MakeBooking function checks that the requested tee-time is available, for the
specified number of players and updates the starting sheet accordingly. The result of the
function is a Booking object.

MakeBooking first retrieves the tie number of the Gol fData component file from the
Application object and reads its first component.

Lines[13 14] create instances of GolfCourse and Slot objects, which at this stage are
not validated. Line[15] then initialises the result R, a Booking object, which includes these
instances. At this stage, R. 0k is 0 indicating failure.

Line[16] validates the requested CourseCode, and, if invalid, simply sets R. Message
and returns.

Similarly, Lines[20 24] check that the requested tee time is within the next 30 days from
now. If not, the function assigns the appropriate error message to R. Message and returns.
Note that these two statements employ the APL primitive function > (rather that the
op_GreaterThan method) to compare the requested tee time (a DateTime object) with
anew DateTime object that represents now and now+30 days respectively.

Notice that Line[24] uses the AddDays method to create a new DateTime object that
represents now + 30 days. An alternative expression, to get now+30 days is:

TEETIME .Now + TimeSpan.New 0 0 30

Lines[28-47] are concerned with retrieving the appropriate component from the file,
initialising it or re-using an old one, if it is not present. Each component represents the
starting sheet for a particular course on a particular day.

Lines[48-63] check whether or not the requested slot is available (for the specified number
of golfers). If not it returns an error message as before or, if G immeNearest is 1 (true), it
attempts to allocate the slot closest to the requested time.

If an appropriate slot is found, Lines[72 73] update the S1ot object with the assigned time
and names of the golfers. Line[74] then inserts the modified S1ot object into the result,
and sets the ok field to 1 (true) to indicate success.

Chapter 6: Writing Web Services 111

V R«MakeBooking ARGS;CODE;COURSE;SLOT;TEETIME;GOLFID;
COURSECODES ;COURSES ; INDEX ; COURSEI ;IDN;
DATES ;COMPS ; IDATE ;TEETIMES ; GOLFERS ;
OLD;COMP;HOURS ;MINUTES ; NEAREST ;TIME
NAMES ; FREE ; FREETIMES ;I;J ;DIFF

(1] =

[2] :Access WebMethod

[3] :ParameterList Int32 CourseCode, DateTime TeeTime,
Boolean GimmeNearest, String Namel,
String Name2, String Name3, String Namel

(4] :Returns Booking

(5]

[6] a If GimmeNearest is 0, books (or fails) for
specified time

[7] @ If GimmeNearest is 1, books (or fails) for
nearest to specified time

(8]

[9] CODE TEETIME NEAREST<3+ARGS

[10] GOLFID«Application.Item'GOLFID'

[11] COURSECODES COURSES INDEX<«[(FREAD GOLFID 1

[12] COURSEI«<COURSECODES1CODE

[13] COURSE«GolfCourse.New CODE (COURSEI>COURSES,c'')

[1u4] SLOT<«Slot.New TEETIME

[15] R«Booking.New 0 COURSE SLOT ''

[16] :If COURSEI>pCOURSECODES
[17] R.Message<«'Invalid course code'
(18] :Return
[19] :EndIf
[20] :If TEETIME.Now>TEETIME
[21] R.Message<'Requested tee-time is iIn the past'
[22] :Return
[23] :EndIf
[24] :If TEETIME>TEETIME.Now.AddDays 30
[25] R.Message<«'Requested tee-time is more than
30 days from now'
[26] :Return
[27] :EndIf
[28] IDN<«2 [NQ'.' 'DateToIDN',TEETIME.(Year Month Day)

[29] DATES COMPS<UFREAD GOLFID,COURSEI-INDEX
[30] IDATE<DATES1IDN

[31] :If IDATE>pDATES
[32] TEETIMES<« (24 6017 0)+10x 1+11+8x6

A 10 minute intervals, 07:00 to 15:00
[33] GOLFERS«((pTEETIMES) ,4)pc'!

A up to 4 golfers allowed per tee time

112 Microsoft .Net Interface

[3u] :If 0=0LD<+>(DATES<2 [ONQ'.'
'"DateToIDN',340TS)/1pDATES

[35] COMP<(TEETIMES GOLFERS)UFAPPEND GOLFID

[36] DATES ,<IDN

[37] COMPS ,«COMP

[38] (DATES COMPS)OFREPLACE GOLFID,COURSEI->INDEX

Chapter 6: Writing Web Services

113

[39]
[40]
(41]

[(42]
[43]
4y
[45]
[46]
(47]
(48]
[(49]
[50]
[51]

[52]
(53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[(70]
[71]

[72]
[73]
[74%]

:Else
DATES[OLD]<«IDN
(TEETIMES GOLFERS)[JFREPLACE

GOLFID,COMP«0OLD>COMPS
DATES COMPS [OFREPLACE GOLFID,COURSEI-INDEX

:EndIf
:Else
COMP«<IDATE>COMPS
TEETIMES GOLFERS<UFREAD GOLFID COMP
:EndIf
HOURS MINUTES<TEETIME.(Hour Minute)
NAMES<(34YARGS)~8'"!
TIME<24 60LHOURS MINUTES
TIME<«10x|0.54TIME+10 a Round to nearest
10-minute interval
:If ~NEAREST
I<TEETIMES\TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p 'GOLFERS[I;]
R.Message<«'Not available'
:Return
:EndIf
:Else
:If ~v/FREE<«(pNAMES)<>,/+/0=p GOLFERS
R.Message<«'Not available'
:Return
:EndIf
FREETIMES<« (FREExXTEETIMES)+32767x~FREE
DIFF<|FREETIMES-TIME
I<DIFF1|/DIFF
:EndIf
J<(>,/0=p "GOLFERS[I;])/14
GOLFERS[I;(pNAMES)+J]<«NAMES
(TEETIMES GOLFERS)UOFREPLACE GOLFID COMP
TEETIME<DateTime.New TEETIME.(Year Month Day),
3424 60TI>TEFETIMES
SLOT .Time<«TEETIME
SLOT.Players<(>,/0<p GOLFERS[I;])/GOLFERS[I;]
R.(0OK TeeTime)<«1 SLOT

114 Microsoft .Net Interface

Testing GolfService from IE5

If you point your browser at the URL
http://localhost/apl.net/Golf/Golf.asmx, GolfService will be
compiled and ASP.NET will fabricate a page about it for the browser to display as shown
below.

The three methods exposed by GolfService are listed.

43 Golfservice Web Service - Microsoft Internet Expla 10| x|

File Edit YWiew Favorites Tools Help ﬁ

Back - = - () il | [EPersonal Bar ‘QhSearch [GFavorites 4 >
Address @ hittp: f flocalhostfapl, netfgolf fgolf . asme: j @GD

F

GolfService

The following operations are supported. For a formal definition, please
review the Service Description.

* GetStartingSheet

* GetCourses

*« MakeBooking

-
4| b

|
& Done C || B Localintranet Z

Chapter 6: Writing Web Services 115

Invoking the GetCourses method generates the following output.

Notice that the data type of the result is ArrayOfGolfCourse, and the data type of each
element of the result is Gol fCourse. Furthermore, the public fields defined for the
GolfCourse object are clearly named.

All this information is derived from the declarations in the Golf . asmx script.

As supplied, the Gol fData component file contains only 3 golf courses as shown below.

a http:/ /localhost/apl.net/golf /golf.asmx,/ GetCourses? - | Ellil
File Edit Wiew Fi“”:'”te|http:,l',l'l-:ucalhu:ust,l'apl.net,l'g-:ulf,l'gu:ulf.asmx,l'GetCu:uurses? - Microsoft Ir

$=Eack - = - () i | [Personal Bar QhSearch [Favorites @| =

fiddress @ http: filocalhostfapl netfgolffgolf, asmx et Courses? j @GD

F

=?aml version="1.0" encoding="utf-8" 7=
- <ArrayOfGolfCourse
smlns: xsi="http: / v w3.0rg /2001 XMLSchema-
instance"
srnlns: xsd="http:/ fvwwow i 3.0rg/ 2001/ XMLSchema"
smlns="http:/ /tempuri.org/"=
- = GolfCourses
zMame=8t Andrews</MName=
zCode=1</Codex
< /GolfCourse=
- <GolfCourses
zMamez=Hindhead</MNameaz
<Code=2</Codexs
</ GolfCourse=
- =GolfCourses
<Mame=Basingstoke</MName>
zCode=3</Codex=
< /GolfCourse=
< /Array OfGolfCourse =

|@ Cone I_l_l_ (2 Local intranet

ASP.NET generates a Form containing fields that allow the user to invoke the
MakeBookings method as shown below.

| KO

116

Microsoft .Net Interface

Notice the way a DateTime value is specified. Note too that the GimmeNearest
parameter is Boolean, SO you must enter "True" or "False". If you enter 0 or 1, it will
cause an error and the application will refuse to try to call MakeBookings because you
have specified the wrong type for a parameter.

When you try this yourself, remember to enter a date that is within the next 30 days, and a
time between 07:00 and 15:00. Alternatively, you may wish to experiment with invalid data
to check the error handling.

3 Golfservice Web Service - Microsoft Internet Explore =10 x|

File Edit Miew Favorites Tools Help ﬁ

FBack + = - () ﬁ-| [EPersonal Bar Tl Search [Favorites §3| 2
Address @ ktkp s localhostfapl, netfgalf fgolf, asmxPop=MakeBooking j E{)GD

rs

GolfService

Click here for a complete list of operations.

MakeBooking

Test
To test, click the 'Invake' button,

Parameter Value

CourseCode: |3

TeeTime: |z5/08/2001 07:00

GimmeMearest; ITrue

Marmel: IT.Wn:n:nds
Mames: |E-.H|:u;|an
Mame3: IF'.I::ll:unnE!Ih,r
Mamed: |

4| | b

& Done " || BB Local intranet 4

Chapter 6: Writing Web Services 117

The result of invoking MakeBooking with this data is shown below.

Notice how all the information about the Booking object structure, including the structure
of the sub-objects, is provided.

a http:/ /localhost/apl.net/golf /golf.asmx,/MakeBooking - | Ellil
11l ﬁ

Fil Edit Wi F - —
e o e gW!hlzlq:u:,l',l'lu:u:alI'u:usI:,l'eu:uI.nEI:,l'-;p:uIF,l'u;p:-II:..Ehsm.‘sc,l'r'-'1.EhkﬂEh:u:ulc:jn|;|?'Cu:|ur5|EeC|:u:|E=38£
$=Eack - = - () i | [Personal Bar (QhSearch [Favorites @| »

fiddress @ http:,I',I'Icucalhnst,l'apl.net,l'gu:ulf,l'gu:ulf.asmx,l'l“-’lakﬂEh:u:uking?C-:uurseCu:ude=3Ej @GD

Y

=?aml wersion="1.0" encoding="utf-8" 7=
- «<Booking
umins:xsi="http:f fvevew w3 .org /2001 /XMLSchema-

instance"
umins:xsd="http:/ fwww . w3.org/2001/XMLSchema"

xmins="http:/ ftempuri.org/">
<Message /=
- =TeeTimes
- zPlayersz
<string=T.Woods</string=
<string=B.Hogan</string=
<string=P.Donnelly</string=
</Players=
<Time=2001-08-25T07:00:00.0000000-
00:00=/Tirme>
</ TeeTime=
- <Courses
=Mamex=Basingstoke</Mame:x>
<Code=3</Codes
</ Courses
<0k =true</ 0k
=/Booking=

|@ Done I_ I_ I_ (= Local intranet

B

118 Microsoft .Net Interface

The following picture shows data suitable for invoking the GetStartingSheet method.

If you try this for yourself, choose a course and date on which you have made at least one
successful booking.

3 Golfservice Web Service - Microsoft Internet Explo O] x|

File Edit Miew Favorites Tools Help ﬁ

EBack + = - () ﬁ-| [Personal Bar (@ Search [3] Favorites ®| 2
Address IE hittp: f flocalhostyapl.netf'golffgolf . asmxfop=Get Startingsheet j nf'Jv}GD

FY

GolfService

Click here for a complete list of operations.

GetStartingSheet
Test

To test, click the 'Invaoke' button,

Fararmeter Value

CaourseCode: |3

Date: |25/08/2001

v
4| | b

|@ Done l_ l_ l_ (T Local intranet o

Chapter 6: Writing Web Services 119

Finally, the result of the GetStartingSheet function is illustrated below.

The output clearly shows that the result, a StartingSheet object, contains an array of
Slot objects, each of which contains a Time field and a Players field.

a http:/ flocalhost/apl.net/golf /golf.asmx/GetStarting - | Ellil

Eile Edit Wiew Faw:urltes Tools Heln ﬁ
htkp: [flocalhostfapl.netfgolf/golf . asmfGetStartingSheet ?Course
]

dmEBack - = - 3 (2] Mpersunal Bar ChSearch [fFavorites o |

Address @ F.asmx,l'GetStartingSheet?Cn:nurseCn:u:Ie=3&Date=25°fo2FDB°fo2F2IJD1j ﬁGD

s

<7uml version="1.0" encoding="utf-8" =
- «5StartingSheet o—
smins: xsi="http:/ fvnervew3.0rg /2001 / XMLSchema-
instance"
smins: xsd="http:/ fvwwrw . w3.org /2001 / XMLSchema"
zmins="http:/ /tempuri.org /"=
<Message #siinil="true" />
- <Slotss
- =Slots
- <Players=
<string=T.Woods=</string:
<string=B.Hogan</string>
<string=P.Donnelly</string=
«string /=
=/FPlayers=
<Time=2001-08-25T07:00:00.0000000-
00:00<=/Timex
</Slotz
- =Slot=
- «<Players=
<string /=
<string /=
«string /=
<string /=
=/Players:
<Time=2001-08-25T07:10:00.0000000-
00:00</Timex
</Slots ;I

&] Done " || BB ocal intranet 4

120 Microsoft .Net Interface

Using GolfService from C#

The csharp sub-directory in samples\asp.net\golf contains sample files for
accessing the Gol fService Web Service from C#. The C# source code in Golf.cs is
shown below.

using System;
class MainClass {

static void Main (String[] args)
{
GolfService golf = new GolfService();
int nArgs = args.Length;
Booking booking;

booking=golf.MakeBooking (
/* Course Code */ 1,
/* Desired Tee Time */ DateTime.Parse(args[0]),
/* nearest is OK*/true,

/* player 1 */ (nArgs > 1) ? args|[1] "
/* player 2 */ (nArgs > 2) ? args[2] : "",
/* player 3 */ (nArgs > 3) ? args[3] :"",
/* player 4 */ (nArgs > 4) ? args[4] :""

)7

Console.WriteLine (booking.OK) ;
Console.WriteLine (booking.TeeTime.Time.ToString()) ;
foreach (String player in booking.TeeTime.Players)
Console.WriteLine (player);
}
}

The following example shows how you may run the csharp program golf.exe froma
DOS prompt. Please remember to specify a reasonable date and time rather than the one
used in this example.

csharp>golf 2001-08-07T08:00:00 T.Woods A.Palmer P.Donnelly
True

25/08/2001 08:00:00

T.Woods

A.Palmer

P.Donnelly

csharp>

Chapter 6: Writing Web Services 121

Sample Web Service: EG2

In all the previous examples, we have relied upon ASP.NET to compile the APLScript
into a .NET class prior to running it. This sample illustrates how you can make a .NET class
yourself.

For this example, the Web Service script, which is supplied in the file
samples\asp.net\webservices\eg2.asmx (mapped via an IIS Virtual Directory
tothe URL http://localhost/apl.net/webservices/eg2.asmx) is reduced
to a single statement that merely invokes the pre-defined class called
APLServices.Example

The entire file, viewed in Notepad, is shown below.
I=IE

File Edit Format Help

<% WebService Class="APLServices . Example" %= L

-

A F A

Given this instruction, ASP.NET will locate the APLServices.Example Web Service
by searching the Bin sub-directory for assemblies. Therefore, to make this work, we have
only to create a .NET assembly in samples\asp.net\Bin. The assembly should
contain a .NET Namespace named APLServices, which in turn defines a class named
Example.

The procedure for creating .NET classes and assemblies in Dyalog APL was discussed in
Chapter 3. Making a WebService class is done in exactly the same way.

Starting witha CLEAR WS, we first create a namespace called APLServices. This will
act as the container corresponding to a .NET Namespace in the assembly.

)NS APLServices
#.APLServices

Within APLServices, we next create a Net Ty pe object called Examp I e that inherits
from System.Web.Services.WebService. This is the Web Service class.

)CS APLServices

#.APLServices
QUSING<«,c'System'
OQUSING,«<c'System.Web.Services,System.Web.Services.d11l'
'Example' %WC 'NetType' 'WebService'

122

Microsoft .Net Interface

Then, within APLServices.Example, we can write a function called Add that will
represent the single method to be exported by this Web Service.

)CS Example
#.APLServices.Example

V R«<Add arg
(1] R«+/arg
v

The next step is to define the .NET Properties for the 4dd function as shown below.

= #.APLServices.Example.Add - Properties 2| x|
Properties I Walue I bonitor .MNet Properties |
Param Mame | Type I M adifier IDpHDnﬁI
Result Int3z [| [|
argl Int32 - - F'
arg2 Int32 :j :j .
Help D |
" pethod % wieb Method ¢ Prop Get © Prop Set I
¥ Fubiic: [~ Static [Wirtwal [Constuctar
[Pratected
| [k I Cancel

Chapter 6: Writing Web Services

123

Itis a good idea to)SAVE the workspace, although this is not absolutely essential.

)CS
#

JWSID Samples\asp.net\webservices\Bin\EG2
was CLEAR WS

)SAVE

Samples\asp.net\webservices\Bin\EG2 saved Tue May 22 14:..

Then, select the Export... item from the Session File menu, and save the assembly in
samples\asp.net\Bin. The name of the assembly is unimportant.

-

Create bound file ‘

Save in: |l'f}Bin M) ¥ e o

_;5 [HEcz.dl

My Recent
Documents

=
[
Desklop

9

ty Documents

o

by Computer

File name: |EG2 Save

EBl[E]

‘g Saveastype: Miciosoft Net Assembly [dll)

[Cancel]

by M etk

124 Microsoft .Net Interface

When you click Save, the Status Windows displays the following information to confirm
that the assembly has been created correctly.

status ~1al x|

File Options

Declared Assemhly EGZ2
Declared Module EGZ in file C:vDualog.Metssampleswasp.net<EGZ2.d11
Declared Tupe APLSerwvices.Example
Compiling HebHethod "Add"
Tupe "Int32" resolved to Int32
Tupe "Int32" resolwved to Int32
Tupe "Int32" resolwed to Int3Z
Compiled HebHethod "Add"
Emitted Tupe APLServices.Example
Emitted Assembly to file "C:~Dyalog.Metwsampleswasp.net~EGZ2.d11"

LCloze |

Chapter 6: Writing Web Services 125

Testing EG2 from IE5

If you point your browser at the URL
http://localhost/apl.net/webservices/eg2.asmx, ASP.NET will

fabricate a page about it for the browser to display as shown below.

The Add method exposed by APLServices.Example is shown, together with a Form
from which you can invoke it.

& Example Web Service - Microsoft Internet Explorer g@
File Edit “iew Fawarites Toals Help ;','
Address ﬂj http: fflocalhost)apl. netfwebservices/eg2 . asmx?op=~Add V G

DEE

Click here for a complete list of operations,

Add

Test

To test the operation using the HTTP GET protocol, click the 'Invoke’
button,

Pararmeter “alue

argl: 123

arg2: 455|

:{ 1
@l Dane

%J Local intranet

126 Microsoft .Net Interface

If you enter the numbers 123 and 456 in the fields provided, then press Invoke, the method
will be called and the result displayed as shown below.

&) http:/flocalhost/apl. netfiwebservicesfeg? asmxfAdd?arg1=123&. .. E]@
File Edit View Favorites Tools Help -.1.’

Address |$§| ttpsfflocalhostapl. netfwebservices/eq? .asmyx/addrargl =123%arge =456 [V] G0

<7?rml version="1.0" encoding="utf-8" 7=
<int zmlns="http:f ftempuri.org/">579</int=

@ Cone “-_J Local inkranet

Chapter 6: Writing Web Services 127

129

CHAPTER 7

Calling Web Services

Introduction

A Web Service communicates with its clients using TCP/IP and HTTP/XML protocols. To
call a Web Service directly you need to write plumbing code to handle this communication.

Fortunately, Microsoft provides a utility called WSDL . EXE that creates a stub or proxy
class for a Web Service. The client can then call the Web Service by creating an instance of
the proxy class and calling its methods. The methods exposed by the proxy have exactly the
same syntax as those of the Web Service itself.

WSDL . EXE actually produces the source code for the proxy class, which must then be
compiled.

The MakeProxy function

The MakeProxy function is provided in the supplied workspace
samples\asp.net\webservices\webservices.dws

MakeProxy is monadic and its argument specifies the URL of the Web Service to which
you want to connect. For example, the following expressions uses MakeProxy to connect
to the LoanService sample Web Service provided with Dyalog .Net:

MakeProxy'http://localhost/apl.net/Loan/Loan.asmx'

MakeProxy runs the Microsoft utility WebServiceUtil.exe passing the name of
your URL to it as an argument. The utility then creates a C# source code file in your current
directory that contains the code necessary to create a proxy class. The name of the C# file is
the name of the Web Service (as declared in its header line) followed by the extension .cs.

MakeProxy then calls the C# compiler to compile this file, creating an assembly with the
same name, but with a .dll extension, in your current directory. This assembly contains a
.NET class of the same name.

Note that the paths to WSDL . EXE and CSC.EXE are hard-coded in MakeProxy, but are
checked when it runs. You will have to modify this function if the hard-coded paths are
wrong.

130 Microsoft .Net Interface

Using LoanService from Dyalog APL

For example, the above call to MakeProxy will create a C# source code file called
LoanService.cs, and an assembly called LoanService.d11 inyour current
directory. The name of the proxy class in LoanService.dll is LoanService.

You use this proxy class in exactly the same way that you use any .NET class. For example:

QUSING <,c<',.\LoanService.dll'

LN<«LoanService.New &

LN.CalcPayments 100000 20 10 15 2
LoanResult

Notice that, as expected, the result of CalcPayments is an object of type LoanResult.
For convenience, we will assign this to ZRr and then reference its fields, which behave like
variables:

LR<LN.CalcPayments 100000 20 10 15 2
LR.Periods
10 11 12 13 14 15 16 17 18 19 20
LR.InterestRates
2 2.5 3 3.5 4 4L,555.,56 6.57 7.58 8.59 9.5 10 10.5
LR.Payments
920.1345384 844 .,5907851 781.6836919 728.4970675 682.947

The Payment s field is, of course, a vector because it was defined that way. Whilst it may
be inconvenient that .NET Web Services does not currently support multi-dimensional
arrays, it is easy to get the data into the right shape:

LR.OML<2

LR.(ep 'InterestRates Periods)
27 11

pLR.((ep 'InterestRates Periods)pPayments)
27 11

LR.((ep 'InterestRates Periods)pPayments)
920.1345384 844 ,5907851 781.6836919 728.4970675 682.947

When you execute the CalcPayments method in the proxy class, the class transforms and
packages up your arguments into an appropriate SOAP/XML stream and sends them, using
TCP/IP, to the URL that represents the Web Service wherever that URL is on the internet or
your Intranet. It then decodes the SOAP/XML that comes back, and returns the response as
the result of the method.

Note that, depending upon the speed of your connection, and the logical distance away of
the Web Service itself, calling a Web Service method can take several seconds; regardless
of how much time it actually takes to execute on its server.

Chapter 7: Calling Web Services 131

Using GolfService from Dyalog APL

The workspace samples\asp.net\webservices\webservices contains
functions that present a GUI interface to the GolfService web service.

The GoLF function accesses Gol fService through a proxy class. GOLF is called with an
argument of 0 or 1. Use 1 to force GOLF to create or rebuild the proxy class, which it does
by calling MakeProxy. You must use an argument of 1 the first time you call GorF, or if
you ever change the GolfService APL code.

Note that there is currently a problem if you attempt to use (i.e. compile) GolfService
for the very first time via the o LF function. It is currently necessary to ensure that
GolfService is first compiled using browser access as described previously.

The first few lines of the function are listed below. If the argument is 1, line[2] makes the
proxy class GolfService.DLL in the current directory; if not it is assumed to be there
already. Line[6] defines OUSING to use it, and Line[7] creates a new instance which is
assigned to ¢S. Line[8] calls the GetCourses method, which returns a vector of
GolfCourse objects. Notice how namespace reference array expansion is used to extract
the course codes and names from the Code and Name fields respectively.

V GOLF FORCE;F;DLL;COURSES;COURSECODES;N;GS;UUSING

[1] :If FORCE#0

[2] DLL<«MakeProxy
'"http://localhost/apl.net/golf/golf.asmx'

[3] :Else

(4] DLL<«'.\GolfService.dll"'

[5] :EndIf

[6] OQUSING<«'System'(',',DLL)

(7] GS<«GolfService.New &

[8] COURSECODES COURSES<«+®{+GS.GetCourses.(Code Name)

132 Microsoft .Net Interface

The following screen shot illustrates the user interface provided by GoLF. In this example,
the user has typed the names of two golfers (one rather more famous than the other) and
then presses the Book it! button.

JAf Dyalog APL Tee Reservation 5 - | I:Ilﬂ

Select a Course ISt Andrews j
Date & Time |0%/06/2001 »| [070000 =
Flayer 1 ITiger Wionds

Flayer 2 IPEmrDDnndw

Flayer 3 “

Flayer 4 I

v Give me the nearest slot if my chosen time i unavailable
Eook it I Starting Sheet Cancel

This action fires the Book callback function which is shown below.

V BOOK;CCODE;YMD;HOUR;MINUTES;FLAG;NAMES ; BOOKING;M

[1] CCODE<«>F .COURSE .SelItems/COURSECODES
[2] YMD<«34+F .DATE.(IDNToDate>DateTime)
[3] HOUR MINUTES<241+yF.TIME .DateT ime
(4] FLAG<«1=F .Nearest.State
[5] NAMES<F.(Namel Name2 Name3 Namelu) .Text
(6] BOOKING<+GS.MakeBooking CCODE
(DateTime.New YMD,HOUR MINUTES 0),FLAG,NAMES
(71 "M'OWC'MsgBox'
[8] :If BOOKING.OK
[9] M.Text<«'Tee reserved for
',_2¢3,/BOOKING.TeeTime.Players,"c', !
[101] M.Text,<' at ',BOOKING.Course.Name
[11] M.Text,«' on ',BOOKING.TeeTime.Time.
(ToLongDateString,' at ',ToShortTimeString)
[12] :Else
[13] M.Text<«BOOKING.
(Course.Name,' ',TeeTime.Time.(ToLongDateString,
' at ',ToShortTimeString),' ',Message)
[14] :EndIf

[15] 0pQ'm:

Chapter 7: Calling Web Services 133

Line[6] calls the MakeBooking method of the ¢S object, passing it the data entered by
the user. The result, a Booking object, is assigned to BOOKING. Line[8] checks its OK
field to tell whether or not the reservation was successful. If so, lines[9-11] display the
message box illustrated below. Notice how the various fields are extracted and notice how
the ToLongDateString and ToShortTime String methods are employed.

B x|

Tee reserved for Tiger Woods, Peter Donnelly at St Andrews on Friday, June 08, 2001 ak OF:00

Pressing the Starting Sheet button runs the Ss callback listed below.

vV SS;CCODE ;YMD ;M ; SHEET ;0K ;COURSE ;TEETIME ;S;DATA;N;TIMES

(1] CCODE<«>F .COURSE .Selltems/COURSECODES

[2] YMD<«34F .DATE.(IDNToDate>DateT ime)

[3] SHEET<GS.GetStartingSheet CCODE(DateTime.New YMD)
[u] :If SHEET.OK

[5] DAT A<+ (SHEET .Slots).Players

[6] TIMES<«(SHEET .Slots) .Time

[7] 'S'OWC'Form' ('Starting Sheet for ',

SHEET .Course.Name,' ',
SHEET .Date.ToLongDateString)
('Coord' 'Pixel')('Size' 40O u480)

[8] 'S.G'OWC'Grid'DATA(O 0)(S.Size)

[9] S.G.RowTitles«TIMES.ToShortTimeString

[10] S.G.ColTitles«'Player 1' 'Player 2'
'Player 3' 'Player 4'

[11] S.G.TitleWidth<60

[12] apQ's!

[13] :Else

[14] 'M'OWC'MsgBox'('Starting Sheet for ',

SHEET .Course.Name,' ',

SHEET .Date.ToLongDateString)('Style' 'Error')
[15] M.Text<SHEET .Message
[16] gpQ'm!
[17] :EndIf

134 Microsoft .Net Interface

Line[3] calls the GetStartingSheet method of the ¢S object. The result, a
StartingSheet object, is assigned to SHEET. Line[4] checks its OK field to see if the
call succeeded. If so, lines[5-12] display the result in a Grid, which is illustrated below.
JAf starting sheet for 5t Andrews Friday, June 08, 200 ;|g|5|
Player 1 Player 2 Flayer 3 Player 4 |
0700 Tiger Waoods Peter Donnelly =
010
0720
0720
040
0750
000 hal

Chapter 7: Calling Web Services 135

Exploring Web Services

You can use the Workspace Explorer to browse the proxy class associated with a Web
Service, in exactly the same way that you can browse any other .NET Assembly. The
following screen shots show the Metadata for LoanService, loaded from the
LoanService.dll proxy.

Remember, LoanService was written in APLScript, but it appears and behaves just
like any other .NET class.

The first picture displays the structure of the LoanResult class.

Bl Exploring CLEAR HE [#1 - o x|
File Edit Mjew Tools

(BB XAf o BEEE G E

Wiorkspace Tree
-2 # -
0O%E
El:fctalata
E|Ji£"r Loaded HMetadata
=-Hét LoanService
ElJiET Modules
=%t C:+Dyalog.MetLoanService.dll
E|JiET Mamespaces
-fét [Unnamed]
E|JiEt Classes
-5t LoanResult

Jier Base Class
w-fét Constructors
- %ét Fields
. .Bt InterestRates @ Sustem.Doublel]
JiET Pauments @ Sustem.Doublel]
E Bt Periods : Sustem.Int32C]
w5t Hethods i
-0t LoanSeruvice =]
2 object(s). 7.909Mb (8292808 bytes) fres. | Y

136 Microsoft .Net Interface

The second picture shows the methods exposed by LoanService. In addition to
CalcPayments, which was written in APLScript, there are a large number of other
methods, which have been inherited from the base class.

Bl Exploring CLEAR HS [#1 1ol x|

File Edit Mew Tools

[BERXQ® o EEEE S8

Horkspace Tree

E|JiET Loanservice]
gJﬁtBase Class
w8t Constructors
o-Jt Hethods
-8t (PrivatelSystem. IAsyncResult Beginlnwvoke(Sustem.String, 3Sus
- Jigt (PrivatelSystem. IAsuncResult BeginSendC3ustem.AsyncCallback
-JEt (Privatel)Sustem.0Object HemberwiseClonetl
~Jigt (Privatel)System.0Objectl] EndInvoke(Sustem. IAsuncResult)
-JEt (PrivateldSystem.Objectl] Inwoke(Sustem.3tring, System.Objec
-Ji#gt (PrivatelSystem.Heb.Services.Protocols.HttpClientRequest age
-8t (PrivatelSystem.Heb.Services.Protocols.HttpClientResponse E
-Ji#t (PrivatelSystem.Heb.Services.Protocols.HttpClientResponse S
-8t (PrivatedUoid Finalize()
~Jigt Boolean Equals(Sustem.Dbject?
-t Boolean get_AllowAutoRedirectc) =
-Jigt Boolean get EnableCockiesC)
-Jiet Boolean get_Prefuthenticate(?
--Jiet Boolean GetDesignMode()
-JEt [nt32 get_ProxyPort(d
-figt IntdZ2 get Timeout(D
-8t [nt3Z GetHashCode()
-.Jiét LoanResult CalcPauments(Int32, Int32, Int3Zz, Int32, Int3Z2
-Jt LoanResult EndCalcPaumentsCSustem. [AsuncResult)
--J#t System.ComponentHodel . ICantainer GetContainer(l
T8t System.ComponentHodel . 13ite get_Site()
-J#t System. IAsyncResult BeginCalcPauments(Int32, Int3d2, Intd2, -
K | _*l_I

|2 ohjeck{s), 7.902Mb (5285565 bytes) free, |Unknown bytes used (0 bytes selected) in Local Scope S

Chapter 7: Calling Web Services 137

Asynchronous Use

Web Services provide both synchronous (client calls the function and waits for a result) and
asynchronous operation.

Each method is exposed as a function with the same name (the synchronous version)
together with a pair of functions with that name prefixed with Beg i n and Zx»< respectively.

The Beg i nxxx functions take two additional parameters; a delegate class that represents a
callback function and a state parameter.

To initiate the call, you execute the Beg i nxxx method using the standard parameters
followed by two objects. The first is an object of type System.AsyncCallback that
represents an asynchronous callback, i.e. a callback to be invoked when the asynchronous
call is complete. The second is an object which is used to supply extra information. We will
see how callbacks are used later in this section. If you are not using a callback, these items
should be null object references. You can specify a reference to a null object using the
expression (ONS'). For example, using the LoanService sample as above:

A<LN.BeginCalcPayments 10000 16 10 12 9(ONS'')(ONS'")
The result is an object of type WebClientAsynchResult.

A
System.Web.Services.Protocols.WebClientAsyncResult

Then, some time later, you call the £Endxxx method with this object as a parameter. For
example:

LN.EndCalcPayments A
LoanResult

You can execute several asynchronous calls in parallel:

Al«LN.BeginCalcPayments 20000 20 10 15 7(0ONS'')(ONS'')
A2<LN.BeginCalcPayments 30000 10 8 12 3(ONS'')(ONS'')

LN.EndCalcPayments A1
LoanResult

LN.EndCalcPayments A2
LoanResult

138 Microsoft .Net Interface

Using a callback

The simple approach described above is not always practical. If it can take a significant
amount of time for the web service to respond, you may prefer to have the system notify
you, via a callback function, when the result from the method is available.

The example function Test Async Loan in the workspace
samples\asp.net\webservices\webservices.dws illustrates how you can do
this. It is somewhat artificial, but hopefully explains the mechanism that is involved.

TestAsyncLoan itself is just a convenience function that calls AsyncLoan with
suitable arguments. Test Async Loan takes an argument of 1 or 0 that determines whether
or not a Proxy class for LoanService is to be built.

Vv TestAsyncLoan MAKEPROXY

[1] (¥MAKEPROXY),' AsyncLoan 10000 10 8 5 3!
(2] MAKEPROXY AsyncLoan 10000 10 8 5 3

v
The AsyncLoan function, and its callback function Get LoanResu It, are more
interesting.

v {MAKEPROXY}AsyncLoan ARGS;DLL;SINK;LN;AS;AR
[1] :If 22(0NC'MAKEPROXY' o MAKEPROXY<«0 ¢ :EndIf
[2] :If 1=(ONC'MAKEPROXY'
[3] DLL+MakeProxy'http://localhost/apl.net/loan/

loan.asmx'

(4] :Else
[5] DLL<'.\LoanService.d1Il'
[6] :EndIf
[7] OUSING<«'System'(',',DLL)
[8] LN«LoanService.New 8
(9] AS<System.AsyncCallback.New [OR'GetLoanResult'
[10] AR<LN.BeginCalcPayments ARGS,AS,LN
[11] "AsyncLoan waits for async call to complete'
[12] :While 0=AR.IsCompleted
[13] O<«r.!
[14] :EndWhile

V GetLoanResult arg;0BJ;LR;RSLT

[1] 'GetLoanResult callback fires ...'

[2] OBJ<arg.AsyncState

(3] LR<0OBJ .EndCalcPayments arg

[u] RSLT«LR.(((pPeriods),(pInterestRates))pPayments)
[5] RSLT«((<c''),LR.Periods),(LR.InterestRates),[1]RSLT
[6] '"Result is'

(71 O<RSLT

Chapter 7: Calling Web Services 139

140

Microsoft .Net Interface

The effect of running Test AsyncLoan is as follows;

TestAsyncLoan O
0 AsyncLoan 10000 10 8 4 3
AsyncLoan waits for async call to complete

GetLoanResult callback fires
Result is
3 3.5 4
8 117.2957193 105.7694035 96.5607447
9 119.5805173 108.0741442 98.88586746
121.892753 110.409689 101.2451382

AsyncLoanl[8] creates a new instance of the LoanService class called LN. The next
line creates an object of type System.AsyncCallback named 4S. This object, which is
termed a delegate, identifies the callback function that is to be invoked when the
asynchronous call to CalcPayments is complete. In this case, the name of the callback
function is Get LoanResu lt. Note that JOR is necessary because the AsyncCallback
constructor must be called with a parameter of type System.Object. The line
AsyncLoan[10] calls BeginCalcPayments with the parameters for
CalcPayments, followed by references to 4.5 (which identifies the callback) and L~,
which identifies the object in question. The latter will turn up in the argument supplied to
the Get LoanResu 1t callback. Lines[12-14] loop, displaying dots, until the asynchronous
call is complete. Get LoanResu It will be invoked during or immediately after this loop,
and will be executed in a different APL thread.

When the Get LoanResu It callback is invoked, its argument arg is an object of type
System.Web.Services.Protocols.WebClientAsyncResult. Itisinfacta
reference to the same object AR, that was the result returned by BeginCalcPayments.

This object has an AsyncState property that references the LoanService object LN
that we passed as the final parameter to BeginCalcPayments. Get LoanResult[2]
retrieves this object and assigns itto 0BJ. Get LoanResu lt [3] calls the
EndCalcPayments method, passing it arg as the AsyncResult parameter as before.
The resulting LoanResult object is then formatted and displayed.

Chapter 7: Calling Web Services 141

143

CHAPTER 8

Writing ASP.NET Web Pages

Introduction

Under Microsoft IS, a static web page is defined by a simple text file with the extension
.htm or .html that contains simple HTML. When a browser requests such a page, 11S simply
reads it and squirts it back. The contents of a static web page are constant and, until
somebody changes it, the page appears the same to all users at all times.

A dynamic web page is represented by a simple text file with the extension .aspx. Such a
file may contain a mixture of (static) HTML, ASP.NET objects and a server-side script.
ASP.NET objects are built-in .NET classes that generate HTML when the page is
processed. Scripts contain functions and subroutines that are invoked by events (such as the
Page_Load event) or by user interaction.

Typically, a script will generate HTML dynamically, when the page is loaded. For example,
a script could perform a database operation and return an HTML table containing a list of
products and prices. A script may also contain code to process user interaction, for example
to process the contents of a Form that is filled in and then submitted by the user. These
scripts are referred to as server-side scripts because they are executed on the server. The
browser sees only the results produced by the scripts and not the scripts themselves. Code in
a server-side script always involves the generation of a new page by the server for display in
the browser.

The first time ASP.NET processes a .NET web page, it compiles the entire page into a
.NET Assembly. Subsequently, it calls the code in the assembly directly. The language used
to compile the page is defined in the <script> section, which is typically defined at the top
of the page. If the <script> section is omitted, or if it fails to explicitly specify the language
attribute, the page is compiled using the default scripting language. This is configurable, but
is typically VB or C#.

144 Microsoft .Net Interface

This Chapter is made up almost entirely of examples, the source code of which is supplied
in the samples\asp.net directory and the sub-directories it contains. This directory is mapped
as an IIS Virtual Directory named apl .net, S0 you may execute the examples by
specifying the URL http://localhost/apl.net/ followed by the name of the sub-
directory and page.

To use APLScript effectively in Web Pages, you need to have a thorough understanding
of how ASP.NET works.

In the first example, an outline description ASP.NET technology is provided. For further
information, see the Microsoft NET Framework documentation and Beginning ASP.NET
using VB.NET, Wrox Press Ltd, ISBN 1861005040.

Your first APL Web Page

The first web page example is Intro\introl.aspx, which is listed below. This page
displays a button whose text is reversed each time you press it.

<script language="apl" runat="server">

VReverse args
:Access Public
:ParameterList Object,EventArgs

(nargs) .Text<¢(2args) .Text
v

</script»>

<html>

<body>

<Form runat=server>
<asp:Button id="Pressme"
Text="Press Me"
runat="server"
OnClick="Reverse"
/>

</form>

</body>

</html>

In this example, the page language is defined in the <script> section to be "apl". This
in turn is mapped to the APL.Script compiler via information in the 1IS configuration file,
Machine.config

The page layout is described in the section between the <html1> and </html> tags. This
page contains a Form in which there is a Button labelled (initially) “Press Me”

Chapter 8: Writing ASP Web pages 145

The Form and Button page elements may appear to be simple HTML, but in fact there is
more to them than meets the eye and they are actually both types of ASP.NET intrinsic
controls.

Firstly, the runat="server" attribute indicates that an HTML element should be parsed
and treated as an HTML server control. Instead of being handled as pure text that is to be
transmitted to the browser "as is", an HTML server control is effectively compiled into
statements that then generate HTML when executed. Furthermore, an HTML server control
can be accessed programmatically by code in the Script, whereas a pure HTML element
cannot. On its own, runat="server" identifies the HTML element as a so-called basic
intrinsic control.

When you add runat="server" to a Form, ASP.NET automatically adds other
attributes that cause the values of its controls to be POSTed back to the same page. In
addition, ASP.NET adds a HIDDEN control to the form and stores state information in it.
This means that when the page is reloaded into the browser the state and contents of some
or all of its controls can be maintained, without the need for you to write additional code.

The asp: prefix for the Button, identifies the control as a special ASP.NET intrinsic
control. These are fully-fledged .NET Classes in the .NET Namespace
System.Web.UI.WebControls that expose properties corresponding to the standard
attributes that are available for the equivalent HTML element. You manipulate the control
as an object, while it, at runtime, emits HTML that is inserted into the page.

At this point, it is instructive to study what happens when the page is first loaded and the
appearance of the page is illustrated below.

<3 http://pdportZapl_netfintrofintrol_aspx - Microsoft Internet Explorer [E[=] E3

J File Edit “iew Favortes Toolz Help |

j@.*.@ﬁ@@@

Back e ard Stop Refrezsh Home Search Favontez History

»

J.-'l'-.gldress @ http: A pdpartdapl netdntrodinte] . asps j & Go J Links **

FPress ke |

|@ Daone I_I_ S5 Local intranet ‘_,_.;,:

146

Microsoft .Net Interface

The HTML that is transmitted to the browser is:

<html>

<body>

<form name="ctrll" method="post" action="introl.aspx"
id="ctrll">

<input type="hidden" name="__ VIEWSTATE"
value="YTB6NTQ30DgOMjcyX19feA==5725bd57" />

<input type="submit" name="Pressme" value="Press Me"
id="Pressme" />

</form>

</body>

</html>

Firstly, notice that, as expected, the contents of the <script> section are not present.
Secondly, because the Form and Button are intrinsic controls, ASP.NET has added certain
attributes to the HTML that were not specified in the source code.

The Button now has the added attribute input type="submit", which means that
pressing the Button causes the contents of the Form to be transmitted back to the sever.

The Form now has method="post" and action="introl.aspx" attributes, which
means that, when the Form is submitted, the data is POSTed back to introl.aspx, the
page that generated the HTML in the first place.

So when the user presses the button, the browser sends back a POST statement, with the
contents of the Form, including the value of the HIDDEN field, requesting the browser to
load introl.aspx

In the server, ASP.NET reloads the page and processes it again. In fact, because of the
stateless nature of HTTP, the server does not know that it is reprocessing the same page,
except that it is being executed by a POST command with the hidden data embedded in the
Form that it put there the first time around. This is the mechanism by which ASP.NET
remembers the state of a page from one invocation to another.

This time, because a POST back is loading the page, and because the Pressme button
caused the POST, ASP.NET executes the function associated with its onC11ick attribute,
namely the APLScript function Reverse.

When it is called, the argument supplied to Reverse contains two items. The first of these is
an object that represents the control that generated the onC11ick event; the second is an
object that represents the event itself. In fact, Reverse and its argument are very similar to
a standard Dyalog APL callback function.

Chapter 8: Writing ASP Web pages 147

VReverse args
:Access Public
:ParameterList Object,EventArgs

(nargs) .Text<+¢(2args) .Text
v

The code in the Reverse function is simple. The expression (>args) is a namespace
reference (ref) to the Button, and (cargs).Text refers to its Text property whose value is
reversed. Note that Reverse could just as easily refer to the Button by name, and use
Pressme.Text instead.

After pressing the button, the page is redisplayed as shown below:

; http: //pdport/apl.netfintrofintrol .aspx - Microsoft Internet Explorer [l[=] E3
J File Edit “iew Favortes Toolz Help |

>

j¢,*,@@@@®

Back farinand Stop Refresh Home Search Fawvortez Histon
J.-i‘-.gldress @ http: //pdportdapl. netdintradintral. aspx j Lf'{}GD J Links **
ekl szetP |
@] Dere | [E5) Localintranet ,;,:
This time, the HTML generated by introl.aspx is:
<html>
<body>

<form name="ctrll" method="post" action="introl.aspx"
id="ctrll">

<input type="hidden" name="_VIEWSTATE"
value="YTB6NTQ30DgOMjcyX2Ewel0ejVoMXhfYTB6X2h6NXoxeF9hMHph
MHpoelR1XHhOX2VNIHNzZXJQeF9feFO9feHhfeHhfeF9feA==45acf576"

/>

<input type="submit" name="Pressme" value="eM sserP"
id="Pressme" />

</form>

</body>

</html>

148

Microsoft .Net Interface

Returning to the Reverse function, note that the declaration statements at the top of the
function are essential to make it callable in this context.

VReverse args
:Access Public
:Parameterlist Object,EventArgs

(nargs) .Text<¢(2args) .Text
v

Firstly the Reverse function must be declared as a public member of the script. This is
achieved with the statement.

:Access Public

Secondly, the .NET runtime will only call the function if it possesses the correct signature,
which is derived from its parameters and their types.

The required signature for a method connected to an event, such as the OnClick event of a
Button, is that it takes two parameters; the first of which is of type System.Object and
the second is of type System.EventArgs. The Reverse function declares its
parameters with the statements:

:ParameterlList Object,EventArgs

Note that the parameter declarations do not include the System prefix. This is because
when the script is compiled the names are resolved using the current value of JUSING.
When the APLScript is compiled, the default value for QuSING is automatically defined
to contain System along with most of the other namespaces that will be used when writing
web pages

(Strictly speaking, the first argument is expected to be of type
System.Web.UI.WebControls.Button, butas this type inherits ultimately from
System.Object the function signature is satisfied.)

Note that if the Reverse function is defined with a signature that does not match that
expected signature for the OnClick callback, the function will not be run.

Furthermore, if the function associated with the OnClick statement is not defined as a public
method in the APL.Script the page will appear to compile but the Reverse function will
not get executed.

Chapter 8: Writing ASP Web pages 149

Note that unlike Web Services, there is no requirement fora : Class or : EndC lass
statement in the script. This is because a file with an . aspx extension implicitly generates
a class that inherits from System.Web.UI.Page.

The Page_Load Event

Intro6.aspx illustrates how you can dynamically initialise the contents of a Web Page
using the Page_Load event. This example also introduces another type of Web Control, the
DropDownList object.

<script language="apl" runat="server"»>

VPage_Load
:Access Public

:1f 0=IsPostBack
list.Items.Add 'Apples'
list.Items.Add 'Oranges'
list.Items.Add 'Bananas'

:endif

v

vSelect args

:Access Public

:ParameterList Object,EventArgs

out .Text<«'You selected ',list.SelectedItem.Text
v

</script>

<body>

<form runat=server>
<asp:DropDownList id="1list" runat="server"/»>
<p>

<asp:Label id=out runat="server" />
<p>

<asp:Button id="btn"

Text="Submit"

runat="server"

OnClick="Select"

/>

</form>

</body>

When an ASP.NET web page is loaded, it generates a Page Load event. You can use this
event to perform initialisation simply by defining a public function called Page_Load in

150 Microsoft .Net Interface

your APLScript. This function will automatically be called every time the page is loaded.
The Page_Load function should be niladic.

Chapter 8: Writing ASP Web pages 151

Note that, if the page employs the technique illustrated in Introl.aspx, whereby the
page is continually POSTed back to itself by user interaction, your Page_Load function
will be run every time the page is loaded and you may not wish to repeat the initialisation
every time. Fortunately, you can distinguish between the initial load, and a subsequent load
caused by the post back, using the IsPostBack property. This property is inherited from
the System.Web.UI.Page class, which is the base class for any . aspx page.

The Page_Load function in this example checks the value of IsPostBack. If O (the
page is being loaded for the first time) it initialises the contents of the 1ist¢ object, adding
3 items "Apples"”, "Oranges" and "Bananas”. The explanation for the statement:

list.Items.Add '...'

is that the DropDownList WebControl has an Items property that is a collection of
ListItem objects. The collection implements an Add function that takesa String
Argument that can be used to add an item to the list.

Notice that the name of the object 1is¢ is defined by the id="1ist" attribute of
theDropDownList control that is defined in the page layout section of the page.

; http:/ /localhost/apl.net/inkro/ink - | Ellil
File Edit Wiew Favorites Tools Hel htkp: jflacalhostjapl. ne
Back - = - (D ﬁ-| [E Personal Bar »

Address @ http: }flocalhost) apl, netfinkrofinkrog, asp: j @GD
=l
Iﬂnpples 'I
Submit |

=
|@ Done I_ I_ I_ Local intranet i

In this example, the page is processed by a POST back caused by pressing the Submit
button. As it stands, changing the selection in the 1is¢ object does not cause the text in the
out object to be changed; you have to press the Submit button first.

152

Microsoft .Net Interface

a http:/ /localhost/apl.net fintro/inkre - | Ellil
File Edit YWiew Favorites Tools Help |
EBack ~ = - () ﬁ-| [E Personal Bar »

Address @ http:f flocalhostfapl netfinkrofintrog, aspe: j vf‘J}GD

IEiananas TI

You selected Bananas

Subrnit i
st | =
|@ Done I_I_I_ = Local intranet ‘_ﬁ

However, you can make this happen by adding the following attributes to the 1ist object.

F

AutoPostback="true"
OnSelectedIndexChanged="Select"/>

AutoPostback causes the object to generate HTML that will provoke a post back
whenever the selection is changed. When it does so, the OnSelectedIndexChanged
event will be generated in the server-side script which in turn will call Se Iect, which in
turn will cause the text in the out object to change.

Note that this technique, which can be used with most of the ASP.NET controls including
CheckBox, RadioButton and TextBox controls, relies on a round trip to the server every
time the value of the control changes. It will not perform well except on a fast connection to
a lightly loaded server.

Chapter 8: Writing ASP Web pages 153

Code Behind

It is often desirable to separate the code content of a page completely from the HTML and
other text, layout or graphical information by placing it in a separate file. In ASP.NET
parlance, this technique is known as code behind.

The intro7.aspx example illustrates this technique.

%@Page Language="apl" Inherits="FruitSelection"
src="fruit.apl" %>

<html>

<body>

<form runat="server'" >

<asp:DropDownList id="1list" runat="server"
autopostback="true"
OnSelectedIndexChanged="Select"/>

<p>

<asp:Label id=out runat="server" />

<p>

<asp:Button id="btn" Text="Pick" runat="server"
OnClick="Select" />

</form>

</body>

</html>

This essentially implements the same web page as intro6a.aspx but here code behind
is used to separate the script implementation from the . aspx file.

The statement

%@Page Language="apl" Inherits="FruitSelection"
src="fruit.apl" %>

says that this page, when compiled, should inherit from a class called FruitSelection.
Furthermore, the FruitSelection class is written in the "apl" language, and its source
code resides in a file called fruit.apl. FruitSelection is effectively the base class
for the . aspx page.

In this case, fruit.apl is simply another text file containing the APLScript code and
is shown below.

154

Microsoft .Net Interface

:class FruitSelection:System.Web.UI.Page

VPage_Load
:Access Public

:if 0=IsPostBack
list.Items.Add 'Pears'
list.Items.Add 'Nectarines'
list.Items.Add 'Strawberries'

rendif

v

vSelect args
:Access Public
:ParameterList Object,EventArgs

out .Text<«'You selected ',list.SelectedItem.Text
%
:EndClass

The first thing to notice is that the file requires : C1ass and : EndC lass Statements.
These are required to tell the APL.Script compiler the name of the class being defined,
and the name of its base class. When the source code is in a . aspx file, this information is
provided automatically by the APL.Script compiler. However, this is not the case here.

The name of the class, in this case FruitSelection, must be the same name as is

referenced in the . aspx web page file itself (intro7.aspx). The base class must be
System.Web.UI.Page

The body of the script is just the same as the script section from the previous example. Only
the names of the fruit have been changed so that it is clear which example is being executed.

Chapter 8: Writing ASP Web pages

155

a http:/ /localhost/apl.net/inktro/inkrod.a - | Ellil

File Edit Miew Favarites Toaols —Hsl=
- - - - - !http:,l',l'll:u:alhl:ust,l'apl.net,l'intrl:u,l'

Back + = - () i | [E Personal Bar »
Address @ http: fflocalhost)apl. netfintrofintro? . aspx j @GD

=
|F'ear5 j
Pick |

|@ Cone I_ I_ I_ = Local intranet v

a http:/ /localhost/apl.net/introfinkrof . ;|g|5|
File Edit Wiew Favorites Tools Help |
Back + = - () i | [E Personal Bar »
Address @ hktp: Hflocalhost)apl, netfintrofinkro?, asps j @GD
=
|Strawherriesj

You selected Strawberries

N

|@ Done I_ I_ I_ (= Local intranet

156 Microsoft .Net Interface

Workspace Behind

The previous section discussed how APL logic can be separated from page layout, by
placing it in a separate APLScript file which is referred to from the . aspx web page. Itis
also possible to have the code reside in a separate workspace. This allows you to develop
web pages using a traditional workspace approach, and it is probably the quickest way to
give an HTML front-end to an existing Dyalog APL application.

In the previous example, you saw that the fruit.apl file defined a new class called
FruitSelection that inherits from System.Web.UI. Page. This class contains a
Page_Load function that (by virtue of its name) overrides the Page Load method of the
underlying base class and will be called every time the web page is loaded or posted back.
The Page_Load function takes whatever action is required; for example, initialisation.
The class also contained a callback function to perform some action when the user pressed a
button.

A similar technique is employed when the code behind the web page is implemented in a
separate workspace. The workspace should contain a NetType object that inherits from
System.Web.UI.Page. This class may contain a Page_Load function that will be
invoked every time the corresponding web page is loaded, and as many callback functions
as are required to provide the application logic. The workspace is hooked up to one or more
web pages by the Inherits="<classname>" and src="<workspace"
declarations in the Page directive statement that appears at the beginning of the web page
script.

The ACTFNS sub-directory in samples\asp.net contains some examples of Dyalog
APL systems that have been converted to run as Web applications using this technique.

Dyadic is grateful to David Hughes (dhughes@hughes—
farnham. freeserve.co.uk) who provided the original workspaces and advised on
their conversion.

The two workspaces are named ACTENS . DWS and PROJ . DWS. The original code used the
Dyalog APL GUI to display an input Form, collect and validate the user's input, and
calculate and display the results. The original logic supported field level validation and
results were immediately recalculated whenever any field was changed. With some
exceptions, this has been changed so that the user must press a button to tell the system to
recalculate the results. This approach is more appropriate in an Internet application,
especially when connection speed is low. Apart from this change, the applications run more-
or-less as originally designed.

Chapter 8: Writing ASP Web pages 157

actfns.htm
A 4
sla_tab.aspx sla_disp.asp proj.aspx
A 4
proj_xxx.asp
A 4
ACTFNS.DWS PROJ.DWS

The diagram above illustrates the structure of the web application and the various
files involved. The starting page, act fns.htm, simply provides a menu of
choices which link to various . aspx web pages. These pages in turn are linked to
one of the two workspaces via the src="" declaration

158 Microsoft .Net Interface

&) Dvalog.Met Actuarial Examples - Microsoft Inter... ugﬁ
>

I
File Edit ‘iew Favorites Tools Help @ hd -'::f.

Address | @] http: flocalhostiapl.net} actfnsfactfns. htm hdl Go Links *

Dyalog.Net Actuarial
Examples

@ ‘ﬂ Local inkramet

The actfns.htm start page offers 3 application choices

159

Chapter 8: Writing ASP Web pages
[@ ACTFNS Example - Microsoft Internet Explorer Q@E
Fle Edit Wiew Favortes Tools Help e - _) lﬂ @ -.'_lj f'j ?::f ""
EBiack, Forward Stop Refresh Home Search Favarites)

B
Single Life Assurance and Annuity Values

Address @ httpfflocalhostfapl netjactfns/sla_tab.aspx Links @ Actuarial.Met

Moralty Table [is67-0@jselzet (]

Interest Rate 3.25

Mortality Tables
® UK Assured Lives Initial Age a0
O UK Immediate Annuitant Initial Duration 0
O UK Pension Annuitant

Endowment Term |10

Calculate

Table Format @ Age x, durs tt+10 CAgesx-x+10, durt

ﬁ[x]+t A[x]+t ﬁ[:n:]+t:nJ A[x]+t:m
23.7359 0.252864 0.727088
23.4851 0.260758 0.750589
23.2292 0.268813 0.774854
229677 0.277045 0.799837
226984 0.284521 0.825765
224314 0.264243 0.852486
221365 0.303210 0.280089
21.8439 0.312420 0.90B606
21.5436 0.321872 0.938072
21.2357 0.331569 0968523
208302 0.341494 0.000000

@ Daone ‘:} Local intranet

The result of choosing Tabulate single life insurance and annuity values

When you choose the first option, the system loads s1la tab.aspx. This defines the
screen layout in terms of ASP.NET controls, including the DataGrid control for
tabulating the results. The sla tab.aspx script contains the declarations

Inherits="actuarial" src="actfns.dws, S0 ASP.NET loads the actuarial
class from this workspace (via a call to Dyalog APL). When the page is loaded, it generates
a Page Load event, which in turn calls its Page Load method. This populates the ASP

controls with data, and the resulting web page is displayed. The mechanism is described
below.

For further details, see the sla tab.aspx scriptand ACTENS . DWS workspace.

160 Microsoft .Net Interface

Converting an existing Workspace

The steps involved in converting the workspaces were as follows:

1.

Replace the Dyalog APL GUI with the equivalent HTML Forms, which are
defined in one or more separate . aspx web pages. To retain consistency, it is
helpful to give the ASP controls the same names as the original GUI controls,
which they are replacing.

Attach the names of APL callback functions to the appropriate ASP controls;
essentially, any controls that will be involved in a postback operation, such as the
Submit button.

Starting witha CLEAR WS, create a Net Ty pe object that represents a .NET class
based upon System.Web.UI.Page. For example, in converting the ACTFNS
workspace, we started by defining DuSING as follows:

+QUSING
System
System.Web.UI,system.web.dIll
System.Web.UI.WebControls
System.Web.UI.HtmlControls
System.Data,system.data.dll

and then creating the NetType object:
'actuarial' OWC 'NetType' 'Page'

The name you choose for this object will replace classname in the
Inherits="classname" declaration inthe . aspx web page(s) that call it.

Change into the newly created Net T'y pe object, and copy the workspace to be
converted; in this case, the starting point was a workspace named DH_ACTEFNS:

)CS actuarial’
#.actuarial

JCOPY DH_ACTFNS
DHACTFNS saved

Modify the code as appropriate, inserting a Page_ Load function and whatever
callbacks functions are required.

Chapter 8: Writing ASP Web pages 161

The Page_Load function

Using its .NET Properties page, the Page_ Load function must be declared as a Public
Method. You may either call the function Page_ Load, or export an arbitrary function as
Page Load by entering the name Page Load in the edit box on this property page. Note
that, either way, Page Load must be spelled correctly as it is this name that causes the
function to override the base class Page Load method of the same name.

For example, the Page_Load function of the actuarial class in ACTFNS.DWS is shown
below:

V Page_lLoad;INT; AGE;DUR;TERM;TAB_DURS;MPC1;INT1;INT?2
sNTY; RUN_OPTION;OPT

(1] o Overrides Page_Load method of Page class

[2] a Gets called when Page is loaded or re-loaded
after postback

[3] a Initialise fields and calculate initial results on
initial load only

(4] :If 0=IsPostBack

(5] RUN_OPTION<GET_ RUN_OPTION

(6] :Select RUN_OPTION

(7] :Case 1

[8] EINT .Text<«3%INT<+3.25

(9] FEAGE .Text<«3AGE<30

[10] EDUR.Text<«3%DUR<O0

[11] ETRM.Text«3sTERM<«10

[12] TA.Checked<TAB_DURS<1

[13] CHANGE _TABLES &

(1] :Case 2

[15] CPLAN.Items.Clear

[16] :For OPT :In ¥>0PTSPLAN

[17] CPLAN.Items.Add DETRAIL OPT

(18] :EndFor

[19] EMPC1.Text<«sMPC1<+100

[20] EINT1.Text<«3%INT1<«3.25

[21] EINT2 .Text<sINT2+3.25

[22] EINTY .Text<sINTY<99

[23] EAGE .Text<«3%AGE<30

[24] EDUR.Text<«sDUR<O0

[25] ETRM.Text<«3%TERM<«10

[26] CHANGE_TABLES &

[27] :EndSelect

[28] :EndIf

v
If exported correctly, Page_Load will be called every time the calling web page is loaded.
This occurs when the page is loaded for the first time, and whenever the page is submitted

162 Microsoft .Net Interface

back to the web server by the browser (postback). A postback will occur whenever a
callback function is involved, and potentially at other times.

Chapter 8: Writing ASP Web pages 163

The Page_Load function may determine whether it is being invoked by a first time load,
or by a postback, from the value of the IsPostBack property. This is a property of the
container NetType object that it inherits from its base class System.Web.UI.Page.

The Page_ILoad example shown above uses this property to control the initialisation of
the controls in the calling web page. The names EINT, EAGE, EDUR and so forth refer to
names of controls in the calling web page. When Page_Load is executed, the
actuarial object is associated with the web page itself, and so the names of all its
controls are visible as sub-objects within it.

Note that the actuarial class is used by two different web pages, and the function
GET_RUN_0PTION function determines which of these are involved. (It does so by
detecting the presence or otherwise of a particular control on the page).

Callback functions

The actuarial class in ACTFNS.DWS provides four callback functions named
CALC_FSLTAB_RESULTS,CALC_FSL_RESULTS, CHANGE_TABLES and

CHANGE _TABLE _FORMAT. The first two of these functions are attached as callbacks to
the Calculate button in each of two separate web pages sla tab.aspx and

sla disp.aspx. For example, the statement that defines the button in sla tab.aspx
is:

<asp:Button id=Buttonl runat="server" Text="Calculate"
onClick="CALC FSLTAB RESULTS"></asp:Button>

The third callback, CHANGE_TABLES, iscalled by s1la tab.aspx when the user selects
a different set of Mortality Tables from the three provided. CHANGE _TABLE_FORMAT is
called when the user clicks either of the two radio buttons that select how the output is to be
displayed.

Like the Page_ Load function, callback functions must be declared as being Public
Methods. This is most easily achieved using their .NET Property page.

In addition, and this is essential, APL callback functions must be declared to have the
correct signature expected of .NET callback functions. This means that they must be
monadic, and their argument must be declared to be a 2-element nested array containing two
.NET objects; the object that generated the event, and an object that represents the
arguments to the event.

Specifically, these parameters must be of type System.Object and
System.EventArgs respectively. However, as our QU SING contains System, it is not
necessary to include the System prefix.

164 Microsoft .Net Interface

For example, the .NET property page for the function CALC_FSLTAB_RESULTS is shown
below:

¥ #.actuarial.CALC_FSLTAB_RESULTS - Properties

F'ru:uperties] ' alue] Monitar .

Param Mame Type | b odifier | Optional |

Result ﬂ ﬂ

ok Object - - [

ey Ewventhrgs j j [
Help D |

{+ pMethod " web Method (Prop Get Prop Set |

[v Public [Static [Yirkal [Constructor
[Protected

| ()4 | Cancel

Chapter 8: Writing ASP Web pages 165

Validation functions

In a Dyalog APL web page application, there are basically two approaches to validation.
You can handle it entirely yourself, or you can exploit the various validation controls that
come with ASP.NET. The sample application uses the latter approach by way of
illustration. For example:

<asp:TextBox id=EINT runat="server"></asp:TextBox>
<asp:RequiredFieldValidator id="RFVINT"
ControlToValidate="EINT"
ErrorMessage="Interest Rate must be a number
between 0 and 20"
Textzll *x "
runat="server"/></td>

These ASP.NET statements associate a RequiredFieldvalidator named RFVINT
with the EINT field, the field used to enter Interest Rate. If the user leaves this field blank,
the system will automatically generate the specified error message. The page defines a
separate ValidationSummary control as follows:

<asp:ValidationSummary id="Summaryl"

HeaderText="Please enter a value in the following
fields"

Font-Size="smaller"

ShowSummary="false"

ShowMessageBox="true"

EnableClientScript="true"

runat="server"/>

The validationSummary control collects error messages from all the other validation
controls on the page, and displays them together. In this case, a pop-up message box is used.

One advantage of this approach is that this type of validation can be carried out client-side
by local JavaScript that is generated automatically on the server and incorporated in the
HTML that is sent to the browser.

Logical field validation for this page is carried out on the server by APL functions that are
attached to Customvalidator controls. For example:

<asp:CustomValidator id="CustomValidator INT"
OnServerValidate:"VALIDATE_INT "
ControlToValidate="EINT"
Display="Dynamic"
ErrorMessage="Interest Rate must be a number between 0
and 20"
runat="server"/>

166

Microsoft .Net Interface

These ASP.NET statements associate a CustomValidator control named
CustomValidator_INT with the Interest Rate field EINT. The statement
OnServerValidate="VALIDATE INT" specifiesthat VALIDATE_INT isthe
validation function for the CustomValidator_INT object.

The VALIDATE_INT function and its .Net Properties page are shown below.

V VALIDATE_INT MSG;source;args

[1] a Validates Interest Rate
[2] source args<MSG
(3] :Trap 0
(4] INT«Convert .ToDouble args.Value
[5] :Else
[6] args.IsValid<«0
(7] :Return
[8] :EndTrap
[9] args.IsValid<«(0<INT)A202INT
v

To make the vALIDATE _INT function available to the calling web page, it is exported as a
method. Its calling signature, namely that it takes two parameters of type
System.Object and
System.Web.UI.WebControls.ServerValidateEventArgs respectively
identifies it as a validation function. All these factors are essential in making it recognizable
and callable.

VALIDATE_INT[2] assigns its (2-element) argument to source and args respectively.
Both are namespace references to .NET objects. source is the object that fired the event
(CustomValidator_INT). args is an object that represents the event. Its Value property
returns the text in the control being validated, in this case the control named EINT1.

VALIDATE_INT[u] converts the text in the EINT control to a number, using the
ToDouble method of the System.Convert class. You could of course use OvVF I, but
the Convert methods automatically cater for National Language numerical formats. This
statement is executed within a : Trap control structure because the method will generate a
.NET exception if the data in the field is not a valid number.

VALIDATE_INT[6 9] setthe Isvalid property of the
ServerValidateEventArgs object args to 0 or 1 accordingly. This also sets the
IsValid property of the validation control represented by source. The system will
automatically display the error message associated with any validation control whose
IsValid property is 0. Furthermore, the page itself has an Isvalid property, which is
the logical-and of all the Isvalid properties of all the validation controls on the page.
This is used later by the calculation function CALC_FSLTAB_VALUES.

In this case, the validation function stores the numeric value of the control in a variable
INT, which will subsequently be used by the calculation functions.

Chapter 8: Writing ASP Web pages

167

-@ #.actuarial. YALIDATE_INT - Properties

-

F'ru:uperties] Value] anitor -Met Properties l

FParam Mame Type | td adifier | O ptianal |
Result Woid ~| ~|
source Object ﬂ ﬂ [
angs ServeralidateE ventdrgs ﬂ ﬂ [
Help D |
{* Method " webMethod ¢ PropGet © Prop Set |
[v Public [Static [Wirtual [Constructor
[Pratected

o |

Cancel

When the page is posted back to the server, ASP.NET executes its own built-in validation
controls and then calls the functions associated with the Customvalidator controls, in
the order they are defined on the page. In addition to the VALIDATE_INT function, there
are eight other custom validation functions. Three of these, which validate the Initial Age,
Endowment Term and Initial Duration fields, are listed below. Note that all of the
VALIDATE_xxx functions have the same .NET signature as VALIDATE_INT.

168 Microsoft .Net Interface

V VALIDATE_AGE MSG;source;args

[1] a Validates Age
[2] source args<MSG
(3] :Trap 0
(4] AGE«Convert .ToInt32 args.Value
(5] :Else
(6] args.IsValid<0
(71 :Return
(8] :EndTrap
(9] args .IsValid<(10<AGE)A802AGE
v

VALIDATE_AGE issimilarto VALIDATE_INT, except that, because it expects an integer
value, it uses the ToInt 32 method instead of the ToDoub1e method.

VALIDATE_TERM, which validates the Endowment Term field, is slightly more interesting
because there are two levels of checking involved. The first check that the user has entered
an integer number, is performed by lines [8-13 1] in the same way as in the previous
examples, using the ToInt 32 method of the System.Convert class withina : Trap
control structure. However, validation of the Endowment Term field depends upon the value
of another field, namely Initial Age. Not only must the user enter an integer, but also its
value must be between 10 and (90-4GE) where AGE is the value in the Initial Age field.
However, if the user has entered an incorrect value in the Initial Age field, this, the second
level of validation cannot be performed.

v VALIDATE_TERM MSG;source;args

[1] a Validates Endowment Term

[2] source args<MSG

[3] :If A/(RFVAGE CustomValidator_AGE).IsValid

(4] source.ErrorMessage<«'Endowment Term must be an
integer between 10 and ',(%90-AGE),' (90-4ge)'

[5] :Else

[6] source.ErrorMessage<'Endowment Term must be an
integer between 10 and (90-A4ge)'

[71] :EndIf

(8] :Trap 0

9] TERM<Convert.ToInt32 args.Value

[10] :Else

[11] args.IsValid<«o0

[12] :Return

[(13] :EndTrap

[1u] :If A/(RFVAGE CustomValidator_ AGE).IsValid

[15] args.IsValid<«(TERM210)ATERM<90-AGE

[16] :EndIf

Chapter 8: Writing ASP Web pages 169

At this stage it is worth reviewing the sequence of events that occurs when a user action in
the browser causes a postback to the server.

a) The page, including all the contents of its fields, is sent back to the ASP.NET
server using an http POST command.

b) The postback causes the creation of a new instance of the page; which is
represented by a new clone of the actuar ial namespace.

c) The creation of a new page instance raises the Page Load event which in turn
invokes the Page Load method associated with the Page class, or an override
method is one is specified. In this case, it calls our Page_Load function in the
newly cloned instance of the actuarial namespace. The Page_ILoad function
typically deals with initialisation, such as opening a component file or establishing
a connection to a data source. In this case, it does nothing on a postback.

d) Because the Calculate button was pressed (see Forcing Validation), each of the
CustomValidator controls on the page raises an OnServerValidate
event, which in turn calls the associated function in the current instance of the
page. These events occur in the order the controls are defined within the page.
Note that built-in validation controls, including any
RequiredFieldvValidator controls, are invoked first, potentially in the
browser prior to the postback.

e) The control that caused the postback raises an appropriate event, which in turn
fires the associated callback function.

f) After all the control events have been raised and processed the Page UnLoad
event is raised and the associated function (if any) is invoked. This function is a
good place to implement termination code, such as closing a component file or
data source.

g) The instance of the page is destroyed. Any global variables in the namespace, that
were defined by the Page_Load function, the validation functions and the callback
function, are lost because the clone of the ac tuar ial namespace disappears.

This means that within the life of the cloned instance of the actuarial namespace, the system
runs our Page_ Load function followed by vALIDATE_INT, followed by
VALIDATE_AGE,VALIDATE_TERM,VALIDATE_DUR etc. and finally by
CALC_FSLTAB_RESULTS. These functions take their input from the values passed in
their arguments (as in the case of the VALIDATE_xxx functions) or from the properties of
any of the controls on the Page. They perform output by modifying these properties, or by
invoking standard methods on the Page.

Notice that, if successful, the vALITDATE_INT function set up a global variable (strictly
speaking, only global within the current instance of the actuarial namespace) called INT
that contains the value in the Interest Rate field. Similarly, VALIDATE_AGE defines a
variable called 4GE. These variables are subsequently available for use by the calculation
function.

170

Microsoft .Net Interface

This technique, of having each validation function define a variable for its associated field,
saves repeating the conversion work in the calculation routine CALC_FSLTAB_RESULTS
that will be called when the validation is complete. It also saves repeating the conversion
work in a validation routine that needs to know the value of a previously validated field.

Returning to the explanation of VALIDATE_TERM, line [14] checks to see that both the
RequiredFieldValidator and CustomValidator controls for the Initial Age
field register that the value in the field is valid, before attempting to perform the second
stage of the validation which depends upon AGE. Note that AGE must exist (and be a
reasonable value) if CustomvValidator AGE.IsValid istrue. Notice too that it is
insufficient just to check the Customvalidator control, because its validation function
will not be invoked (and the control will register that the field is valid) if the field is empty.

Line [3] uses similar logic to set up an appropriate error message, which is assigned to the
ErrorMessage property of the corresponding Customvalidator control, represented
by source.

VALIDATE_DUR, which validates the Initial Duration field, uses similar logic to check that
the value in the Endowment Term field is correct and that TERM, on which it depends, is
therefore defined. In addition, in line [6] it refers to the Checked property of the
RadioButton controls named T4 and T B respectively.

VvV VALIDATE_DUR MSG;source;args;DT

(1] n Validates Initial Duration

[2] source args<MSG

[3] :If 2=GET_RUN_OPTION

(4] DT<1

[5] :Else

[6] DT«+/10 1x(TA TB).Checked

[7] :EndIf

(8]

[9] :If A/(RFVTRM CustomValidator_ TERM).IsValid

[10] source.ErrorMessage<'Initial Duration must be an

integer between 0 and ', (sTERM-DT),'
(TERM-"'",(3DT),"')!

[11] :Else

[12] source.ErrorMessage<'Initial Duration must be an
integer between 0 and (Term-',(%DT),')'

[13] :EndIf

[14] :Trap 0

[15] DUR<«Convert.ToInt32 args.Value

[16] :Else

[17] args.IsValid<o0

(18] :Return

[19] :EndTrap

[20] :If A/(RFVTRM CustomValidator_ TERM).IsValid

[21] args.IsValid<«(0<DUR)ADUR<TERM-DT

Chapter 8: Writing ASP Web pages 17

[22] :EndIf

172

Microsoft .Net Interface

Forcing Validation

Validation controls are automatically invoked when the user activates a Button control, but
not when other postbacks occur. For example, when the user selects a different Mortality
Table (represented by a RadioButtonList control), the page calls the

CHANGE _TABLES function.

<asp:

<asp:
<asp:

<asp:

RadioButtonList i1id=MT runat="server"
RepeatDirection="Vertical"
RepeatRows="3"

tabIndex=1
onSelectedIndexChanged="CHANGE TABLES"
AutoPostBack="true">

ListItem Value="UK Assured Lives">
Selected="True">UK Assured Lives</asp:ListItem>
ListItem Value="UK Immediate Annuitant">
UK Immediate Annuitant</asp:ListItem>
ListItem Value="UK Pension Annuitant">
UK Pension Annuitant</asp:ListItem>

</asp:RadioButtonList>

A RadioButtonList control does not cause validation to occur, so this must be done
explicitly. This is easily achieved by calling the validate method of the Page itself as
shown in CHANGE _TABLES[11] below.

V CHANGE_TABLES ARGS;TableNames;TableName;OPTSMORT;

(1]
(2]
(3]

(4]

(5]
(6]
(7]
(8]
(9]
[10]
[111]
[121]
[13]
[14]
[15]
[16]
[17]

MORT_OPTION;RUN_OPTION
RUN_OPTION<GET_RUN_OPTION
MORT_OPTION<1+MT.SelectedIndex
OPTSMORT<«MORT OPTION->OPTSMORT ASS OPTSMORT_ ANNI

OPTSMORT ANNP
TableNames<«>0PTSMORT a Assured lives/term
assurance tables

TableNames<+ (2=[ONC 0 1v3>0PTSMORT)+TableNames
TableNames<TableNames~""' '
CMTAB.Items.Clear
:For TableName :In TableNames

CMTAB.Items.Add TableName
:EndFor
Page.Validate a Force page validation
:Select RUN_OPTION
:Case 1

CALC_FSLTAB _RESULTS &
:Case 2

CALC_FSL_RESULTS &
:EndSelect

Chapter 8: Writing ASP Web pages 173

Calculating and Displaying Results

The function CALC_FSLTAB_RESULTS, which for brevity is only partially shown below,
is used by the sla_tab.aspx page to calculate and display results.

Vv CALC_FSLTAB_RESULTS ARGS;X;ULT ;MORTOPT ;QTAB;TABLE;
TAB_DURS;RUN_OPTION;MORT_OPTION;UNIX;DOS;
CURRENTDATE ; CURRENTTIME ; OPTSMORT ;TABLES ;MSG;data

[1] :If IsValid o Is page valid ?
(6] MORT_ OPTION<«1+MT.SelectedIndex
[7] OPTSMORT«MORT_OPTION->OPTSMORT_ASS

OPTSMORT ANNI OPTSMORT ANNP
[8]

[9] TABLES<+¥3>0PTSMORT

[10] MORTOPT«(pTABLES)pO

[11] MORTOPT[1+CMTAB.SelectedIndex]«1

[12] TABLE«>MORTOPT/TABLES

[15] TAB_DURS<TA.Checked

[y1] FSLT<((pX)p(3 0)(3 0)(3 0)(11 4)(11 6)(12 Uu4)
(11 6)(8 0))%°'X

[(42] FSLT<FSLT~"" !

[u3] :With data<DataTable.New &

[uy4] cols«Columns.Add ## .FSL_HEADER

[u5] {

(u6] row<«NewRow &

(47] row.ItemArray<«uw

(48] Rows.Add row

[u9] Y y##.FSLT

[50] :EndWith

[51] fsl.DataSource<«DataView.New data

[52] fsl.DataBind

[53] fsl.Visible<«1

[5u] :Else

[55] fsl.Visible<0

[56] :EndIf

v

The results of the calculation are displayed in a DataGrid object named £s1. This is
defined within the s1la tab.aspx page as follows:

<asp:DataGrid id="fsl" runat="server" Width="700"
AllowPaging="false" BorderColor="black" CellPadding="3"
CellSpacing="0" Font-Size="9pt" PageSize="10">

174 Microsoft .Net Interface

<ItemStyle HorizontalAlign="right" Width="100">
</ItemStyle>

<HeaderStyle HorizontalAlign="center"
Font-Size="12pt" Font-Bold="true" BackColor="#17748A"
ForeColor="#FFFFFF"></HeaderStyle>

</asp:DataGrid>

Chapter 8: Writing ASP Web pages 175

CALC_FSLTAB_RESULTS[1] checks to see if the user input is valid. If not, [55] hides
the DataGrid object fs 1 so that no results are displayed in the page. The display of
error messages is handled separately, and automatically, by the validationSummary
control on the page.

CALC_FSLTAB[11 15] obtain the values of the CMTAB (DropDownList) and TA
(RadioButton) controls on the page.

CALC_FSLTAB[43-53] store the calculated data table FSLT inthe DataGrid fs 1.

176 Microsoft .Net Interface

177

CHAPTER 9

Writing Custom Controls for ASP.NET

Introduction

The previous chapter showed how you can build ASP.NET Web Pages by combining APL
code with the Web Controls provided in the .NET Namespace
System.Web.UI.WebControls. These controls are in fact just ordinary .NET classes.
In particular, they are extensible components that can be used to develop more complex
controls that encapsulate additional functionality.

This chapter describes how you can go about building custom server-side controls, for
deployment in ASP.NET Web Pages.

A custom control is simply a .NET class that inherits from the Control class in the .NET
Namespace System.Web.UI, or inherits from a higher class that is itself based upon the
Control class. Like any other .NET class, a custom control is implemented in an
assembly, physically as a DLL file. This chapter explores three different ways to implement
a custom control.

The Control class provides a Render method whose job is to generate the HTML that
defines appearance of the control. The first example, the SimpleCt1 control, overrides
the Render method to display a simple string "Hello World" in the browser.

The TemperatureConverterCtl1 control is an example of a compositional control,
i.e. one that is composed of other standard controls packaged with special functionality.

The TemperatureConverterCt12 control, uses the basic approach of the
SimpleCt1 control, but provides the same functionality as
TemperatureConverterCtll.

These examples, which are based upon a series of articles called Advanced ASP.NET
Server-Side Controls by George Shepherd that appeared in the msdn magazine (October
2000, January 2001 and March 2001 issues), are implemented in a namespace called
DyalogSamples inthe workspace samples\asp.net\Temp\Bin\Temp.dws.
The corresponding .NET Assembly samples\asp.net\Temp\Bin\Temp.d1l1l was
generated from this workspace.

178

Microsoft .Net Interface

The SimpleCtl Control

JCLEAR
clear ws

Starting with a c Iear ws, the first step is to make the DyalogSamples container
namespace, and then change into it.

JNS DyalogSamples
#.DyalogSamples

)CS DyalogSamples
#.DyalogSamples

Next we must define JuSING to include all of the .NET Namespaces that will be needed:

QUSING«,c'System!'
OUSING,«c'System.Collections.Specialized,system.dll'
OQUSING,«c'System.Web,System.Web.d11'
OUSING,«c'System.Web.UI'
OQUSING,«c'System.Web.WebControls'
OUSING,«c'System.Web.HtmlIControls'

Then we can build the first of the three example classes SimplecCt 1, specifying its base
class to be Control (actually, System.Web.UI.Control).

'SimpleCtl' OWC 'NetType' 'Control!

)CS SimpleCtl
#.DyalogSamples.SimpleCt]l

Having changed into the SimpIeCt 1 namespace, we can define a function called Render
that overrides the Render method that SimplecCt 1 has inherited from its base class,
System.Web.UI.Control.

Vv Render output;HTML
[1] HTMIL<«'<h3>Hello World</h3>'
[2] output .WriteLine HTML

v

The Render method defined by the System.Web.UI.Control base classis void
and takes a parameter of type Htm1TextWriter. When the SimpleCtl control is
referenced in a Web Page, ASP.NET creates an instance of it and calls its Render method
because itisa Control and is expected to have one. Moreover, ASP.NET supplies an
object of type Htm1TextWriter as its parameter. You do not need to worry where this
object came from, or what it actually represents. You need only know that an
HtmlTextWriter provides a method called WriteLine that may be used to output a

Chapter 9: Writing Custom Controls for ASP.NET 179

text string to the browser. The mechanics of how this actually happens are handled by the
HtmlTextWriter object itself.

180 Microsoft .Net Interface

In APL terms, the argument to our Render function, out put, will be a namespace
reference, and the function can simply call its WriteLine method with a character vector
argument. This argument can contain any valid HTML string and defines the appearance of
the SimpleCt1 control.

The next step is to define the public interface for the Render function using its .Net
Properties dialog box as shown below. The function is defined to be void (i.e. it does not
return a result) and to take a single parameter of type Htm1TextWriter. Note that to
successfully override the inherited method, the Re nder function must have exactly this
signature.

= #.0ualogSamples.SimpleCtl.Render - Pr 2=l

F"rn:npertiesl Yalue I Moritor .Met Properties |

Param Mame | Type I b adifier I I:Ipticunall
Result Woid | M

oLtpLt Hernl T estiafriter j 3

Kl

Help D |

i pethod wieb bMethod ¢ Prop Get © Prop Set I

[~ Static [Wirtwal [Constuctar
[Pratected

| k. I Cancel

Chapter 9: Writing Custom Controls for ASP.NET 181

Finally, we can save the workspace and generate the .NET Assembly. This must be located
in the Bin subdirectory of samples\asp.net\Temp which itself is mapped to the 1S
Virtual Directory 1ocalhost/apl.net/Temp.

)SAVE
C:\Dyalogi10\samples\ASP.NET\TEMP\BIN\TEMP saved...
Create bound file
Save in: |lf}bin [V] € 5 i e
Y %] TEMP.I
iy Recent
Docurnents
?"_‘.'
[
Desktop

File hame: |TEMF' [V] [Save]

Save az ype: |Microsoﬂ.Netf-‘«ssembl}l[".dll] [v] [Cancel]

b M etk

When we select Export... from the File menu, the information displayed in the Status
window confirms that the SimpleCt1 class has been successfully emitted and saved.

182 Microsoft .Net Interface

(Bstates ~-lol]

File Options

Declared Assembly TEHP
Declared Module TEMP in file C:~Dualog.Met-szamples-asp.net-TempsbinsTEMP.dL1
Declared Tupe Dualogsamples.SimpleCtl
Campiling Method "Render”
Tupe "HtmlTextHriter” resolwved to Sustem.Heb.UI .HtmlTextHriter
Tupe "Uoid" resolved to Sustem.Uoid
Compiled Method "Render”
Emitted Tupe Dualogsamples.SimpleCtl
Emitted Assembluy to file "C:~Dualog.Met~sampleswaszp.net~Temp-bin~TEHP.d11"

Cloze |

Using SimpleCtl

Our simpleCtl control may now be included in any .NET Web Page from which
Temp.dl1 isaccessible. The file samples\asp.net\Temp\Simple.aspx is
simply an example. The fact that this control is written in Dyalog APL is immaterial.

<%@ Register TagPrefix="Dyalog"
Namespace="DyalogSamples" Assembly="TEMP" %>

<html>
<body>
<Dyalog:SimpleCtl runat=server/>
</body>
</html>

The first line of the script specifies that any controls referenced later in the script that are
prefixed by Dyalog:, refer to custom controls in the .NET Namespace called
DyalogSamples. In this case, DyalogSamples is located by searching the Assembly
TEMP.dIl in the Bin subdirectory.

a http:/ /localhost/ apl.net; Temp/Simple.aspx - MicrosofE I - |EI|5|

J File Edit View Faworites Tools Help ﬁ

J 4= Back ~ = - @ i | @Search [Ze] Favorites @Histury ||%v =h =
J.ﬁ.c_ldress I@ http: fflocalhostfapl. net Temp)Simple., aspsx j lf'bG':'

Hello World

|@ Dore l_l_ 5E Local intranet /ﬁ

Chapter 9: Writing Custom Controls for ASP.NET 183

The TemperatureConverterCtl1 Control

The TemperatureConverterCtl1 control is an example of a compositional control,
i.e. a server-side custom control that is composed of other standard controls.

In this example, The TemperatureConverterCtl11 control gathers together two
textboxes and two push buttons into a single component as illustrated below. Type a number
into the Centigrade box, click the Centigrade To Fahrenheit button, and the control
converts accordingly. If you click the Fahrenheit To Centigrade button, the reverse
conversion is performed.

/3 http:/ /localhost fapl.net/temp/templ.aspx - Microsof o [m] 4|

J File Edit Wiew Favarites Tools Help ﬁ

J s Back ~ = - @ ﬁ | @Search @Favnrites @Histury ||%v 5 @' »
Jﬁ.c_ldress IE httpefflocalbostfapl net ftempftempl asp j E'{)GU

B

Temperature Control

Fahrenheit: |55

Centigrade: |30

| Fahrenheit To Centigrade I Centigrade To Fahrenheit |

|@ Cone I_ I_ Local intranet 4

Starting with the TEMP workspace, the first step is to change into the DyalogSamples
container namespace.

)LOAD SAMPLES\ASP.NET\TEMP\BIN\TEMP
C:\Dyalogi0\samples\ASP.NET\TEMP\BIN\TEMP saved...

)CS DyalogSamples
#.DyalogSamples

184

Microsoft .Net Interface

The TemperatureConverterCtl1 control is going to contain other standard controls
as child controls. A control that acts as a container should implement an interface called
INamingContainer. This interface does not in fact require any methods; it merely acts
as a marker.

When we create a Ne t Ty pe namespace to represent the control, we need to specify that it
provides this interface.

'TemperatureConverterCtI1'OWC'NetType' 'Control’

('"Interfaces' 'System.Web.UI.INamingContainer!')

)CS TemperatureConverterCtli1
#.DyalogSamples.TemperatureConverterCtlii1

Child Controls

Whenever ASP.NET initialises a Control, it callsits CreateChildControls method
(the default CreateChildControls method does nothing). So to make the appropriate
child controls, we simply define a function called CreateCchildControls with the
appropriate public interface (no arguments and no result) as shown below.

Vv CreateChildControls

[1]

[2] Controls.Add LiteralControl.New'<h3>Fahrenheit: '
[3] m_FahrenheitTextBox<+TextBox.New 8

[u] m_FahrenheitTextBox.Text<«,'0"

[5] Controls.Add m_FahrenheitTextBox

[6] Controls.Add LiteralControl.New'</h3>"

(7]

[8] Controls.Add LiteralControl.New'<h3>Centigrade: '
9] m_CentigradeTextBox<«TextBox.New &

[10] m_CentigradeTextBox.Text<,'0"'

[11] Controls.Add m_CentigradeTextBox

[12] Controls.Add LiteralControl.New'</h3>'
[13]

[1u] F2CButton<Button.New &

[15] F2CButton.Text<«'Fahrenheit To Centigrade'
[16] F2CButton.onClick<[OR'F2CConvertBtn Click'
[17] Controls.Add F2CButton

(18]

[19] C2FButton<Button.New 8

[20] C2FButton.Text<'Centigrade To Fahrenheit'
[21] C2FButton.onClick<«<[OR'C2FConvertBtn_Click'
[22] Controls.Add C2FButton

Chapter 9: Writing Custom Controls for ASP.NET 185

Line[2] creates an instance of a LiteralControl (a label) containing the text
"Fahrenheit” with an HTML tag "<H3>". Controls is a property of the Control class
(from which TemperatureConverterCtl1 inherits) that returns a
ControlCollection object This has an Add method whose job is to add the specified
control to the list of child controls managed by the object.

Lines[3-5] create a TextBox child control containing the text "0", and Line[5] adds it to
the child control list.

Line[6] adds a second LiteralControl to terminate the "<H3>" tag.
Lines [8-12] do the same for Centigrade.

Lines[14-15] create a But ton control labelled "Fahrenheit To Centigrade™. Line[16]
associates the callback function F2CConvertBtn_C1ick with the button's onClick
event. Note that it is necessary to assign the JoR of the function rather than its name.
Line[17] adds the button to the list of child controls.

Lines[19-22] create a Centigrade button in the same way.

This function is run every time the page is loaded; however in a postback situation, other
code steps in to modify the values in the textboxes, as we shall see.

The public interface for the CreateChiIdControls function is defined using the .NET
Properties dialog box and is shown below.

186 Microsoft .Net Interface

2 #.Dualogsamples. TemperatureConverterctl ed |
Properties I Walle I b aritar .
Param Mame | Type I b adifier I Optional I
Resut | void | |
Help D |
i pethod wieb bMethod ¢ Prop Get © Prop Set I
[v Public [~ Static [Wirtwal [Constuctar
[Pratected
| [k I Cancel

Chapter 9: Writing Custom Controls for ASP.NET 187

Fahrenheit and Centigrade Values

The TemperatureConverterCtl1 maintains two public properties named
CentigradeValue and FahrenheitValue, which may be accessed by a client
application. These properties are not exposed directly as variables, but are obtained and set
via property get (or accessor) and property set (or mutator) functions. (This is
recommended practice for C# , so the example shows how it is done in APL.) In this case,
the values are simply stored in or obtained directly from the corresponding textboxes set up

by createchildControls.

V F<GetFahrenheitValue
(1] F<em FahrenheitTextBox.Text

2 #.0ualogSamples. TemperatureConuvertert 21xl

Param Name | Tupe I I adifier I Elptiu:unall

Fiezult | Double j ;

F'ru:upertiesl Walue I kd anitar

Help | ID |

" Method " ‘web Method € Prop Get Prop Set IFEthﬂhEWEME

v Public [Static [Wirtual [Constructor
[Protected

k. I Cancel

188 Microsoft .Net Interface

Notice that the Get FahrenheitValue function uses ¢ to convert the text in the textbox
to a numeric value. Clearly something more robust would be called for in a real application

The corresponding Set function is:

vV SetFahrenheitValue F
[1] m_FahrenheitTextBox.Text<«3sF

& #.0ualogsamples. TemperatureConverterCt x|

P'ru:upertiesl Walue I b amitor -

Param Name | Tupe I M odifier I Dptiu:unall

Rresult Woid =] =]

Value Double j j r
Help | D]

" Method " 'web Method Prop Get ' Prop Set IFﬂthﬂhEiWaME

v Public: [Static [Wirtual [Constructar
[Protected

| k. I Cancel

Similar functions to handle the Centigrade property are provided but are not shown
here.

Chapter 9: Writing Custom Controls for ASP.NET 189

Responding to Button presses

We have seen how APL callback functions have been attached to the onC1ick events in
the two buttons. The C2FconvertBtn_cC1ick callback function simply obtains the
CentigradeValue property using GetCent igradeVa lue, converts it to Fahrenheit
using c2F, and then sets the FahrenheitValue property using
SetFahrenheitValue

vV C2FConvertBtn_Click args

[1] SetFahrenheitValue C2F GetCentigradeValue
v
vV f<C2F c

(1] f«32+cx1.8
v

V F2CConvertBtn_Click args

(1] SetCentigradeValue F2C GetFahrenheitValue
v
V c«F2C f

(1] c+(f-32)+1.8
v

These functions are all internal functions that are private to the control, and it is therefore
not necessary to define public interfaces for them.

Using the Control on the Page

The text of the script file samples\Temp\Templ .aspx is shown below. There is really
no difference between this example and the simple.aspx described earlier.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature
Control</h3>

<form runat=server>
<Dyalog:TemperatureConverterCtll id=TempCvtCtll
runat=server/>

</form>

</center>

190 Microsoft .Net Interface

</body>
</html>

Chapter 9: Writing Custom Controls for ASP.NET 191

The HTML generated by the control at run-time is shown below. Notice that in place of the
server-side control declaration in temp1l . aspx, there are two edit controls with numerical
values in them, and two push buttons to submit data entered on the form to the server.

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature
Control</h3>

<form name="ctrll" method="post" action="templ.aspx"
id="ctrll">

<input type="hidden" name="_ VIEWSTATE"
value="YTB6MTc3MzAxXNzYxXNF9fX3g=03£f01d88" />

<h3>Fahrenheit: <input name="TempCvtCtll:ctrll" type="text"
value="32" /></h3><h3>Centigrade: <input
name="TempCvtCtll:ctrld" type="text" value="0" /></h3><input
type="submit" name="TempCvtCtll:ctrl6" value="Fahrenheit To
Centigrade" /><input type="submit" name="TempCvtCtll:ctrl7"
value="Centigrade To Fahrenheit" />

</form>

</center>
</body>
</html>

192 Microsoft .Net Interface

The TemperatureConverterCtl2 Control

The previous example showed how to compose an ASP.NET custom control from other
standard controls. This example shows how you can instead generate standard form
elements on the browser by rendering the HTML for them directly.

Starting with the TEMP workspace, the first step is to change into the DyalogSamples
container namespace.

)LOAD SAMPLES\ASP.NET\TEMP\BIN\TEMP
C:\Dyalog10\samples\ASP.NET\TEMP\BIN\TEMP saved...

)CS DyalogSamples
#.DyalogSamples

In the composite temperature control TemperatureConverterCtl11, discussed
previously, all the data transfers between the browser and the server, relating to the standard
child controls that it contains, are handled automatically by the controls themselves.
Rendered controls require a bit more programming because it is up to the control developer
to do the data transfer. The data transfer is managed through two interfaces, namely
IPostBackDataHandler and IPostBackEventHandler. We will see how these
interfaces are used later.

When we create a Net Ty pe namespace to represent the control, we need to specify that it
provides these interfaces.

'"TemperatureConverterCtl12'OWC'NetType' 'Control!
('Interfaces' 'System.Web.UI.IPostBackDataHandler,
System.Web.UI.IPostBackEventHandler"')

)CS TemperatureConverterCtl12
#.DyalogSamples.TemperatureConverterCtl2

Fahrenheit and Centigrade Values

Like the previous TemperatureConverterCtl12 control, the
TemperatureConverterCt12 maintains two public properties named
CentigradeValue and FahrenheitValue using property get and property set
functions.

This time, the control manages the current temperature values in two internal variables
named _CentigradeValue and _FahrenheitValue, which we must initialise.

_CentigradeValue<0
_FahrenheitValue<«0

Chapter 9: Writing Custom Controls for ASP.NET 193

The GetCent igradeValue function simply returns the current value of
_CentigradeValue. Its NET Properties are defined as shown so that it is exported as a
property get function for the Centigradevalue property, and returns a Double.

vV C<«GetCentigradeValue
[1] C<«_CentigradeValue

= #.0yalogSamples. TemperatureConver terCE 21 x]

Param Mame | Type I M odifier I I:Iptil:unall

Reszult | Double j ;

Help [|

" Method © webMethod % Prop Get & Prop Set IEEﬂtiElel'IIER"EIIuE

I Public [Static [wirtual [Constructar

[~ Protected

k. I Cancel

194 Microsoft .Net Interface

The SetCent igradeValue function simply resets the value of _Cent igradevalue
to that of its argument. Its .NET Properties are defined as shown so that it is exported as a
property set function for the CentigradeVvalue property, and takes a Double.

vV SetCentigradeValue C
[1] _CentigradeValue<«C

= #.0ualogSamples. TemperatureConvertert 2=

F"rn:npertiesl Yalue I Momitor -MNet Fraperties |

Param Mame | Type I b adifier I Optional I

Result Woid | |

Yalue Double j j r
Help D |

" Method web Method © Prop Get % Prop Set IEentigrade"-.-’aIue

[v Public [~ Etatic [Wirtual [Constructar

[Protected

| aF. I Cancel

The property get and property set functions for the FahrenheitValue property are
similarly defined. The .NET Properties for these functions are similar to those for the
CentigradeValue functions and are not shown.

Chapter 9: Writing Custom Controls for ASP.NET 195

(1]

(1]

F«GetFahrenheitValue
F« FahrenheitValue

SetFahrenheitValue F
_FahrenheitValue<F

Rendering the Control

Like the simpleCtl example described earlier in this Chapter, the
TemperatureConverterCtl2 control has a Render function that generates the
HTML to represent its appearance, and in this case its behaviour too.

(1]
[2]
(3]
(4]
(5]
(6]
(7]
[8]
(9]
[10]
[11]
[12]
[13]
[1y4]
[15]
[16]

[17]
[18]

[19]
[20]
[21]
[22]

[23]
[24]

[25]
[26]

V Render output;C;F;BF;CF

F<'<h3>Fahrenheit <input name='
F,«UniqueID

F,«' Id=FahrenheitValue type=text value='
F,«% _FahrenheitValue

F,«'></h3>"

output.Write F

C«'<h3>Centigrade <input name='

C,«UniquelD

C,«' Iid=CentigradeValueKey type=text value='
C,«%_CentigradeValue

C,«<'></h3>"

output.Write C

BF<«'<iInput type=button value=FahrenheitToCentigrade
1

BF,«' onClick="jscript:'

BF ,«Page.GetPostBackEventReference
this'FahrenheitToCentigrade'

BF ,«'">1

output.Write BF

CF<'<input type=button value=CentigradeToFahrenheit
1

CF,«' onClick="jscript:"

CF,«Page.GetPostBackEventReference
this'CentigradeToFahrenheit'

CF,«'">1

output.Write CF

196 Microsoft .Net Interface

(27]
[28] output.WriteLine '' '
' '
'

Chapter 9: Writing Custom Controls for ASP.NET

197

= #.0ualogSamples. TemperatureConvertert ol |

F'rn:npertiesl W alue I kd anitar

Param Mame | Type I M odifier I I:Iptil:unall

Result | void | hd
oLtput Hirnl T et riter j j I
Help b I

i pethod © webMethod © Prop Get ¢ Prop Set I

I Public [Static [wirtual [Constructar
[~ Protected

k. I Cancel

As we saw in the SimpleCtl example, the Render method will be called by ASP.NET

with a parameter that represents an Htm1 TextWriter object. This is represented by the

APL local name out put.

Lines[2-6] and lines [9-13] generate HTML that defines two text boxes in which the user
may enter the Fahrenheit and centigrade values respectively. Lines[7 14] use the Write

method of the Htm1TextWriter object to output the HTML.

Lines[3 10] obtain the fully qualified identifier for this particular instance of the
TemperatureConverterCtl12 control from its UniqueID property. This is a

property, which it inherits from Contro1l and is therefore also a property of the current

(APL) namespace

198 Microsoft .Net Interface

Lines[16-20] and Lines[22-26] generate and output the HTML to represent the two buttons
that convert from Fahrenheit to Centigrade and from Centigrade to Fahrenheit respectively.

Lines[18 24] generate HTML that wires the buttons up to JavaScript handlers to be
executed by the browser. The JavaScript simply causes the browser to execute a postback,
i.e. send the page contents back to the server. GetPostBackEventReference isa
(static) method provided by the System.Web.UI. Page class that generates a reference
to a client-side script function. In this case it is called with two parameters, an object that
represents the current instance of the TemperatureConverterCt12 control, and a
string that will be passed to the server to indicate the cause of the postback (i.e. which
button was pressed). The first parameter is a namespace reference to the current space
which is generated by the function this.

Chapter 9: Writing Custom Controls for ASP.NET 199

The client-side script is itself generated, and inserted into the HTML stream, by calling the
RegisterPostBackScript method. This is done by the onPreRender function,
which overrides the OnPreRender method of the Control class upon which
TemperatureConverterCtl2 is based. This method is called by ASP.NET before it
calls Render.

V OnPreRender
[1] Page.RegisterPostBackScript

& #t.Dualogzamples. TemperatureConverterct 7] x|

Param Name | Tupe I I adifier I Elptiu:unall

Resut | Wvoid | =

Help | 1D |

{* Method " web hethod ¢ PropGet ¢ Prop Set I

¥ Public [Static [Wirtual [Constructor
[Protected

k. I Cancel

To help to understand this process fully, it is instructive to examine the HTML that is
generated by these functions. We will do this a bit later in the Chapter.

200

Microsoft .Net Interface

Loading the Posted Data

Once the server-side control has rendered the HTML for the browser, the user is free to type
numbers into the text boxes and to press the buttons.

When the user presses a button, the browser runs the client-side JavaScript code (that was
inserted by the onPreRender function) that in turn generates a postback to the server.

When we created TemperatureConverterCt12 with Owc, we specified that it
supported the TPostBackDataHandler interface. This interface must be implemented
by controls that want to receive postback data (i.e., the contents of Form fields that the user
may have entered or changed) IpostBackDataHandler has two methods
LoadPostData and RaisePostDataChangedEvent. LoadPostData is
automatically invoked when a postback occurs, and the postback data is supplied as a
parameter.

So when the postback occurs, the server reloads the original page and, because this is a
postback situation and our control has advertised the fact that it implements
IPostBackDataHandler, ASP.NET invokes its LoadPostBack method. This
method is called with two parameters. The first is a key and the second is a collection of
name/value pairs. This contains the names of all the Form fields on the page (and there may
be others not directly associated with our custom control) and the values they had when the
user pressed the button. The key provides the means to extract the relevant part of this
collection. The LoadPostDat a function is shown below.

Chapter 9: Writing Custom Controls for ASP.NET 201

V R«<LoadPostData args;postDataKey;
valuesj;controlValues;new
(1] postDataKey values<args
[2] controlValues<values.Item postDataKey
(3] new<ParseControlValues controlValues
(u] R<v/new=_FahrenheitValue _CentigradeValue
[5] _FahrenheitValue _CentigradeValue<new

Convertersc il EI

Param Mame | Type I Fodifier IDpHDndI
Result Boolean j
poztDratakey | Sting j
walues M amev alueCollect j

KNEN KN

=
-

Help [|

i pethod © webMethod © Prop Get ¢ Prop Set I

I Public [Static [wirtual [Constructar
[~ Protected

k. I Cance

Line[7] obtains the two parameters from the argument and Line[8] uses the key to extract
the appropriate data from the collection. Controlvalues isa comma-delimited string
containing name/value pairs. The function ParseControlValues simply extracts the
values from this string, i.e. the contents of the Fahrenheit and Centigrade text boxes.

202

Microsoft .Net Interface

Postback Events

The result of LoadPostData is Boolean and indicates whether or not any of the values in
a control have changed. If the result is True (1), ASP.NET will next call the
RaisePostDataChanged method. This method is called with no parameters and merely
signals that something has changed. The control knows what has changed by comparing the
old with the new, as in LoadPostDatal[10].

Finally, the page framework calls the RaisePostBackEvent method, passing it a string
that identifies the page element that caused the post back.

The objective of these calls is to provide the control with the information it requires to
synchronise its internal state with its appearance in the browser.

In this case, we are not interested in which of the two text box values the user has altered;
what matters is which of the two buttons FarenheitToCentigrade or CentigradeToFarenheit
was pressed. Therefore, in this case, the control uses RaisePostBackEvent rather than
RaisePostDataChanged (or indeed, LoadPostData itself, which is another option).
The reason is that Rai sePostBackEvent receives the name of the button as its
argument.

Chapter 9: Writing Custom Controls for ASP.NET 203

So in our case, the RaisePostDataChanged function does nothing. Nevertheless, it is
essential that the function is provided and essential that it supports the correct public
interface, namely that it takes no arguments are returns no result (Void).

V RaisePostDataChangedEvent
[1] a Do nothing
v

= #.0yalogSamples. TemperatureConver terCE 21 x]

F'rn:npertiesl Walue I b amitar

Param Mame | Type I M odifier I I:Iptil:unall

Resut | void | |

Help [|

i Method © webMethod © PropGet © Prop Set I

v Public [Static [wirtual [Constructar

[~ Brotected

(] 4 I Cancel

204

Microsoft .Net Interface

The RaisePostBackEvent function simply switches on its argument, which is the name

of the button that the user pressed, and recalculates _Cent igradevalue or
_FahrenheitValue accordingly.

V RaisePostBackEvent eventArgument

:Select eventArgument

:Case 'FahrenheitToCentigrade'
_CentigradeValue<F2C _FahrenheitValue

:Case 'CentigradeToFahrenheit'
_FahrenheitValue<«C2F _CentigradeValue

:EndSelect

(1]
(2]
(3]
(4]
(5]
(6]

= #.0ualogSamples.TemperatureConverterct

F'ru:upertiesl Walue I I amitor

il

Param Mame | Type I M adifier IDpHDnﬁI

R esult

*oid

Le

-

aventing String

Ll

= T

Help

i hethod

[v Public

1D|

i~ wieh Method " Prop Get © Prop Set I

[~ Static [Wirtwal [Constuctar
[Pratected

o]

Cahce

Chapter 9: Writing Custom Controls for ASP.NET 205

Finally, the page framework calls the 0nPreRender and Render functions again, which
generate new HTML for the browser.

Using the Control on a Page

Once all the functions, and their public interfaces for the
TemperatureConverterCtl2 have been defined, the workspace is saved and

TEMP. DLL is remade using Export from the Session File menu. For brevity, this process is
not shown pictorially here.

So long as it has access to this DLL, our custom control may be accessed from any
ASP.NET Web Page, and a simple example is shown below.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"
Assembly="TEMP" %>

<html>

<body bgcolor="yellow">

<center>

<h3>
Temperature Control</h3>

<h4>
Server-Side Noncompositional control</h4>

<form runat=server>
<Dyalog:TemperatureConverterCtl2 id=TempCvtCtl2
runat=server/>

</form>

</center>
</body>
</html>

206

Microsoft .Net Interface

The HTML that is generated by the control is illustrated below. Notice the presence of a
JavaScript function named doPostBack. This is generated by the
RegisterPostBackScript method called from the 0nPreRender function. The
code that wires the buttons to this function was generated by the
GetPostBackEventReference method called from the Render function.

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature
Control</h3>

<h4>Server-Side
Noncompositional control</h4>

<form name="ctrll" method="post" action="temp2.aspx"
id="ctrll">

<input type="hidden" name="_ EVENTTARGET" value="" />
<input type="hidden" name="_EVENTARGUMENT" value="" />
<input type="hidden" name="__ VIEWSTATE"

value="YTBOMTc3MzAxNzYxM19fX3g=9cfcfabc" />

<script language="javascript">

<!--

function _ doPostBack(eventTarget, eventArgument) {
var theform = document.ctrll
theform. EVENTTARGET.value = eventTarget
theform. EVENTARGUMENT.value = eventArgument
theform.submit ()

}

/) ==>

</script>

<h3>Fahrenheit <input name=TempCvtCtl2 id=FahrenheitValue
type=text value=0></h3><h3>Centigrade <input name=TempCvtCtl2
id=CentigradeValueKey type=text value=0></h3><input
type=button value=FahrenheitToCentigrade

onClick="jscript: doPostBack('TempCvtCtl2', 'FahrenheitToCent
igrade') "><input type=button value=CentigradeToFahrenheit
onClick="jscript: doPostBack('TempCvtCtl2', 'CentigradeToFahr
enheit') ">

</form>
</center>

</body>
</html>

Chapter 9: Writing Custom Controls for ASP.NET

207

a http:/ /localhost/apl.net/Temp/temp2.aspx - Microsof

J File Edit Wiew Favorites Tools Help

=10l x|

J Back - = - (D il | ‘Qsearch [SFavorites & AHistory ||%.r 5 »
J.ﬁ.u:_ldress @ http:ilocalhostapl.net) Temp\tempz . aspx j fv)GD
Temperature Control
Server-Side Noncompositional control
Fahrenheit |0
Centigrade |0
FahrenheitToCeantigrade | Centigrade TaFahrenheit | =
[
|@ Done I_ I_ (= Local intranet i

209

CHAPTER 10

APLScript

Introduction

APLScript isa Dyalog APL scripting language. It was originally designed specifically to
program ASP.NET Web Pages and Web Services, but it has been extended to be of more
general use outside the Microsoft .NET environment.

APLScript is not workspace oriented (although you can call workspaces from it) but is
simply a character file containing function bodies and expressions.

APLScript files may be viewed and edited using any character-based editor such as
Notepad. APLScript files may also be edited using Microsoft Word, although they
must be saved as text files without any Word formatting.

APLScript files employ Unicode encoding so you need a Unicode font with APL
symbols to view them. The Microsoft font Arial Unicode MS is included in Dyalog APL.
The SimPL font designed by Phil Chastney may be downloaded from the British APL
Association web site http://www.vector.org.uk.

In order to type Dyalog APL symbols into an APLScript file, you also need the Dyalog
APL Input Method Editor (IME), which is included with Dyalog APL and automatically
added to your working set of IMEs during installation.

The Dyalog APL IME may be configured using Control panel/Keyboard. In particular, you
may change the associated . DIN file from the dialog box obtained by pressing IME
Settings in the Input Locales tab. Under Windows XP, this is done using Control
panel/Regional and Language Options.

There are basically three types of APLScript files that may be identified by three different
file extensions. APLScript files with the extension . aspx and . asmx specify .NET classes
that represent ASP.NET Web Pages and Web Services respectively. APLScript files with
the extension . apl may specify .NET classes or may simply represent an APL application
in a script format as opposed to a workspace format. Such applications do not necessarily
require the Microsoft .NET Framework.

210 Microsoft .Net Interface

The APLScript Compiler, aplc.exe

APLScript files are compiled into executable code by the APLScript compiler aplc.exe.
This program is called automatically by ASP.NET when a client application requests a
Web Page (.aspx) or Web Service (.asmx) and in these circumstances always generates the
corresponding .NET class. However, aplc.exe may also be used to:

Compile an APLScript into a workspace (. dws) that you may subsequently run
using DYALOG.EXE or DYALOGRT . EXE in the traditional manner.

Compile an APLScript into a .NET class (. d11) which may subsequently be used
by any other .NET compatible host language such as C# or Visual Basic.

Compile an APLScript into a native Windows executable program (. exe), which
may be run as a stand-alone executable. This program may be distributed, along
with the Dyalog APL runtime DLL, as a packaged application, and does not
require any of the additional support files and registry entries that are typically
needed by the Dyalog APL run-time DYALOGRT . EXE. Note too that the Dyalog
APL dynamic link lbrary does not use MAXWS but instead allocates workspace
dynamically as required. See User Guide for further details.

e Compile a Dyalog APL Workspace (.dws) into a native Windows executable
program, with the same characteristics and advantages described above.

The aplc.exe program is designed to be run from a command prompt. If you type
aplc /2 (toquery its usage) the following output is displayed:

aplc.exe command line options:

/7

/r:file
/o[ut]:file
/res:file

/q

/v

/s

/runtime
/1x:expression
/t:library

/t:nativeexe
/t:workspace
/nomessages

/console

Usage

Add reference to assembly

Output file name

Add resource to output file

Operate quietly

Verbose

Treat warnings as errors

Build a non-debuggable binary

Specify entry point (Latent Expression)
Build .Net library (.dll)

Build native executable (.exe).
Build dyalog workspace (.dws)
Process does not use windows messages. Used
when creating a process to run under IIS
Creates a console application

Default

Chapter 10: APLScript 211

Creating an APLScript File

Conceptually, the simplest way to create an APLScript file is with Notepad, although you
may use many other tools including Microsoft Visual Studio as described in the next

Chapter.
1.
2.

Start Notepad

Choose Format/Font from the Menu Bar and select an appropriate Unicode font
that contains APL symbols, such as SimPL or Arial Unicode MS.

Select the APL keyboard (IME) by clicking on your keyboard selector in the
System Tray. When you do so, the keyboard icon will change to the APL IME
icon, and a small floating toolbar containing an APL button will appear on your
display. Note that this keyboard setting (and button) is associated only with the
current instance of Notepad. If you start another instance of Notepad, or another
editor, you will have to select the APL keyboard for it separately and there will be
two floating toolbars on your display.

Initially the APL button is depressed to indicate that keystrokes are being
interpreted by the Dyalog APL IME. This utilises the input table (.DIN file)
defined by the registry key Software\Dyadic\IME\Translate Table. Normally this
will be the same as the one specified for your Dyalog APL Session.

Now type in your APL code. If you use a Unified keyboard, you will discover that
Ctrl+ keystrokes generate APL symbols For example, Ctrl+n generates . If you
use an APL/ASCII keyboard, you will discover that Ctrl+n and Ctrl+o switch
between APL and ASCII. In both cases, the keystrokes are intercepted immediately
by the Dyalog APL IME and do not perform the standard Notepad operations
(ctrl+n would normally open a new file). Note that you can toggle the APL button
temporarily disable and enable the APL IME.

Choose File/Save. When the Save As dialog appears, ensure that Encoding is set to
Unicode and Save as type: is set to All Files. Enter the name of the file, adding the
extension .asmx or .aspx, and then click Save. Note that you have to save the .asmx
file somewhere in an 11S Virtual Directory structure.

212

Microsoft .Net Interface

Transferring code from the Dyalog APL Session

You may find it easier to write APL code using the Dyalog APL function editor that is
provided by the Dyalog APL Session. Or you may already have code in a workspace that
you want to copy into an APLScript file.

If so, you can transfer code from the Session into your APL.Script editor (e.g. Notepad)
using the clipboard. Notice that because APLScript requires Unicode encoding (for APL
symbols), you must ensure that character data is written to the clipboard in Unicode.

This is controlled by a parameter called UnicodeToClipboard that specifies whether or not
data is transferred to and from the Windows clipboard as Unicode. This parameter may be
changed using the Trace/Edit page of the Configure dialog box.

If set (the default), APL text pasted to the clipboard from the Session is written as Unicode
and APL requests Unicode data back from the clipboard when it is required. This makes it
easy to transfer APL code between the Session and an APLScript editor, which is using the
Avrial Unicode MS font.

Unfortunately, when Dyalog APL requests Unicode data from the clipboard that was
written as ASCII text by another application (including Dyalog APL Version 8 or 9),
Windows converts the plain ASCII text to Unicode and gets it wrong. To make it possible
to transfer APL expressions to and from previous versions of Dyalog APL, or to an editor
using the (non-Unicode) Dyalog Std TT or Dyalog Alt TT font, you must set this parameter
to 0.

Unless you explicitly want to have line numbers in your APLScript, the simplest way to
paste APL code from the Session into an APLScript text editor is as follows:

1. open the function in the function editor
2. select all the lines of code, or just the lines you want to copy
3. select Edit/Copy or press Ctrl+Ins
4. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.
5. Insert del (v) symbols at the beginning and end of the function.
If you want to preserve line numbers, you may use the following technique:

1. Inthe Session window, type a del (v) symbol followed by the name of the
function, followed by another del (v) and then press Enter. This causes the
function to be displayed, with line numbers, in the Session window.

2. Select the function lines, including the surrounding dels (v)and choose Edit/Copy
or press Ctrl+Insert.

3. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.

Chapter 10: APLScript 213

General principles of APLScript

The layout of an APLScript file differs according to whether the script defines a Web
Page, a Web Service, a .NET class, or an APL application that may have nothing to do with
the .NET Framework. However, within the APLScript, the code layout rules are basically
the same.

An APLScript file contains a sequence of function bodies and executable statements that
assign values to variables. In addition, the file typically contains statements that are
directives to the APLScript compiler aplc.exe. If the script is a Web Page or Web
Service, it may also contain directives to ASP.NET. The former all start with a colon
symbol (:) in the manner of control structures. For example, the : Name s pace statement
tells the APLScript compiler to create, and change into, a new namespace. The

: EndNames pace statement terminates the definition of the contents of a namespace and
changes back from whence it came.

Assignment statements are used to set up system variables, such as 0¥z, 010, JUSING and
arbitrary APL variables. For example:

OML<2
0I0<«0
DUSINGU«C'System.Data’

A<88
B«'Hello World'

ACcy 'MYWS'!

These statements are extracted from the APLScript and executed by the compiler in the
order that they appear. It is important to recognise that they are executed at compile time,
and not at run-time, and may therefore only be used for initialisation.

Notice that it is acceptable to execute OCY to bring in functions and variables from a
workspace that are to be incorporated into the code. This is especially useful to import a set
of utilities. However, note that it is not possible to export these functions as methods of
.NET classes unless they have already been saved with .NET properties. Otherwise, all
exported functions must be defined explicitly in the APLScript.

The APLScript compiler will in fact execute any valid APL expression that you include.
However, the results may not be useful and may indeed simply terminate the compiler. For
example, it is not sensible to execute statements such as L0 4D, or JOFF.

Function bodies are defined between opening and closing del (v) symbols. These are fixed
by the APLScript compiler using OF X. Line numbers and white space formatting are
ignored.

214 Microsoft .Net Interface

Creating Programs (.exe) with APLScript

The following examples, which illustrate how you can create an executable program
(. exe) direct from an APLScript file, may be found in the directory
samples\aplscript.

A simple GUI example

The following APLScript illustrates the simplest possible GUI application that displays a
message box containing the string "Hello World".

OLX<'RUN'

VRUN; M

"M'OWC'MsgBox' 'A GUI exe' 'Hello World'
DDQ M

v

This example, which is saved in the file eg1 . ap1, is compiled to a Windows executable
(. exe) using aplc and run from the same command window as shown below. Notice that it
is essential to define a 0L X either in the APLScript itself, or as a parameter to the aplc
command.

APLScript Examples ﬂ ﬂ

Microsoft Windows HP [Version 5.1.26001 |«
(C) Copyright 1985-2001 Microsoft Corp.

c:\dvalog.net\samples\aplscriptraplc egl.apl
Dyalog APLScript compiler. Yersion 0.0
Copvright Dvadic Svstems Ltd 2001
c:\dvalog.net\samplesh\aplscriptregl

c:\dvalog.net\samplesh\aplscript>a

4 GUL exe ST

Hella Warld

Chapter 10: APLScript 215

You can associate the . exe with a desktop icon, and it will run stand-alone, without a
(DOS) command window. Furthermore, any default APL output that would normally be
displayed in the session window will simply be ignored.

A simple console example

The following APLScript illustrates the simplest possible application that displays the text
"Hello World".

This example, which is saved in the file eg2ap1, is compiled to a Windows executable
(.exe) and run from a command window as shown below. Notice that the /console flag
is used to tell the APLScript compiler to create a console application that runs from a
command prompt. In this case, default APL output that would normally be displayed in the
session window turns up in the command window from which the program was run.

OLX<«'RUN'
VRUN

'"Hello World'
v

Once more, it is essential to define a Oz x either in the APLScript itself, or as a parameter to
the aplc command.

e APLScript Examples ﬂﬂ
Microsoft Windows KP [Version 5.1.26801 B

{C) Copyright 1985-2001 Microsoft Corp.

c:Mdvalog.net\samplesi\aplscriptraplc /console eg?.apl
Dvalog APLScript compiler. VYersion 0.0
Copvright Dyvadic Svstems Ltd 260081

c:Mdvalog.net\samples\aplscript>eg?

Hello World

c:Mdvalog.net\sampleshaplscript>a

216 Microsoft .Net Interface

Defining Namespaces

Namespaces are specified in an APLScript using the : Namespace and :EndNamespace
statements. Although you may use NS and Oc.S within functions inside an APLScript, you
should not use these system functions outside function bodies. Note that such use is not
prevented, but that the results will be unpredictable.

:Namespace Name

introduces a new namespace called Name relative to the current space.

:EndNamespace

terminates the definition of the current namespace. Subsequent statements and
function bodies are processed in the context of the original space.

All functions specified between the : Namespace and : EndNames pace Statements are
fixed in that namespace. Similarly, all assignments define variables inside that namespace.

The following example illustrates how APL namespace usage is handled in APLScript. The
program, contained in the file eg3.apl, is as follows:

OLX<'RUN'

VRUN
OPATH<"4"
NS.START
END

v
VR«CURSPACE
R<>[NST

v

VEND
'Ending in ',CURSPACE
v

:NameSpace NS

VSTART

'Starting in ',CURSPACE
v

:EndNameSpace

Chapter 10: APLScript 217

This somewhat contrived example illustrates how a namespace is defined using
:NameSpace and : EndNames pace statements. The namespace NS contains a single
function called sTART, which is called from the main function RUN.

Notice that DPATH is defined dynamically in function RUN. If it were defined outside a
function in a static statement in the script (say, after the statement that sets 0rx), it would
not be honoured when the application was run.

This program is shown, compiled and run as a console application, below.

e APLScript Examples -|O ﬂ

Microsoft Hindows KP [Version 5.1.26801
{C) Copvright 1985-2001 Microsoft Corp.

c:Mdvalog.net\samplesh\aplscript>aplc /console eg3.apl
Dvalog APLScript compiler. VYersion 0.0
Copvright Dyadic Systems Ltd 20081

c:Mdyalog.neth\samplesiaplscript>eg3d
Starting in #.HNS
Ending in H

c:M\dvalog.neth\samples\aplscript>a

218

Microsoft .Net Interface

Creating .NET Classes with APLScript

It is possible to define and use new .NET classes within an APLScript.

A class is defined by :Class and : EndC lass statements. The methods provided by the
class are defined as function bodies enclosed within these statements.

You may also define sub-classes or nested classes using nested : C lass and : EndC lass
statements.

:Class Name:Type

Declares a new class called N¥ame, which is based upon the Base Class T'y pe,
which may be any valid .NET Class.

:EndClass

Terminates a class definition block

A class specified in this way will automatically support the methods, properties and events
that it inherits from its Base Class, together with any new public methods that you care to
specify.

However, the new class only inherits a default constructor (which is called with no
parameters) and does not inherit all of the other private constructors from its Base Class.
You can define a method to be a constructor using the Access:Constructor
declarative comment. Constructor overloading is supported and you may define any number
of different constructor functions in this way, but they must have unique parameter sets for
the system to distinguish between them.

You can create and uses instances of a (local) class by invoking the New method in
statements elsewhere in the APLScript.

Exporting Functions as Methods

Within a : Class definition block, you may define private functions and public functions.
A public function is one that is exposed as a method and may be called by a client that
creates an instance of your class. Public functions have to begin with a section of
declaration statements. Other functions are purely internal to the class and are not directly
accessible by a client application.

The declaration statements for public functions perform the same task for an APLScript
that is performed using the .NET Properties dialog box, or by executing SetMethodInfo in
the Dyalog APL Session, prior to creating a .NET assembly. The following declaration
statements may be used.

Chapter 10: APLScript 219

:Access Public

Specifies that the function is callable. This statement applies only to a .NET class
or to a Web Page and is not applicable to a Web Service.

:Access WebMethod

Specifies that the function is callable as a Web Method. This statement applies
only to a Web Service (.asmx).

t:Access Constructor

Specifies that the function is a constructor for a new .NET class. This function
must appear between : Class and : EndC 1ass statements and this applies only
to a Web Page (.aspx). See Defining Classes in APLScript for further details. A
constructor is called when you execute the New method in the class.

:ParameterlList typel namel, type2 namez2,

Declares a parameter to the method to have a given data type and name. Name is
optional and may be any well-formed name that identifies the parameter. This
name will appear in the metadata and is made available to a client application as
information. It is therefore sensible to choose meaningful names. The names you
allocate to parameters have no other meaning and are not associated with the
names of local variables that you may choose to receive them. However, it is not a
bad idea to use the same local names as the public names of your parameters.

:Returns Type

Declares the result of the method to have a given data type.

220

Microsoft .Net Interface

A .NET Class example

The following APLScript illustrates how you may create a .NET Class using APLScript.
The example class is the same as Example 1 in Chapter 5. The APLScript code, saved in the
file samples\aplclasses\aplclasses6.apl, isas follows:

:Namespace APLClasses

:Class Primitives:0bject
OUSING<«,c'System'

V R<IndexGen N

:Access Public
:ParameterList Int32 number
:Returns Int32[]

R<«1N

v

:EndClass

:EndNamespace

This APLScript code defines a namespace called APLC lasses. This simply acts as a
container and is there to establish a .NET namespace of the same name within the resulting
.NET assembly. Within APLC lasses is defined a .NET class called Primit ives whose
base class is System.Object. This class has a single public method named IndexGen,
which takes a parameter called number whose data type is Int32, and returns an array of
Int32 asits result.

Chapter 10: APLScript

221

The following command shows how aplclasses6.apl iscompiled toa .NET
Assembly using the /t:1ibrary flag.
APLClasses>aplc /t:library aplclasses6.apl
Dyalog APLScript compiler Version 1.0
Copyright Dyadic Systems Limited 2002
APLClasses>

The next picture shows a view of the resulting aplclasses6.d11 using ILDASM.

7 aplclasses. dlL - IL DASM Mm=E<]

File Wiew Help

P MAMNIFEST
= @ APLClazzes

=-|JE Primitives
b class public auto ansi
& $ToDyalog : private static class [bidge]Tolyalog
o Fide : private int32
B $BazeConstructar : woid()
.cchar ; vaoid])
B ctor: void()
B IndexGen: int32[][nt32)

.azzembly aplclagzesh

222 Microsoft .Net Interface

This .NET Class can be called from APL just like any other. For example:

JCLEAR
clear ws

OUSING«'APLClasses,Samples\APLClasses\aplclasses6.dll'
APL«Primitives.New &
APL.IndexGen 10

123 4567 89 10

Defining Properties

Properties are defined by : Property and : EndProperty statements. A property
pertains to the class in which it is defined.

:Property Type:Name

Declares a new property called ¥ame whose data type is Ty pe. The latter may be
and valid .NET type.

:EndProperty
Terminates a property definition block

Withina : Property block, you must define the accessors of the property. The accessors
specify the code that is associated with referencing and assigning the value of the property.

The accessor used to reference the value of the property is represented by a function named
get that is defined within the : Property block. The accessor used to assign a value to

the property is represented by a function named se ¢ that is defined within the : Property
block. No other function definitions or statements are allowed inside a : Property block.

The get function is used to retrieve the value of the property and must be a niladic result
returning function. The data type of its result must match the Ty pe specified by the

: Property statement. The set function is used to change the value of the property and
must be a monadic function with no result. The argument to the function will have the data
type T'y pe specified by the : Property statement. A property that contains a get
function but no set function is effectively a read-only property.

Chapter 10: APLScript 223

The following APLScript, saved in the file
samples\aplclasses\aplclasses7.apl, shows how a property called
IndexOrigin can be added to the previous example. Within the : Property block
there are two functions defined called ge ¢ and set which are used to reference and assign
a new value respectively. These functions have the fixed names and syntax specified for
property get and property set functions as described above.

:Namespace APLClasses

:Class Primitives:0bject
QUSING<«,c'System’

V R<«IndexGen N

:Access Public
:ParameterList Int32 number
:Returns Int32[]

R« N
v
:Property Int32:Index0Origin
vio<«get
io<IO
v
vset 1io
:If ioe0 1
0Io<«io
:EndIf
v
:EndProperty
:EndClass

:EndNamespace

224 Microsoft .Net Interface

The ILDASM view of the new aplclasses7.d11, with the addition of an
IndexOrigin property, is illustrated below.

7 aplclasses7.dll - IL DASM M= <]

File Miew Help

P MAMNIFEST
=W APLClaszes

=-|JE Primitives
b .class public auto ansi
& $Tolyalog : private static class [bridge]ToDyalog
o fide: private int32
B $BazeConstructar ; vaoid])
Bl .cotor: wvoid()
B ctor: woid()
B IndexGen ; int32[)int32)
B ot _Inde=Origin: int32))
B et IndexCrigin; woidiint32)
& IndexOrigin ; int32()

.azzembly aplclaszes? A

For other examples of the use of property definitions, see The Components File Solution in
Chapter 11.

This .NET Class can be called from APL just like any other. For example:

JCLEAR
clear ws

OUSING<«'APLClasses,Samples\APLClasses\APLClasses7.DLL'
APL<Primitives.New &
APL.IndexGen 10
12 3 456 7 8 9 10
APL.Index0Origin

APL.Index0rigin<0
APL.IndexGen 10
012 3 456 7 8 9

Chapter 10: APLScript 225

Indexers

An indexer is a member of a class that enables an instance of that class (an object) to be
indexed in the same way as an array, if the host language supports this feature. Languages
that support object indexing include C# and Visual Basic, but Dyalog APL does not itself
allow indexing to be used on objects. This means that although you can define an APL class
that exports an indexer, you can use the indexer from C# or Visual Basic, but not from APL.

Indexers are defined using : Tndexer and : EndIndexer statements. An indexer block
pertains to the class within which it is defined, and there may be only one indexer defined
for a class.

:Indexer Type:Name

Declares an indexer called ¥ame whose data type is Type. The latter may be and
valid .NET type and specifies the data type of the indexed element of the class.

:EndIndexer
Terminates an indexer definition block

An indexer must have at least one parameter that is defined by a : ParameterList
statement within the : Tndexer block. These parameters identify the element of the object
that is to be accessed.

Within a : ITndexer block, you must define the accessors of the indexer. The accessors
specify the code that is associated with referencing and assigning an element of the object.

The accessor used to reference the value of an element is represented by a function named
get that is defined within the : Tndexer block. The accessor used to assign a value to the
element is represented by a function named se¢ that is defined within the : Tndexer
block. No other function definitions or statements are allowed inside a : Tndexer block.

The get function is used to retrieve an element of the object and must be a monadic result
returning function. The argument for the ge ¢ function will contain the parameters defined
by the : Parameterlist statement for the indexer. The data type of its result must match
the Ty pe specified by the : Tndexer statement. The set function is used to change an
element of the object and must be a monadic function with no result. The argument to the
set function will contain the parameters defined for the indexer, and an additional
parameter that specifies the new value of the element. This will have the data type Ty pe
specified by the : Tndexer statement.

Note. The : Tndexer statement in Dyalog APL is closely modelled on the indexer feature
in C# and employs similar syntax. If you use ILDASM to browse a .NET class containing an
indexer, you will see the indexer as the default property of that class, which is how it is
actually implemented. However, Dyadic has chosen to use the C# model which is also
supported by Visual Studio.

226 Microsoft .Net Interface

Creating ASP.NET Classes with APLScript

As mentioned previously, the original purpose of APLScript was to provide the ability to
write ASP.NET Web Pages and Web Services in Dyalog APL. Both these applications are
based upon script files.

Web Page Layout

An ASP.NET Web Page typically consists of a mixture of HTML and code written in a
scripting language. The script code is separated from the HTML by being embedded within
<script> and </script> tags and normally appears in the <head> </head> section of the
page. Only one block of script is allowed in a page. The script block normally consists of a
collection of functions, which are invoked by some event on the page, or on an element of
the page.

APLScript code starts with a statement:

<script language="apl" runat=server>
and finishes with:

</script»>

Typically, the APLScript code consists of callback functions that are attached to server-side
events on the page.

Web Service Layout

The first line in a Web Service script must be a declaration statement such as:
<%@ WebService Language="apl" Class="ServiceName" %>
where ServiceName is an arbitrary name that identifies your Web Service.

The next statement must be a : C 1 ass statement that declares the name of the Web Service
and its Base Class from which it inherits. The base class will normally be
System.Web.Services.WebService. For example:

:Class ServiceName:System.Web.Services.WebService
The last line in the script must be:
:EndClass

Although it may appear awkward to have to specify the name of your Web Service twice,
this is necessary because the two statements are being processed quite separately by
different software components. The first statement is processed by ASP.NET. When it sees
Language="apl", it then calls the Dyalog APLScript compiler, passing it the
remainder of the script file. The : C l1ass statement tells the APLScript compiler the
name of the Web Service and its base class. : Class and : EndC 1ass statements are
private directives to the APL.Script compiler and are not relevant to ASP.NET.

Chapter 10: APLScript 227

How APLScript is processed by ASP.NET

Like any other Web Page or Web Service, an APLScript file is processed by ASP.NET.

The first time ASP.NET processes a script file, it first performs a compilation process
whose output is a .NET assembly. ASP.NET then calls the code in this assembly to generate
the HTML (for a Web Page) or to run a method (for a Web Service).

ASP.NET associates the compiled assembly with the script file, and only recompiles it
iffwhen it has changed.

ASP.NET does not itself compile a script; it delegates this task to a specialised compiler
that is associated with the language declared in the script. This association is made in the
Machine.config file which is updated to associate Language="apl" with the
appropriate Dyalog APL process when Dyalog APL is installed.

The APLScript compiler is itself written in Dyalog APL.

Although the compilation process takes some time, it is typically only performed once, so
the performance of an APLScript Web Service or Web Page is not compromised. Once it
has been compiled, ASP.NET redirects all subsequent requests for an APLScript to its
compiled assembly.

Please note that the use of the word compile in this process does not imply that your APL
code is actually compiled into Microsoft Intermediate Language (MSIL). Although the
process does in fact generate some MSIL, your APL code will still be interpreted by the
Dyalog APL DLL engine at run-time. The word compile is used only to be consistent with
the messages displayed by ASP.NET when it first processes the script.

228 Microsoft .Net Interface

229

CHAPTER 11

Visual Studio Integration

Introduction

Dyalog APL supports loose integration with Microsoft Visual Studio.NET. Loose
integration allows you to create Visual Studio projects using APLScript, and build .EXEs
and .DLLs using Visual Studio as the front-end tool.

Dyalog APL is not yet tightly integrated with Visual Studio, and does not, for example,
permit you to use the Visual Studio User Interface design tools.

The Dyalog APL installation program adds some sample APL applications in the
appropriate Visual Studio directory, which are described in this Chapter.

To begin with, the Hello World example shows you how to go about creating a .EXE
program file using Visual Studio and APLScript.

230 Microsoft .Net Interface

Hello World Example

This example illustrates what is involved how you go about creating an application program
(.exe) using APLScript with Visual Studio.

Creating an APL.EXE Project

Start Visual Studio and click New Project, or select File/New/Project from the menu bar.
Navigate to the Other Projects/Other Languages folder. This gives you a choice of two APL
templates as shown below.

MNew Project

Project Types: Templates:
-7 Visual C++ Projects ;I
--{_7] Setup and Deployment Frojecks
EI{:I Other Projects apl .dl Project Apl .exe
l:l Database Projects Project

l:l Enterprise Template Projects
Cther Languages
l:l Yisual Studio Analyzer Projects

l:l Extensibility Projects

Application Center Test Projects LI

= . [T T
|Create an &pl Application

Marne: I Projectl

Location: I C:iDocuments and Settingsipetel My Documentsivisual ﬂ Browse, ., |

Project will be created at C:h,.. . \petaiiy DocumentsiYisual Studio Projects|Projectl.

FMorg | Ok I Cancel | Help |

Select APL.exe Project, and click OK.

Chapter 11:Visual Studio Integration 23

Visual Studio will then create a new Project, in this case named Project1, containing a
single source code file named main.apl and a ReadMe . txt as shown below. The latter
contains instructions about using Visual Studio with Dyalog APL.

Solution Explorer - Proje x|

!a Solution ‘Projectl’ (1 project)
< S
(=l #=3 Source Files
I rnain, apl
e ReadMe, bt

_M &4 Clas... | cont... |

232 Microsoft .Net Interface

main.apl isan APLScript file containing a single comment as illustrated below. (Note
that, at the time of writing, there is a bug in the .NET Framework that causes the APL
comment sign to be displayed incorrectly, and you will need to change it.)

. Projectl - Microsoft ¥isual C++ [design] - main.apl* - |EI|£|

File Edit Miew Project Build Debug Tools indow Help

B-a-sdd@ s nRlo-a- 8-,

i |[EE S22 4% %%,
Disassembly | Sktart Page main.apl® | 4 X
m This file is an empty starter file for your APLScript application. -

4| I 4
| e

| Cukpuk o= |

ITesl: Run j
.| | o

3
| Ready I [z Cal 1 ch1 I

Chapter 11:Visual Studio Integration 233

Select the APL keyboard (see Input Method Editor), and type your APLScript program. The
following example illustrates code to display a Hello World message box.

.: Project1 - Microsoft ¥isual C++ [design] - main.apl - |EI|E|

File Edit Wiew Project Buld Debug Tools Window Help
F-o-cH@ bR oo 8-)
Bl b ar ([EEEE (=S 2| 6% %% .

Disassembly | Skark Page main.apl* | 9 X

m This file is an empty starer file for your APLSCript application. -

OL¥<FoO

VE OO M

W OWC 'MsgBox' 'Hello' "World
oo 'w

v

4 I I 4
e ——

| Cukpuk o= |
ITesl: Run j

< |]
| Ready I [Lna Col 2 Chz |

Notice that you must set L X to start your application, but you do not have to explicitly call
JoFF to end it.

The next step, re-saving main.apl, is only necessary because of a current limitation in
Visual Studo.NET (it forgets the Unicode encoding).

234 Microsoft .Net Interface

Choose Save main.apl A4s... from the File menu. This brings up the dialog box shown

below.
x|
Savein: [[_] Projectl | - @ X Y E - Tooks -

rmain. apl

5 Project1.nch
Qprojectl .sln
ohPrajectl.suo

Favorites

: =
:IJ.‘—T" File narne: j — vI
My Mebwork.
Places Save as bype: Ip'” Files (*) j cancel I
&

Now click the dropdown part of the Save button and choose Save with Encoding... from the
pop-up menu. This brings up the Advanced Save Options dialog illustrated below.

Advanced Save Options x|

Line endings:

Current Setting j

K I Zancel Help |

Choose Unicode - Codepage 1200 from the Encoding menu, then click OK.

Chapter 11:Visual Studio Integration 235

The next step is to build the project. To do this, select Build from the Build menu.
Assuming that your code is correct, the following messages will appear in the Output
window.

=
|Build =]

—————— Build started: Project: Projectl, Configuration: =«

Performing Makefile project actions
Dyalog APLEScript compiler. Wersion 0.0
Copyright Dyadic Systems=s Ltd Z001

Build log was sawved at "file: /S ec:-'wDocuments and Settihgs
Projectl - 0O errori=s), 0 warningi(s)

Build: 1 succeeded, 0 fajiled, 0 skipped

< | _>|T;;!

The result of this process is an executable program named Projectl.exe.

To run the program, select Debug/Start Without Debugging from the menu (or press
Ctrl+F5)

The program displays the dialog box shown below, waits for you to click OK, and then
exits.

Hello S

Wi'orld

236 Microsoft .Net Interface

Using an Existing Workspace

This next example takes the approach a stage further and illustrates how an application built

using Visual Studio can access an existing workspace.

Go to the Start page and click New Project.

Follow the steps described previously to create a new APL.EXE project (named "hello

world", and type the APLScript code shown below into main.apl.

Notice that it refers to a function DISPLAY that is not itself defined in the script.

*.; apl hello world - Microsoft Yisual C++ [desian] - - | Ellil
File Edit Miew Project Build Debug Tools indow Help

H-a-sH@ s pR|(o-a- 8B, 2

-

o= EE 22 4%%%.
Disassermbly pain.apl | ReadMe, bt | 9 =
m This file is an empty starter file for wour APLScript application.
Olx«<helld
¥hello
ODISPLAY 'hella warld
¥
o |
_————eeeeeee
|0ut|:uut o ><|
| Ready I | Lnt Col 1 Ch 1 v

The DISPLAY function will be provided by the DISPLAY workspace, which you can add

to a project as follows.

Chapter 11:Visual Studio Integration 237

In the Solution Explorer window, select Source Files and click the right button to bring up
the context menu.

Solution Explorer - aplh x|

E Solution ‘apl hello world' (1 project)
B apl hE“D wurld

- . maln.apl

4| | »
_Eﬁtﬂu... ﬂ'clas... |@Cunt...|

Select Add, and then Add Existing Item....
c:\dyalog90\ws and choose display.dws.

Add Existing Item - apl hello world il
e -E @ X E - Took-

This brings up a file selection dialog. Navigate to

Look in:

2] dwsin.dws
B dwsout, dws
@dyalng&rtf

£]prt.dws @ ves.brp

B quadna, dws
E smdemo, dws

a excel dws a smdesign. dws
o a frp.dws a smkutor, dws
a graphs.dws a sqapl.dws
Projects a math, dws a sqatest, dws
E] o bmp a tutor . diws
7 B nitutils, dws 3 util dws
IAQ aocxbrows.dws jwdeggn dws
eskkop a ops.dis ﬁgwdeggn ica

a patch.dws
a postscr.dws
a predemo. dws

j winkro,dws
a wukar, dws
a wiutorgs, dws

Favarites &) prefect dws [#] vacht.wmf
=
:I = .
== File name: -
I Open
G Metwork, I J
Places Files of type: I,q|| Files (*.#) j Cancel |,
£

238 Microsoft .Net Interface

This file is then added to the project as shown below.

Solution Explorer - aplh x|

|5|:|Iuti|:|n Explorer - ap
E Solution ‘apl hello warld' (1 project)
= I@ apl hello world

= 3 Source Files

-

e display, dws

o ReadMe.txt

4| | »
_ESDM... E'Clas... |@Cunt...|

The next stage is to add information to the Build Command Line for the project (this will
happen automatically in future versions). To do this, select the apl hello world project, click
the right button and select Properties. This brings up the apl hello world Property Pages
dialog. Select the NMake page (from the left pane) as shown below.

apl hello world Property Pages 5'
Configuration; I.ﬂ\ctive(Debug) j Platform: IActive(WinSZ) j Configuration Managet. .. |
=4 Configuration Properties Build Command Line set PATH=0YALOGNETDIR %) FPATHY: .
General Rebuild All Command Line del fq apl hello world, exe & sek PATH=%:DYaAL
Debugging Clean Cammand Line del /q apl hello world.exe
g MMake Qutput apl hello world, exe

Build Comimand Line
Specifies the command line ta run For the "Build” command.

QK I Cancel Spply Help

Chapter 11:Visual Studio Integration 239

Click on Build Command Line, then click the "..." button to bring up the Build Command
Line editor.

Change the workspace reference from *.dws to c:\dyalog90\display.dws (or wherever it is
installed on your computer) as shown below. Then click OK.

Build Comymand Line

set PATH=":0Y ALOGNETDIR s %P ATHY: & aplc fo:"apl hello world.exe" *, apl SAE

" Ne

Macrus>>|
[als I Cancel | Help |

4

Then select Build from the menu ,or press Ctrl+Shift+b, to build the project.

Run the program by selecting Debug/Start without Debugging or press Ctrl+F5. This
particular program sends its output to a console window as shown below.

240

Microsoft .Net Interface

The Component Files Solution

This example illustrates a Visual Studio Solution that combines an APL project with a
project written in another language, in this case C#. It illustrates how a C# program can read
and write APL component files.

As part of the installation of Dyalog APL, the Component Files solution sample is installed
inMy Documents\Visual Studio Projects\ComponentFiles

Select Open Solution from the File menu, navigate to the ComponentFiles folder, open
it and then select ComponentFiles.sln.

The Solution Explorer window shows that there are 2 projects. The first, called cfiles, is
written in APL; the second, called ComponentFiles, is written in C#.

Solution Explorer x|

El £33 source Files

- rnain.apl
------ ReadMe, bk

= @ ComponentFiles
[(5] References
----- @ AssemblyInfo.cs
o ef] Classl.cs

The cfiles project (APL)

The APLScriptinmain.apl is shown below. It defines a class named
ComponentFile. This has a single constructor function called ma ke which takes the
name of an APL component file as its parameter. This function ties the file, and creates an
(internal) object called component s that is an instance of the internal class,
FileComponents. This object is exposed via a property named Components. Thisisa
read-only property because only its get function has been defined. The ComponentFile
class provides an override for the ToString method which displays the name of the file
prefixed by the string Componentfile:. Finally, ComponentFile exposes a method called
Close that closes the file.

Chapter 11:Visual Studio Integration 4

Jio<«1
Oml<o0

:Class ComponentFile
:Class FileComponents

vV make arg

[1] :Access constructor
[2] :ParameterList Int32
[3]
[4] tie<«arg

v

:Property Int32:Count
V r<get

[1] r<« 1+2>-0fsize tie
v

:EndProperty

vV r<Add array
[1] :Access public
[2] :Parameterlist Array
[3] :Returns Int32
(4]
[5] r<«array [Ofappend tie
v

:Indexer Array:Item
:ParameterList Int32
vV set args
[1] (2oargs) Ofreplace tie (1-args)
v
vr<get index
[1] r<0fread tie index
v
:EndIndexer

:EndClass

242

Microsoft .Net Interface

v make args

[1] :Access public constructor
[2] :ParameterList String
(3]

(W] tie<«args Oftie 0
[5] components<«FileComponents.New tie

r«<ToString o overrides base class member
[1] :Access public
[2] :Returmns String
(3]
(4] r<'ComponentFile:' ,Ofnames[Ufnumsitie;]
v

:Property FileComponents:Components
Vvr«get

[1] r<components
v

:EndProperty

vClose
[1] :Access Public
[2]
[3] [Ofuntie tie
v
:EndClass

The internal class FileComponents is defined within the ComponentFile class and
is local to it. Its constructor function ma ke simply remembers the tie number of the file in a
variable called tie. This variable is local to this particular instance of the
FileComponents object.

The FileComponents class exports a property named Count whose value is the
number of components in the file. This property is read-only because there isno set
function defined for it.

The FileComponents class exports a method named Add, which takes an object of type
Array, and appends it to the file.

The FileComponents class has a : Tndexer section which specifies that an instance of
the class may be referenced using indexing, as if it were an array, if the host language
supports this feature. The C# code to do this is discussed later. The : Indexer statement
specifies the type and name of an element of the object-as-an-array; in this case the element
is called Ttem and is of type Array. The : ParameterList statement of the indexer

Chapter 11:Visual Studio Integration 243

specifies that the index itself is of type Int32. The set function takes both parameters;
the index and the (new) element value. The ge ¢ function takes only the index.

244

Microsoft .Net Interface

The ComponentFiles project (C#)

The C# source code for Class1.cs, that employs the APL ComponentFile class, is
shown below.

The program first creates an instance of the ComponentFile class named £ile. Next, it
displays the contents of each component in the file using its DumpArray subroutine. Notice
that File.Components referstoa FileComponents object, and
File.Components [I] refers to the ith element of this object, namely the ith component
in the file. The program goes on to add a component using the Add method, and to replace
it using indexing.

using System;

namespace ComponentFiles

{

class Classl

{

public static void Main ()

{

ComponentFile file = new
ComponentFile (".\\cfiles.dcf");

for (int i=1;i<=file.Components.Count;i++)
DumpArray (file.Components[i]);

Console.WriteLine (file.ToString());
Console.Write("file.Count:");
Console.WritelLine (file.Components.Count) ;
Console.Write("file.Components[2]:");
DumpArray (file.Components|[2]) ;

int[] New = new int[3];

New[0]=1;

New[1]=3;

New[2]=5;

Console.Write ("Added component at ");

int at = file.Components.Add (New) ;
Console.Writeline (at);

Console.Write ("New component contains:");

DumpArray (file.Components[at]);

New[0]=11;

New[1]=33;

New[2]=55;

Console.Write ("Overwritten component.Now contains:");

file.Components[at]=New;
DumpArray (file.Components[at]);
file.Close();

}

Chapter 11:Visual Studio Integration 245

static void DumpArray (Array a)
{
switch (a.Rank)
{
case 1:
for (int 1=0;i<a.Length;i++)
{
if (i!=0)
Console.Write(",");
Console.Write (a.GetValue(i));
}
break;

}

Console.WriteLine();

246 Microsoft .Net Interface

Running the Solution

Select Build from the menu, or press Ctrl+Shift+b, to build the project.

Run the program by selecting Debug/Start without Debugging or press Ctrl+F5. This
particular program sends its output to a console window as shown below.

Starting with a component file containing 3 components, the output from the program is
shown below.

.LDocuments and Settings'pekt

ComponentFile: . ~cfiles._dcf

file.Count:3

file.Components[2]1:1.2

Added component at 4

Mew component contains:=1.3.5

Ouerwritten component.Mow contains:11.33.55
Press any key to continue_

Chapter 11:Visual Studio Integration 247

249

CHAPTER 12

Implementation Details

Introduction

dyalogl0.d11 isthe Dyalog APL engine that hosts the execution of all .NET classes
that have been written in Dyalog APL, including APL Web Pages and APL Web Services.
dyalogl0.d11 provides the interface between client applications (such as ASP.NET)
and your APL code. It receives calls from client applications, and executes the appropriate
APL code. It also works the other way, providing the interface between your APL code and
any .NET classes that you may call.

dyalogl0.d11 isthe full developer version of the DLL that contains the APL Session,
Editor, Tracer and so forth, and may be used to develop and debug an APL .NET class
while it is executing

dyaloglOrt.dl1l isthe re-distributable run-time version of dyalog10.d11 and
contains no debugging facilities.

If there are several applications running on your computer that use APL .NET Classes, each
one will have a separate copy of dyalogl0.d11 loaded in its process space. However,
each application could be providing services to a number of users, and could be hosting a
number of different APL .NET classes.

The dyalog10.dll active workspace

dyalogl0.d11 hasaworkspace associated with it that contains all the APL objects it is
currently hosting.

The workspace will contain one or more namespaces associated with .NET AppDomains.
An AppDomain is a .NET Class that represents an application domain, which is an isolated
environment where applications execute. When .NET calls Dyalog APL to process an APL
class, it specifies the AppDomain in which it is to be executed. To maintain AppDomain
isolation and scope, Dyalog APL associates each different AppDomain with a namespace
whose name is that of the AppDomain, prefixed by 4ppDomain_.

250

Microsoft .Net Interface

Within each 4ppDoma i n_ namespace, there will be one or more namespaces associated
with the different Assemblies from which the APL classes have been loaded. These
namespaces are hamed by the Assembly name prefixed by 4ssembly_. If the APL class is
a Web Page or a Web Service, the corresponding Assembly is created dynamically when the
page is first loaded. In this case, the name of the Assembly itself is manufactured by .NET.
Below the 4ssembly_ namespace is a namespace that corresponds to the .NET
Namespace that represents the container of your class. If the APL class is a Web Page or
Web Service, this namespace is called ASP. Finally, the namespace tree ends with a
namespace that represents the APL class. This will have the same name as the class. In the
case of a Web Page or Web Service, this is the name of the . aspx or . asmx file.

Note that in the manufactured namespace names, characters that would be invalid symbols
in a namespace name are replaced by underscores.

The following picture shows the namespace tree that exists in the dyalog10.d11
workspace when the aplfns1 .exe program is executed. This example is discussed as
Examplel in Chapter 5. To cause the suspension, a stop has been set on TndexGen[1].

] Exploring CLEAR WS [#.AppDomain_aplfns1_exe.ssembly_APLCLASSES1.4P... - || 0/[4)
File Edit Wiew Tools

BB XQE o glol al &l

Horkspace Tree Contents of #.AppDomain_aplfnsl_exe.Assen
= # Mame | Tupe Description
=1 AppDomain_aplfnsl_exe E] IndexGen Function R+IndexGen M

-+ Assembly_APLCLASSES1
-+l APLClasses
+-i2y Primitives

¥ O=E

+ Jigt HetaData

w47 Tupel ibs < »
1 object{s), 259.8Kb (266024 byvtes) free, 243 bytes used {0 bytes selected) in Local Scope

In this case, there is a single AppDomain involved whose name, aplfnsl.exe, is
specified by .NET. APL has made a corresponding namespace called
AppDomain_aplfnsi.Next, there is a namespace associated with the Assembly
aplclassesl, named Assembly APLCLASSESL. Beneath this is a namespace called
APIC lasses associated with the .NET Namespace of the same name. Finally, there is a
namespace called Primit ives that represents the APL class of that name. This
namespace contains all the code associated with the class; in this case, just a single function
called TndexGen.

Chaper 12:Implementation Details 251

The next picture shows the APL Session window that is displayed with execution suspended
on IndexGen(1]. Notice that the State Indicator in Dyalog APL has been extended to
display the entire .NET calling structure, and not just the APL stack. In this case, the State
Indicator shows that I ndexGen was called from MainClass.Main, which combines the
class and method names specified in aplfnsl.cs. Note that .NET calls are slightly
indented.

This extension to) ST applies also to DYALOG.EXE. For example, if you attach an APL
callback function to a Winforms Button object, the callback is executed as a result of a call
from the Button object back into the APL environment. The State Indicator will show the
entire call stack, including methods in the .NET components.

P CLEAR WS (AppDomain_aplfns1_exe.Assembly_PLCLASSES1.APLClasses.Primitives)- Dyalog aPLAY (- |03
File Edit Yiew ‘Windows Session Log Acktion Options Tools Help
wi O E 0N E & |Obiect B B S VE | |Tod O |G &% 1 | |Edt BB w0 o
Dualog APLAKW Uersion 10.0.0 || =
Pentium 5
Fri Har 15 10:56:33 2002 =
1:
IndexGenl1]
151
AppDomain_aplfnsl_exe.Assembly_APLCLASSES].APLClasses.Primitives.IndexGenll1]=
HainClass.Hainl] o
&1 Csustem thread:Z2844) £
o) T
Debugger - AppDomain_aplfns!_exe Assembly APLCLASSEST APLClasses. Primitives. IndexGen [Tid: 1] =lo =]
Lol ReIndexGen M 2T ndexBenl 11=Reah =
T h o
[1] Read I I+
4
Ready. .. Ins |Apl |MUH
CurObj: SI (Undefined) g2 ObRp:0 OTRAP |O=I:1 |OI0:1 |OHL:0

Notice too that TndexGen has been started on APL thread 1 which, in this case, is
associated with system thread 2844. If the client application were to call IndexGen on
multiple system threads, this would be reflected by multiple APL threads in the workspace.
This topic is discussed in further detail below.

The possibility for the client to execute code in several instances of an object at the same
time requires that each executing instance is separated from all the others. This is
implemented by having a separate unnamed instance namespace associated with every
client instance of the APL object. Each instance namespace starts off as a clone of the class
namespace (in this case Primit ives), but as the object is used, values of variables will
typically differ from one instance to another. Note that the instance namespaces are created
using a shallow copy. Functions and variables in the instance are effectively just pointers to
functions and variables in the class and do not use undue amounts of workspace. Only when
an instance variable changes value will it occupy additional space in the workspace.

252

Microsoft .Net Interface

Threading

The .NET Framework is inherently a multi-threaded environment. For example, ASP.NET
runs its own thread pool from which it allocates system threads to its clients. Calls from
ASP.NET into APL Web Pages and Web Services will typically be made from different
system threads. This means that APL will receive calls from .NET while it is processing a
previous call. The situation is further complicated when your write an APL Web Page that
calls an APL Web Service, both of which are being hosted by a single dyalogl10.d11
inside ASP.NET. In these circumstances, ASP.NET may well allocate different system
threads to the .NET calls, which are made into the two separate APL objects. Although in
the first example (multiple clients) APL could theoretically impose its own queuing
mechanism for incoming calls, it cannot do so in the second case without causing a
deadlock situation.

It is important to remember that whether running as DYALOG.EXE, or as
dyalogl0.d11, the Dyalog APL interpreter executes in a single system thread.
However, APL does provide the ability to run several APL threads at the same time. If you
are unfamiliar with APL threads, see Language Reference, Chapter 1 for an introduction to
this topic.

To resolve this situation, Dyalog APL automatically allocates APL threads to .NET system
threads and maintains a thread synchronisation table so that calls on the same system thread
are routed to the same APL thread, and vice versa. This is important because a GUI object
(cf. system.Winforms) is owned by the system thread that created it and can only be
accessed by that thread.

The way that system threads are allocated to APL threads differs between the case where
APL is running as the primary executable (DYALOG.EXE) or as a DLL hosted by another
program (dyalogl0.d11). The latter is actually the simpler of the two and will be
considered first.

DYALOG10.DLL Threading

In this case, all calls into dyalog10.d11 are initiated by Microsoft .NET.

When a .NET system thread first needs to run an APL function, APL starts a new APL
thread for it, and executes the function in that APL thread. For example, if the first call is a
request to create a new instance of an APL .NET object, its constructor function will be run
in APL thread 1. An entry is made in the internal thread table that associates the originating
system thread with APL thread 1. When the constructor function terminates, the APL thread
is retained so that it is available for a subsequent call on its associated system thread. In this
respect, the automatically created APL thread differs from an APL thread that was created
using the spawn operator & (See Language Reference).

Chaper 12:Implementation Details 253

When a subsequent call comes in, APL locates the originating system thread in its internal
thread table, and runs the appropriate APL function in the corresponding APL thread. Once
again, when the function terminates, the APL thread is retained for future use. If a call
comes in on a new system thread, a new APL thread is created.

Notice that under normal circumstances, APL thread 0 is never used in dyalogl0.d11. It
is only ever used if, during debugging, the APL programmer explicitly changes to thread 0
by executing) 71D 0 and then runs an expression.

Periodically, APL checks the existence of all of the system threads in the internal thread
table, and removes those entries that are no longer running. This prevents the situation
arising that all APL threads are in use.

DYALOG.EXE Threading

In these cases, all calls to Microsoft .NET are initiated by Dyalog APL. However, these
calls may well result in calls being made back from .NET into APL.

When you make a .NET call from APL thread 0, the .NET call is run on the same system
thread that is running APL itself.

When you make a .NET call from any other APL thread, the .NET call is run on a different
system thread. Once again, the correspondence between the APL thread number and the
associated system thread is maintained (for the duration of the APL thread) so that there are
no thread/GUI ownership problems. Furthermore, APL callbacks invoked by .NET calls
back into APL will automatically be routed to the appropriate APL thread. Notice that,
unlike a call to a DLL via 0N 4, there is no way to control whether or not the system uses a
different system thread for a .NET call. It will always do so if called from an APL thread
other than APL thread 0.

Thread Switching

Dyalog APL will potentially thread switch, i.e. switch execution from one APL thread to
another, at the start of any line of APL code. In addition, Dyalog APL will potentially
thread switch when a .Net method is called or when a .Net property is referenced or
assigned a value. If the .NET call accesses a relatively slow device, such as a disk or the
internet, this feature can improve overall throughput by allowing other APL code while a
.NET call is waiting. On a multi-processor computer, APL may truly execute in parallel
with the .NET code.

Note that when running DYALOG.EXE, .NET calls made from APL thread 0 will prevent
any switching between APL threads. This is because the .NET code is being executed in the
same system thread as APL itself. If you want to use APL multi-threading in conjunction
with .NET calls, it is therefore advisable to perform all of the .NET calls from threads other
than APL thread 0.

254

Microsoft .Net Interface

Debugging an APL .NET Class

All APL.NET objects are executed by the Dyalog APL dynamic link library
dyalogl0.dll ordyaloglOrt.dl1l. The former contains all of the development and
debug facilities of the APL Session, including the Editors and Tracer. The latter contains no
debugging facilities at all. You choose to which of the two DLLs your APL .NET class is
bound, when you create the class.

If an APL .NET object that is bound to dyalog10.d11 generates an untrapped APL error
(suchasavALUE ERROR) and the client application is configured so that it is allowed to
interact with the desktop, the APL code will suspend and the APL Session window will be
displayed. Otherwise, it will throw an exception.

If an APL .NET object that is bound to dyaloglOrt.d11 generates an untrapped APL
error it will throw an exception.

Specifying the DLL

There are a number of different ways that you choose to which of the two DLLs your
APL.NET class will be bound. Note that the appropriate DLL must be available when the
class is subsequently invoked. If the DLL to which the APL .NET class is bound is not
present, it will throw an exception.

If you build a .NET class from a workspace using the File/Export menu item, you use the
Runtime application checkbox. If Runtime application is unchecked, the .NET Class will be
bound to dyalog10.d11. If Runtime application is checked, the .NET Class will be
bound to dyaloglOrt.dl1.

If you build a .NET class using the APLScript compiler, it will by default be bound to
dyalogl0.d11. If you specify the /runtime flag, it will be bound to
dyaloglOrt.dll.

If your APL .NET class is a Web Page or a Web Service, you specify to which of the two
DLLs it will be bound using the Debug attribute. This is specified in the opening
declaration statement in the . aspx, .asax or . asmx file. If the statement specifies
"Debug=true", the Web Page or Web Service will be bound to dyalog10.d11. Ifit
specifies "Debug=false", the Web Page or Web Service will be bound to
dyaloglOrt.dll.

If you omit the Debug= attribute in your Web page, the value will be determined from the
various .NET config files on your computer.

Chaper 12:Implementation Details 255

Forcing a suspension

If an APL error occurs in an APL .NET object, a suspension will occur and the Session will
be available for debugging. But what if you want to force this to happen so that you can
Trace your code and see what is happening?

If your APL class is built directly from a workspace, you can force a suspension by setting
stops in your code before using Export to build the DLL. If your class is a Web Page or
Web Service where the code is contained in a workspace using the workspace behind
technique (See Chapter 8), you can set stops in this workspace before you) SAVE it.

If your APL class is defined entirely in a Web Page, Web Service, or an APLScript file, the
only way to set a break point is to insert a line that sets a stop explicitly using OSToP. Itis
essential that this line appears after the definition of the function in the script. For example,
to seta stop inthe Intro\introl.aspx example discussed in Chapter 8, the script
section could be as follows:

<script language="apl" runat="server"»>

VRotate args
:Access Public
:ParameterlList Object,EventArgs

(nargs) .Text«¢Pressme.Text
v

3 OSTOP 'Rotate'

</script>
As an alternative, you can always insert a deliberate error into your code!

Finally, you can usually force a suspension by generating a Weak Interrupt. This is done
from the pop-up menu on the APL icon in the System Tray that is associated with
dyalogl0.d11. Note that selecting Weak Interrupt from this menu will not have an
immediate effect, but it sets a flag that will cause Dyalog APL to suspend when it next
executes a line of APL code. You will need to activate your object in some way, e.g. by
calling a method, for this to occur. Note that this technique may not work if
dyalogl0.d11 is busy because a thread switch automatically resets the Weak Interrupt
flag. In these circumstances, try again.

The run-time version of the Dyalog APL DLL does not display an icon in the System Tray.

256

Microsoft .Net Interface

Using the Session, Editor and Tracer

When an APL.NET object suspends execution, all other active APL .NET objects bound to
dyalogl0.d11 thatare currently being executed by the same client application will also
suspend. Furthermore, all the classes currently being hosted by dyalog10.d11 are
visible to the APL developer whether active (an instance is currently being executed) or not.
Note that if a client application, such as ASP.NET, is also hosting APL .NET objects bound
to the runtime DLL, these objects will be hosted in a separate workspace attached to
dyaloglOrt.d1l1 and will not be visible to the developer.

Debugging a running APL.NET object is substantially the same process as debugging a
stand-alone multi-threaded APL application. However, there are some important things to
remember.

Firstly, the namespace structure above your APL class should be treated as being inviolate.
There is nothing to prevent you from deleting namespaces, renaming namespaces, or
creating new ones in the workspace. However, you do so at your peril!

Similarly, you should not alter, delete or rename any functions that have been automatically
generated on your behalf by the APLScript compiler. These functions are also inviolate.

If execution in dyalog10.d11 is suspended, you may not execute)CLEAR Or)RESET.
You may execute) OFF or JOFF, but if you do so, the client application will terminate. If
you attempt to close the APL Session window, you will be warned that this will terminate
the client application and you may cancel the operation or continue (and exit).

If you fix a problem in a suspended function and then press Resume or Continue (Tracer) or
execute a branch, and the execution of the currently invoked method succeeds, you will be
left with an empty State Indicator (assuming that no other threads are actively involved).
The Dyalog APL DLL is at this stage idle, waiting for the next client request and the State
Indicator will be empty.

If, at this point, you close the APL Session window, a dialog box will give you the option of
terminating the (client) application, or simply hiding the APL Session Window. If you
execute) oFF or JOFF the client application will terminate.

Note that in the discussion above, a reference to terminating the client application means
that APL executes Application.Exit (). This may cause the application to terminate
cleanly (as with ASP.NET) or it may cause it to crash.

257

Index

O
OPATH

in APLScript 193
OUSING ceieieenireeieenisie e 6, 21, 29, 64, 132

.NET Classes

exploring 9
using 7
writing 35
NET namespacescccecvrvvreeieeieeieeneeenn, 5
A
Access:Constructor statement............c.ccceeee. 197
ACCESSONS cuvvieeieeeieirirreeeeeeeeesitrrrreeeeeeeeaens 200, 203
ACTFENS WOrkSpacec.ccovvereiencnceniennns 141
Active Server Pages.........c.cccuenas See Chapter 5
adding .NET ODJECtSccocvreeiiieiiiieeiies 16
APL language extensions
for .NET objects 16
APICEXE ..ot 188
APLSCHIPL .o See Chapter 10
Access:Constructor statement 196, 197
Access:Public statement 79, 134, 197
Access:WebMethod statement 197
Class statement 196
Class statement 139, 204
compiler 188, 205
copying from workspaces 191
defining classes 196
defining properties 200
editing 189
EndClass statement 139, 196, 204
EndIndexer statement 203
EndNamespace statement 194
EndProperty statement 200
example of a .NET Class 198
example of a console application 193
example of a GUI application 192
Implements statement 79

importing code 190
Indexer statement 203, 220
layout 191
Namespace statement 194
Parameter statement 79
ParameterL.ist statement 134, 197
Property statement 200
Returns statement 79, 197
specifying namespaces 194
Web Page 204
Web Service 204
APPDOMAIN ... 225
Application.Run method...........cccccrinvinnnne 33
Application_End method............ccccveriinennae 93
Application_Start method..........c..ccceovviiininns 93
ASP.NET.config files........cccoeovririininiineas 93
assemblies
browsing 123
creating 35
exploring 9
Assembly Class ... 24
AsyncCallback class........c.ccooveneiineniinienn 127
asynchronous use
of a Web Service 125
AutoPostback propertycccoeeveneiiiennn 137
B

base class....5, 23, 35, 42, 78, 86, 124, 136, 138,
139, 160, 196, 198, 204

BRIDGE.DLLccoovivviiieeee e 3,24
Browse .Net Assembly dialog box 10
BUtton classcocceevviveeiciicee e 29, 166
BYRef Class.......cocoovviriinicreee 24
C
(08 R 40, 45, 46, 50, 57, 61, 63
child controls

of a custom control 165
Class CONSLIUCTONcveoveieiiiiciecce e 13
Class Methodscooveeveieiieeiecce e 16
Class statementcccoceeeeeireenenne, 139, 196, 204

code behnindcooveeeeiiicc e 138

258 Microsoft .Net Interface

Common Language Runtime..........cc.cccevevennennn. 1
Common OPEratorsS.......cccovvveervveniveerviesieeennnes 16
Common Type SYSteMccccvvvvverieniiienieenns 1,5
comparing .NET ObjectScceeveiveververiennnn, 16
compositional control...........ccccceevevvviieieiienn, 164
config files

for ASP.NET 93
CONSEIUCTON oo 29, 42,43
constructor methods.................. See Constructors
constructor overloading...........ccooveevevveiierienenn, 51
Constructor statement.........cccocveveniiveeninnnns 196
CONSIIUCTONS ..vve et 8
Constructors folder..........cccocveviviveiviiieciieniens 13
Control class........ccceevvievieiiee e 159, 178
ControlCollection class......c..cccoevevveieinenne. 166
Convert Class........ccovvevveceecisie e, 23, 150
CreateChildControls method..............ccco...... 165
creating GUI objectScccccvevvivviciiiiccieis 27
custom control.........cceevvevievie e 164
CUStOM CONLIOIS ... 159
D
DataGrid Class.......cccvvivveiieciece e, 156

examples See WINFORMS.workspace
DataGrid control ..o, 144
debugging....cccccveiiiiiice e 47
Directory Classcccovvevvevveieic e 19
DropDownList Class.........cccccevvevveiiiiiesnennn, 135
DYADIC.DLL oot 3
DYALOG APL.DLL.......c.ccouennne. 3, 36, 81, 188
DYALOG APL.RUNTIME.DLL.............. 3,225
Dyalog NAMESPACEccveveverieniirieniieieeieeie e 24
E
EndClass statement 139, 196, 204
ENUMETAtION.....ciieiiieie e, 30,31
ENUMETALIONS ...cveeveeie e 23
ErrorMessage property........ccccceeeecerverennen. 154
EVENtArgS Class......coooveeiiniieiceeceee, 147
EXCEPLION ..ottt 18, 48
EXCeption Class........ccoveeiiiieieniiecceecie e 18
EXPOIt oo 36, 44

F
File Class ..o 19
FileStream Class......cccoeveveiiieniiiciciee 26
FONt ClaSSvoveveiiieee e 24
FontStyle Class ... 24
Form.ControlCollection classccccceeveneene. 31
FormBorderStyle class..........ccccooerevnennn 23,30
FormStartPosition classccocveveveieniennnn 30
G
GDIPIUS WOrKSPaceccoccovrereenenieenieee 34
GetPostBackEventReference method ... 177, 185
GetType Methodccoveiveiiiniiicncceeae 9
global.asax file........c.covviriiiiniiiieee 93
GOLF function........coeeeeeiivieccec e 34,119
GolfService
calling from C# 109
testing from a browser 103
using from Dyalog APL 119
writing 92
GraphicsUNit Class........ccooeveereneicnenecieene 24
GUI ODJECES....cveicieeeecee e 27
H
hidden fields ..., 132
HtmITextWriter class........ccocvevveveveicrennnen, 176
HttpWebRequest class ..o 21
HttpWebResponse Class.........cocoovvverineniennnn 22
I
HS o See Chapter 5
application 68

virtual directory 68, 69, 70, 75, 77, 81, 82, 85,
110, 130, 162, 189

ILDASM ..o, 9, 199, 202, 203
INamingContainer Interfacecccecevenine 165
Indexer statement.........cccccvvvvevviveveieenereneens 220
INAEXETS .ot 203
Input Method Editor (IME) 187, 189
INEErfacescvvveeiiiee s 65
Interfaces Property......ccccocevvvevveveeeieeresesieen, 65
iINtrinsic controlsccocovevvereiiiennne, 131, 132
IpostBackDataHandler Interface................... 179

IPostBackDataHandler Interface 172

IPostBackEventHandler Interface................. 172
IsPostBack property.....c.ccccecevvvvviennnne. 136, 147
IsValid property.......ccccocveevveivniecieiesesnennns 150
J
JAVaSCript ..o 177,185
L
LiteralControl class..........ccovvvreviireriinninnn 166
LoadPostData method...........c.cccoveveicnnnicne. 179
LoanService
exploring 123
testing from a browser 87
using asynchronously 125
using from Dyalog APL 118
writing 85
M
MailMessage Class.........cccvvevieeveiieiiie e, 20
MakeProxy functionc.cccccceveviennen. 117,119
manipulating files........cccoocvvvviiiiiiiieeees 19
MAXWS parameter........ccccovevevveniinienneennns 188
Metadatacooererireiiie e 9,11,123
method overloadingccccocevviveiiennnenn, 58, 79
method Signature..........ccccceeve e e 134
Methods folder..........cccooeviniiiniii 15
Microsoft Internet Information Services........ See
Chapter 5
modal dialog boXccoevveiiniiiiiicne 28, 29
N
namespace reference array expansion..... 19, 119
NET Classesccovereeeenenenienienee See Chapter 2
NetType object 35, 65, 141, 165, 172
New method...................... 7,8, 13,29, 196, 197
nGetVersion method...........ccccvevieiieiiiieinns 24
non-modal FOrMS..........cccceevveiiiiicieeececs 33
Notepad.......ccoceverenireree e 187, 189
0
object hierarchy ..o 28
OPATH
in APLScript 195

OUSING ..o, 6, 21, 29, 65, 134

OnPreRender methodccoceeevvinnciiennn, 178
OnServerValidate event..........ccocoovereirennn. 153
Overloading.......cccccvvvevevieieic e 8
OVEITIAING .o 35
P
Page_Load eVent........cccocevvvevvcnsieennesenieens 144
Page_Load event........cccocevevevvcnnineiieiesienn, 135
Page_Load function..........ccccecvevvernennn. 145, 146
Page Load method.........cccoevvivneineiecieen, 144
ParameterList statementcccceeeeeienenne. 197
POINt ClaSS......cceiiiiiiiiee e 28, 29
POINEEIS...oeiiiiie e 24
positioning Forms and controls 28
post bacK..........ccceeviiiinennn, 132, 146, 166, 179
post back events..........cccccvvevievineie e, 181
O] E1YZ: LTS 13,170
PROJ WOrKSpace.........ccoevvveverieiiesieeie e, 141
properties

defining 168

property get function 79,172,173

property set function 79,172,174
Properties folder.........cccovveviiiiiiciicceces 14
Proxy Class.......cccoevevvevveiiieninens 34,117,118, 119
ProxyData Class.......cccccevvveveecieiie e 21
R
RadioButton controlc.ccocevvveicienenne. 154
RadioButtonList controlc.cccoeevenenen. 155
RaisePostBackEvent method......................... 181
RaisePostDataChangedEvent method............ 179
RegisterPostBackScript method 178, 185
Render methodc.c........ 160, 175, 176, 185
RequiredFeildValidator control..................... 149
RequiredFieldValidator control..................... 153
Returns statementcccccevvvevvie e e 197
runat attributeccocoeeeeeiiiecee e, 131
S
Sending an eMail.........ccccoiiiiiiiiiinicie 20
SEIVEr CONIOIScvvviiiiiec e 131
SIZE ClaSSecvvecteeceece e 28
sizing Forms and controls..........c.cccevencnennne 28
SMEPMail Classoovveeiiiiiiciiee 20

260 Microsoft .Net Interface

State INdiCator........ccouvvieeicii e 227
SEreaM Classooovvveveie i 22
StreamReader Classccovvevivevee i, 22
subtracting .NET ObjJecCtS.......c.cceevrveiverieriennnns 16
T

TestAsyncLoan functioncc.cccevevvevvennnne 126
TETRIS WOrKSPace........cccccvvvevvrivsreiereeniennens 34
TEeXtBOX ClaSS......ccceevvviiieirii e 166
thread SWItChingcccovevv v, 229
ToDouble methodcooeveeiiiieeieieeee, 150
Tolnt32 method.........cccvvviieiiiiiiie e, 152
ToString methodcccovevviiviiiiieceecees 7,9
U

UNICOOE.....uviiiiiiie e 187
Unicode font........coveveeeivciiie e 189
UnicodeToClipboard parameter.................... 190
URI CIaSS...veiiiiiiiie e 21
\")

Validate method...........cccooevveiiiiiiiie e 155
Validation

of ASP.NET web pages 149

ValidationSummary control.................. 149, 157
virtual directory See 1IS virtual directory
Visual Studio

Hello World example 208
Visual Studio.NET

and APLScript 207
w
Weak Interrupt

in dyalog10.dll 231
web pages

code behind 138

custom controls 159

writing See Chapter 8
WED SCrapingccccevevveveiii e 21
WED SEIVICESooviiviiiiiieieiesc e 2

asynchronous use 125
WEBSERVICES workspace..... 34, 93, 117, 119
WEGOLF function..........ccoovevviinienieienee, 34
Windows.FOrms.........ccccovevvevvennen. See Chapter 3
WINFORMS WOrKSpace..........cccovervvervnnns 27,33
Workspace Explorer

browsing assemblies 123
WSDL.EXEcoooiiiiiiieiee e 117

