dyalog MIBJI/\\/

Dyalog APL " for Windows

Language Reference

Dyadic Systems Ltd

Riverside View
Basing Road, Old Basing
Basingstoke
Hampshire, RG24 7AL
United Kingdom

tel: +44 (0)1256 811125
fax: +44 (0)1256 811130
email: support@dyadic.com
http://www.dyadic.com

Dyalog APL is a trademark of Dyadic Systems Limited
Copyright © 1982-2003

Copyright ©1982-2003 by Dyadic Systems Limited.

All rights reserved.

Version 10.0

First Edition March 2003

No part of this publication may be reproduced in any form by any means without the
prior written permission of Dyadic Systems Limited, Riverside View, Basing Road,
Old Basing, Basingstoke, Hampshire, RG24 7AL, United Kingdom.

Dyadic Systems Limited makes no representations or warranties with respect to the
contents hereof and specifically disclaims any implied warranties of merchantability
or fitness for any particular purpose. Dyadic Systems Limited reserves the right to
revise this publication without notification.

TRADEMARKS:

Intel, 386 and 486 are registered trademarks of Intel Corporation.

IBM is a registered trademark of International Business Machines Corporation.
Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.
POSTSCRIPT is a registered trademark of Adobe Systems, Inc.

SQAPL is copyright of Insight Systems ApS.

The Dyalog APL True Type font is the copyright of Adrian Smith.

TrueType is a registered trademark of Apple Computer, Inc.

UNIX is a trademark of X/Open Ltd.

Windows, Windows NT, Visual Basic and Excel are trademarks of Microsoft Corporation.
X Window System is a trademark of Massachusetts Institute of Technology.

All other trademarks and copyrights are acknowledged.

Printed in the United Kingdom.

Overview

Contents........

CHAPTER1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

CHAPTER 8

.. v
INtroduction ... ——— 1
Defined Functions & Operatorscococeennnenenesescsssssssnnes 45
Primitive Functions ... 105
Primitive Operatorscceeevenenmmnensescsenenssssssesessssssssnenes 199
System Functions & Variables............cccconvrrrercvcnersnnnnnenen. 223
System Commands...........ccccceenennnrnenescssssnneesesessse s 407
Error MeSSagescouevevererenmrmrssssssssssssesesesssessssssssssssssssesens 433
APL Character Sets.........oummmmmmsmsnsssssssssssesns 467

.. 473

Contents

CHAPTER 1 INtroductioncccococemmnmrmscnsssnssesesesesssssssssse s sesssssssssssesesens 1
WVOTKSPACES.evveuteitectisie et e e et et et e st st e ettt stesbesteena e e e s e aeseesbesrenreeneens 1
NBMESPACES ...ttt b et esbe et esaee s beas 2
ATTAYS ..t 4

INUMDEES ...ttt sttt sb b e sne e 5
(080 T Tod £ USROS 6
ENCIOSEd EIEMENTSoeeiviiieiiicieee et 6
Legal NAMEScuiieiiiteet et 7
Specification of Variables..........ccccoviiiiiiiie e 7
VECLOr NOTALION ... e 8
RESLIUCLUIING ATTAYS. .. eeiveeiieeieeiecte st e steeste e e ae e steesteesteeeeanaesneesreesreesaeeeens 9
DiSPIay OF ATAYS.....ccviiieciccieee e sre e sre e 10
The Display FUNCLION........ccciiieiiiie e 13
EXPIESSIONS ...ttt ettt et re e nae et e nre e e nne e 14
FUNCLIONS ...t 15
Defined FUNCHIONScoviieieice e e 16
Function Assignment & Displaycccevrerrininiinieineeseeees 17
(@] 0LT 0] £ TP TP PR PR PP PRPRPROS 18
DEfiNEd OPEIALOrSccviveiiiterieieete ettt 19
NAMESPACE SYNTAX.....viveivieiieiieierr ettt 20
EVAIURLION ...t 21
Static Vs Dynamic Localisation...........cccccvevviieiieeiiei s 21
Namespace REFEIENCESccvevveiiieie e 22
UNNamed NaMESPACESccverieerieerieerieeiesreste st et e e e ae e e e e e sreennas 24
Arrays of Namespace REfErencCescccvvvvveviveieiie i 26
Distributed ASSIGNMENT..........c.ciiieieiece e 28
Distributed FUNCLIONSooieiieiecece e 29
(O] 01T 1] £ J TP PP SURPROTPRTRPRPRON 31
MUIEITRFEAAING ...ttt 32
OVBIVIBW ...ttt sttt stestesreene e s e e naeseenresneanens 32
Running CallBack Functions as Threadsc.ccoceovenineneincncnne 33
Thread SWItChINGcvieiiiie e 34
NAME SCOPE ettt e nbee e 35
(=T o]0 o [o Lo USSR 35
USING THFEAGAS ...ttt sre s 37
Threads & Niladic FUNCLIONScocoiiiiiiiiicieeeee s 40
Threads & External FUNCLIONScccuoiiiiiiiiieneieceeee e 41
EXternal Variables ..o 42
COMPONENE FIIES ..ot 43
AUXITANY PIOCESSOISc.viiiiitesietisieieiesiete ettt 43
MIGration LEVEIccoiiiiiiie e 43

KEY 10 NOTALION ... 44

vi Contents

CHAPTER 2 Defined Functions & Operatorscccvrencnrssnsneneresesescanns 45
Canonical RePreSENtationccccvcverieieiesese e 45
LT (= I Y v b PSS 46
SEALBMENTS ...t 48
Global & LOCal NAMEScvviviieiiiierieice ettt 49
1diOM RECOGNITIONecviciicice e 51

Lo [0l g 18 T PSSRSO 51
NOTES ..ottt 53
Search Functions and Hash TabIes ... 54
CONEIOI SEIUCTUIES ...ttt 55
If Statement.......c..ccevvvivvennen, 5 T-3 4 o B 57

While Statement...........ccccoeuee. tWHIile PeXDuviiiiiiiieieiieieniens 60
Repeat Statement.............cco...... tREPEAL i 62

For Statementccccccevennn. :For var :InlEach] aexp..64

Select Statement............ccoeneee. :Select AeXPuiiiiiiiiiiieins 66

With Statement...........c.cccoeenee. SWIER OB 68

Hold Statement..........cccccevenene tHOLId tRNS i 69

Trap Statementcccevvveennn, :Trap €Code.iiiiieiinnnnns 73

GoTo Statementccvevveens $GOTO @EXD covvvieeniiiiasieessiessnieesnns 76
Return Statement............ccce..e. TREEULN ovviiee e 76

Leave Statement...........cccoceenee. P LAV E it 76
Continue Statement $CONE INUC coiiiiieeieeeieiee e 77
Locked FUNCLIONS & OPEIALOrS.....c..cuviveieiirieieiisiesieisie et 78
The State INAICALOrcveeececcceee e e 78
Dynamic FUNCtions & OPEratOrS........cccveveiieeiieeieeie e eee e se e see e 80
Multi-Line Dynamic FUNCLIONS..........cccvevuviieiieieesieeseece e 81
Default Left ArgUMENT.........ccoiiiiiecieceee e 82
GUANTS ...ttt bbb bbbt r e e 83
SNY RESUIL ... 83
Static NAME SCOPE . .ooivvivieieee et 84
Tl CallS.....cviiiiiecc e e 85

g o] L CT U (o L3RS 87
DYNaMIC OPEIALOIScvvivieeiiitereeie sttt sbe e 89
RECUISION ...ttt st st be e ebe e te e earesbeesbeens 0]
RESIICHIONS ...ttt ebeenbeens 94
SUPPLIEd WOTKSPACES........eeviitiieiiitinieiet et 94
APL LiNE EQITOr ..c.viitiiiiiiiiieiese e 95

Editing DIrECHIVEScveeieee et 98

Contents

vii

CHAPTER 3 Primitive FUNCLIONScccovererrrerrn e esesas e sseaes 105
SCAlAr FUNCLIONS ..viiiiiiiiccte ettt eb bbb st sre e ere s 105
Monadic Scalar FUNCLIONS.........ooveiiiirieiiecirece e 106
Dyadic Scalar FUNCLIONSccccvieiiiecieiese e 106
MIXEO FUNCLIONS ...ttt sttt ebe et sbr e ebe e ebe e be st enne 108
Conformability........coooiii i 111
FIL EIBMENTS ...ttt ettt be et ere et 111
AXIS SPECITICALION.ccviiiiiiiicc s 112
FUNCLion Presentationccoevevviicii it 112
ADOIE: e s 113

Add: X4Y i 114

ANd: oo, XAY oo 114
ASSIGNMENT: .o, XY it 115
Assignment (Indexed): XLI1€Y i, 117
Assignment (Selective): (EXP X)<Y coiiiiieiineiieeieanens 121
Binomial:c..ccooooviiei, 1Y i 122
Branch:ccccceviiiiieiiee, Y 123
Catenate/Laminate:cccccveveee. X, (K1Y i, 127
Catenate First:ccccovvveeveiiieeennns X5LKEY i, 128
Ceiling: oo [e 129
Circular:ccccovvevveiiiecce e XOY it 129

Deal: ..o X2Y i 130
Decode:coovvvevieeiiece e X1Y i 130
Depth: .o ZY 132
DiSCIOSE: ..vovivvieecieeceecee e, DY OF Re4Y v, 133
Divide: ..oooveiiiiiceceece e X3Y e 134

Drop: .o VY it 135

Drop with AXeS: ...ccocvvvvveeveeciennn. XYLKIY i 136
ENCIOSE: ..oovviieeieecec e CY e 137
Enclose with AXEeS:cceeevveeennnne = 194 B G 138
ENCOOE: ..ooovvviceeeeee e XTY oo 139

[0] 1) €Y e 141

Equal: ..o, X=Y e 141
Excluding: ..., D G SRR 142
Execute (Monadic):c.ccooevveuenne Y it 143
Execute (Dyadic):c.ccovvvreivnnennns XOY it 143
EXpand: ... XNLKTY i, 144
Expand First:ccccoovevviieiencien, XNY i 145
Exponential:ccooveviiiiiinienn, K Yt 145
Factorial:ccoceevviiiieeiiii e LY e 145

Find: oo, XEY it 146

First: oo SY OF Re4Y v 147

[0o] G [0 147
Format (Monadic):cccceevvenens FY e e 147

Format (Dyadic):cccooeverirnnnnns XFY it 152

viii

Contents

Grade Down (Monadic): FY e 154
Grade Down (Dyadic):ccceeuene D42 (R 156
Grade Up (Monadic):ccceceevenene AY o 159
Grade Up (DyadiC): ...ccocovvririenne XAY ot 160
Greater: ...oovviveeecie e XY oo 160
Greater Or Equal:ccccoevviinenne X2Y i 161
1dentity: ..o, FY e 161
Index Generator:ccoceeeevreennne. LYttt 162
IndeX Of: .oovviiiece e XUY it 163
INAEXING: .oovieiiciec XLY T oo 163
INtersection:coceveeveeveecie e, XOY oo 167
LESS: rriiiiieiie e X<Y oo 167
Less Or Equal:ccccooevvveveieiennn, D 3 S 168
Logarithm: ..o D €3 TS 168
Magnitude:cccoeeveveiieiieiieins 1 OSSR 168
Match: ..o, X=X e 169
Matrix Divide:ccoovvvivierernnnnnn XBY oo 170
Matrix INVErse:ccccoevvvvereerennenn BY oo 171
MaxXimum:cccooevrinenieieneee XTY e 172
Membership:ccccceevviveriveiieinns XEY ittt 172
MiNiMUumM: ..o LY o 172
MINUS: ..o XY o 172
MIX: oo +[K1Y of Reo[K]Y..cocrnen. 173
MUIEIPIY: o XXY it 174
Nand: ..o XAY ot 174
Natural Logarithm:cccceenee. 3 USSR 174
Negative:c.cccevvevieieeie e, Y - 175
NOF: e D D SR 175
NOU e Y 175
Not Equal: ...ccccooviriiiiiieciee D €20 R 176
Not Match: ..o X2Y it 176
OF e VY i 177
Partition:........cccocoveniieniniieiee XK1Y i, 178
Partitioned Enclose:..........cccccevueeene Xe[KIY oo 180
PiTimes: ..coccoveviiiieieeie e, OY ittt 180
Pick: oo, XOY i 181
PIUS: oot X4Y oo 181
POWEN: oo XHY i 182
Ravel: ..o Y 183
Ravel with AXeS:ccoovvivevernrnns DG SRR 183
Reciprocal:cccovveveiiiniicien Y e 186
Replicate:coooovviininiiieeee X/TKTY o 186
Replicate First:cccoovviveiennens XALKTY o 187
Reshape: ..o XPY et 187

Residue:oooeveiiieiiiiii e 1Y o 188

Contents ix

REVEISE: .o DLETY o 188
Reverse First:cococvvviiiieinennns OLKIY it 189
ROIL i 2 Y e 189
Rotate: ..o, XOLKIY o, 189
Rotate First:ccocevevviieieiiiennns XO[K1Y oo 190
Shape: oo DY e 191
SIGNUM: o XY it 191
SPHE: e YLEY i, 192
SUBLract: ..o X=X oot 192
TaKE: oo XAY o 193
Take with AXeS:....cceveveriiiiiinn XALKDY o 194
TIMES: oo XY it 195
Transpose (Monadic):cc.ue..... BY o 195
Transpose (Dyadic):ccccceevrvrreenn. D€) (TR 195
TYPE: ot €Y it 196
UNION: o D QT 197
UNIQUE: oo U R 197
Without: ..., XY i 197
ZIlde: B s 197
CHAPTER 4 Primitive Operatorsccourrescsesensnmmnesesesessssssssssssesesesssenns 199
OPEIALOT SYNTAXeeuvireitiirieie e nre e 199
AXIS SPECITICALION.ccviiiiiiiic s 200
Operator PreSENntationc.ccveveieeiieeieeseeste e see e se et ste e s sre e 201
Assignment (Modified): XE<Y i, 201
Assignment (Indexed Modified): .. X[IJf<Y i 202
Assignment (Selective Modified): (EXP X)f<Y.iiiiieiinninnns 203
Axis (with Monadic Operand): FLBlY i 204
Axis (with Dyadic Operand): XELBIY oo, 205
CoOMMULE: ..o XEZY i 208
Composition (Form I):cccceeee. FogY it 209
Composition (Form 1) A0GY it 210
Composition (Form 1I): (XD 4T 211
Composition (Form IV): XEoGY i, 211
Each (with Monadic Operand):f 7Y .o 212
Each (with Dyadic Operand): XETY i 213
Inner Product:ccoeeevnncnnn. XL GY i 214
Outer Product:ccocoovvevrirvinnnenn. Xo . GY i 215
Reduction:ccccevevinnencnenns F/TKTY i 216
Reduce First:cccooveniineninenns FAY i 217
Reduce N-Wis€:cccccvvcvvvrivinnnnns D G G G 218
SCAN: e ENTKTY o 219
Scan First: .ooovovecveveieee e EXY oo 220

SPAWN: e {XYERY it 221

Contents

CHAPTER 5 System Functions & Variables.............ooourninnninnninsinnennnns 223
SYStEM VarTabIESocvveiecce e 224
SYSEM NAMESPACESvveevieiiieeitie sttt sb e sieeenaee s 225
SYSEM CONSTANTS......oiiiiiiii et naee s 225
SYSIEM FUNCLIONS.cvieiiieie et sae e 226
Programming REFEreNCE A-Zcoeieiiiiie e 231

Character Input/Output: D et 231
Evaluated Input/Output: O et 233
Underscored Alphabet:................... ReDA o 235
Alphabetic Characters: ReDA i 235
Account Information:c.cc...... ReOAT oot 235
Account Name:cccccevvenviinnnn R<[AN ..o, 236
Arbitrary Input:ccocoveiiieien, R<{XYJARBIN Y.vierrrrrrrne. 236
Arbitrary OUtpUt:cccooeiriiene {XYOARBOUT Y .oovioiiiiirirnenns 240
ARHDULES: .o R{XYOAT Yuvorierererrreen 241
Atomic VECLOr:ooveiviiiieieee ReDAV it 245
Clear Workspace:ccccceevvvvnenen. OCLEAR oo 245
Execute (DOS) Command: R<(CHMD Y oo 246
Start (DOS) Auxiliary Processor: ..X OCMD Y ..ccccoorvnveeveieneenne. 250
Canonical Representation: RelCR Yoo 251
Change Space:ccoccovvvreienenencns {RY<{XYOCS Y.roioiririrnenn, 253
Comparison Tolerance: OCT oot 255
Copy Workspace:cccccvevvvrvennen. {XYOCY Y i, 256
(] [0) RelD it 258
Division Method:ccccceeeiennne ODIV i 258
Delay: ..o {RY<ODL Y oo, 259
Diagnostic Message:c.ccccoenee. RelDM.cooiiiiiiiiiiiee 259
Dequeue Events:cccoccvvereenen. {RY<0ODQ Y covriiiiiieiiren 260
Data Representation (Monadic): ... R<0DR Y ...cccocervirivrvnierieneniens 262
Data Representation (Dyadic): R<X [ODR Y oiivieiiiiiieiien 263
Edit Object:cocevvviveeieeeee {RY«{XYUED Y ceovrerrerrrrrnn. 264
Event Message:ccccocovvrievneennn, R<(EM Yoo 265
Event Number:c.ccooevvveinnnns ROEN. oot 265
EXCeption:ccoevvenviiiineee R<OEXCEPTION..ccoovoirerrrnne. 265
Expunge Object:ccevvvivevnennen. {RY<0EX Yoo, 266
Export Object:ccoevevvvineiienen, {R}«{XYUEXPORT Y .cocvs... 268
File Append Component: {R}y«X OFAPPEND Y 269
File System Available: ReQFAVAIL ccovvviiiiiiiien, 269
File Create:ccoocvvivviviveieeieieins {R}y«X OFCREATE Y ...c...... 270
File Drop Component: {RY<OFDROP Y .oovvoiiriirernens 271
File Erase: ..o {R}<«X OFERASE Y.overr.n. 272
File Hold: ..o, {RY«0OFHOLD Y .cevecvrervrrrn. 272

Component File Library: R<OFLIB Y .o 274

Contents

Xi

Format (Monadic):cccceevnenens R<OFMT Yoo, 275
Format (Dyadic):cccoovvvvviniinanns R<X OFMT Yoo, 276
File Names:c.ccocoevvvvevieieeineenne, R<(FNAMES ccoevvveiivieireinannn 283
File Numbers:c..cccoevvviiiiieiinnns R<OFNUMS...ccoveveiiiieeeaiiraeennne, 284
File Read ACCESS: ...ceevvevvevieeiienne. R<(FRDAC Y.ovoiiiieiireirnane 284
File Read Component Information: R«0FRDCI Y ..cccooovvrvvneiunuenn 285
File Read Component:c......... R<OFREAD Y., 285
File Rename:ccceevvveeveeinenne. {RY«X OFRENAME Y............ 286
File Replace Component: {R}Y<X OFREPLACE Y 287
File RESIZE: w.cocvveiviiieeeiie e {RY«{X}YOFRESIZE Y 288
File Size: ..o R<OFSIZE Y.vooiivieeeeieeeene, 288
File Set ACCESS:covvevevveeiirieeirinns {RY<«X OFSTAC Y ceceeeeernernnn. 289
File Share Tie: ..cocoevvvveiieieeirennn, {RY«X OFSTIE Y .cocoervurnn. 290
Exclusive File Tie: ..cc.coccovvvieeinenen. {RY«X OFTIE Y.eroorrrnenn, 291
File Untie: ..o {RY<UFUNTIE Y.ooovorrrrrnn. 292
Fix Definition:ccocevvvviivieiennnns {RY<OFX Y eiooivieiiieeeeeiieees 293
Index Origin:cccvvveirenineen, OI0 cooiiiiiiiieceeeee e 294
Key Label: ..o, ROKL Yoo, 294
Line Count:ccooeevvvevie e, Re[LC ittt 295
Load Workspace:cccoeeevvervennn. OLOAD Yoo 296
Lock Definition:c..ccccevvvveinenne, {XYOLOCK Y.vvoievieeiieeereenn, 296
Latent EXpression:c.ccoceeeenen. OLX coiieiieeee e 298
Map File: ..o, R<{X}YOMAP Y o, 298
Migration Level:ccccoovenenne. OML it 300
Set MoNItor:cccovveeviveeiie e {R}Y<X [OMONITOR Y............ 302
Query Monitor:cccceevvevvvineennnn, R<[MONITOR Y .ovorooiirieenne. 303
Name Association:ccceeveenne. {RY<{XYONA Y ovviiireenen, 304
Native File Append:ccoeuennen. {R}«X ONAPPEND Y............ 331
Name Classification: R<ONC Yoo 331
Native File Create:cccoeevveenenen. {R}<X ONCREATE Y............ 333
Native File Erase:ccccccoevveennennne. {R}Y<X [NERASE Y .ooceernr.nn. 333
Name List:ccceveiiiieieeieece, Re{XYONL Y.voovrrriiieeereenn, 334
Native File LOCK:.....c.cccoeevveeinnennne, {R}Y<X ONLOCK Y ccovvrerrnnn. 334
Native File Names:.........cccoveeueeeee. R<ONNAMES .ccouvveeeeeeecnneenne. 336
Native File Numbers: R<ONNUMS...ccoveveeieeeeaceneanne. 336
Enqueue Event:cccooeviiinnn. {RY<{XYONQ Y .. 337
Nested Representation: R<ONR Y.t 339
Native File Read:cccccoovveennennne R<[ONREAD Y.ooooviiiriiierirnnnnn, 340
Native File Rename:ccccceve..e. {R}Y<X [NRENAME Y........... 341
Native File Replace:c.ccoeuneen. {R}«X ONREPLACE Y 341
Native File ReSIize:ccceevvveeuennne. {RY«X ONRESIZE Y....... 341
Create Namespace:ccoceveevene. {RY<{XYONS Y o, 342
Namespace Indicator: R<ONST oo, 343
Native File Size:cccccevvvvivveenene, R<ONSIZE Y.vooooivieeeiireeene, 343
Native File Tiei..cooccvveiieiiiieenee, {R}Y<X ONTIE Y.ooorouurnrn. 344

NUIl IEeM: e, R<ONULL ccooveeeieiveieeeeeenerenn, 345

Xii

Contents

Native File Untie:.......ccccoevvvvneennee. {RY<0ONUNTIE Y.uvroirrreunnn. 346
Native File Translate:c..c....... {RY«{XYONXLATE Y .cc...... 346
Sign Off APL: oo [0 30 2R 346
Object Representation: R<0OR Yoo 347
Search Path:ccocovveeviiiiecees OPATH. oo 350
Program Function Key: R<{X}YOPFKEY Y.voroorrrrnen. 352
Print Precision:cccecoeeevvveveennen, [20 = 353
Print Width:cccoovveviiiiiiciienn, [2 353
Cross References:cceceeviveevneenns R<[REFS Y .vivriiiniiiniineninnnn 354
Random Link:coeveeevinieineenne, ORL weeeeeiie e 355
Response Time Limit: ORT Lo 355
Save WOrkspace:cccoceevverennns {RY<{XYUSAVE Y ccovvvrriren. 356
Screen DImMensions:cccceevennen. R<[SD.cciiiiiiieiieceeie e s 356
Session Namespace:cccoceeevnene OSE oot 357
Execute (UNIX) Command: {RY<0SH Y oo, 357
Start (UNIX) Auxiliary Processor: X OSH Y.iriinienecinennenns 358
Shadow Name:cccceevvveveiienen, OSHADOW Y covevveviieireeieeeeenn, 359
State Indicator:c.ccoceevveiiinenen. RS T oo 360
Signal Event:cccceoveiveieiien, {XYOSIGNAL Yoo, 361
Size of Object:cccovvvvevveiiiien, R<(SIZE Y oo 362
Screen Map: oo OSM it 363
Screen Read:covevvvevieciieeeies R<{X}OSR Y.evoeeeivereeirnnn 366
State Indicator Stack:c.c....... R<OSTACK ccoveveeeieeececeeennn 370
State of Object:cocevvviviiiiiee R<0STATE Y.voiiorierreirienans 372
SELSIOP: oo {R}«X OSTOP Y.ooeovivvernrnn 373
QUErY STOP: v R<[STOP Y .oviiiiiiiiiiiiiennn 375
Set Access Control:ccccveeueenns R<X OSVC Yurirvoriiiinieniinen 375
Query Access Control: R<SVC Y oo 377
Shared Variable Offer: R<X [SVO Y.vooveiiiiieiienen, 377
Query Degree of Coupling: R<0SVO Y oo, 379
Shared Variable Query: R<SVQ Y oo, 380
Shared Variable Retract Offer: R<[SVR Y coviiiiiiiiiie e 380
Shared Variable State: R<[SVS Y coiiiiiniiniiienieeninenn 380
Terminal Control:.........ccoceeevveenennns RelTCureeeeeeeeecee e 381
Thread Child Numbers: R<(TCNUMS Y wcoveveevreeerennnn. 382
Current Thread Identity:................. ReQTID oo, 382
Kill Thread:ccooovveviiiiiiecienns {RY«{XYUTKILL Y.oovrrun.. 383
Thread NUmMbErs:cccceveeviveeinens R<[TNUMS ..covovviviiiiiiaiinaiinnn 383
Set Trace: ..oooevvveeeeciee e, {RY<«X OTRACE Y .ccceovernn... 384
QUErY TraCe:.....covevireeieiereiens R<OTRACE Y.ooioiiieeienenes 385
Trap Event: ..o OTRAP .o 386
Time Stamp: ..o ReOTS i 390
Wait for Threads to Terminate: R<(TSYNC Y.oovvoieeiireeeerrennn, 391
Using (Net Search Path): OUSING coovviiiiiiieieciene 392
Verify & Fix Input: ..o, Re{X}YOVFI Y oo 393

Vector Representation: R<OVR Yoo 394

Contents Xiii

Workspace Available: ReOWA oo, 395
Windows Create Object: {RY<{X}YOWC Y sovrrririrerrannn, 396
Windows Get Property:c..co..... R<{X}YOWG Y.uvrrerierierinrnrnnnns 399
Windows Child Names: R<{X}YOWN Yoo 400
Windows Set Property: {XYOWS Yoo, 401
Workspace ldentification: OWSID.ciiiiiiieiieieiseieieien, 402
Window EXPOSE:cccevevvevenniinanns OWX et 402
Extended State Indicator: ReOXST e, 403
Set External Variable: X OXT Yoo, 404
Query External Variable: ROXT Yoo, 406
CHAPTER 6 System COMmMands...........couoverenmnmsmnsmmssmsmsmsssssssssssesessssssnans 407
Command PreSentation..........cooeviireiiieieise st 408
Clear Workspace:ccccoevvevnnnn JCLEAR oo 408
Execute (DOS) Command: YCMD cmd...ooiiiiiiiiin, 408
Save Continuation:cc.ccoevevenne. YCONTINUE wovvviiieniieieeieniens 411
Copy Workspace:ccceevevennnnne YCOPY {ws {nms}Y..... 411
Change Space:ccceevevvevvecvennnnn, YCS {AMYeiiciiiiiiieiieieeieains 413
Drop Workspace:cccoevevvereennn. YDROP {WSY} uviuveriuerienrnninens 414
Edit Object: ...ccoeveeviereiees YED NS coovieieiieeeeeeeseeeiieeneeens 414
Erase Object:cccoviveiiiiiiiens JERASE NMS ..cooviiiiiiiiieanns 415
List EVENtS: ..occooviveeeeie e YEVENTS v 416
List Global Defined Functions: YENS {DmMY oo 416
Display Held Tokens:..........c.......... YHOLDS wooovveiecieiieseeseeiieanen 417
List Workspace Library: YLIB {dirY iiiiiiiiiiiinnns 418
Load Workspace:ccceverveeennen. YLOAD {WSD.ioiiiiininineanns 419
List Methods:cccovevvieivieinnns YMETHODS ccoviiiiiieiiieieeienins 420
Create Namespace:ccoceveeevene. NS {DMY oo 421
List Global Namespaces: YOBJECTS {DmM}..ccccevrerrannnn 422
List Global Namespaces: YOBS {0M} coeovrevreiresneiiennens 422
Sign Off APL: o DEC) 30 SRR 422
List Global Defined Operators: JOPS {nmMY} oo, 422
Protected COpPY: .ooovevvevevrereriirieanns YPCOPY {ws {nms}} 423
List Properties:ccoocvvvrereennn. YPROPS oo 424
Reset State Indicator:c.c.e...e. YRESET oot 424
Save WOorkspace:ccccceeevevernnenn, YSAVE {WSYeviieiieiieeieninens 425
Execute (UNIX) Command: YSH {cmd) covvvveiieiieceeiieinens 426
State Indicator:ccocevevrivrvnnne. DI A 427
State Indicator & Name List: DI L R 428
Thread Identity:ccoovverinennnn. YJTID {tidY} i, 429
List Global Defined Variables: YVARS {0MY} iiiiiiiiiiiienns 430
Workspace ldentification: YWSID {WSD}eeoereierenereanens 430

Xiv Contents

CHAPTER 7 Error MeSSagescccoureensmmmsmeresmsmssssssssssssssmssssssssssssesessasanes 433
Y 110 b 1 [Y (o g ANo: (o] T 434
APL EFTOr IMEBSSAQES. ..cvveeivieiiieesitiesiee st e st sttt sbe e st sbe s sbee st s snee s 438
Operating SyStem Error IMESSA0ES.eververrereaeeeeniesiesiestessesseeesssessessesees 464
CHAPTER 8 APL Character Sets..........cumimmnininmssssssnsssssssssssssas 467
Dyalog APL ALOMIC VECIONcviieiesiesie et eeieie et e e 468
Standard CharaClersScouieivieiiie et 468
ARErNALIVE CharaCerScovveiii et 469
Dyalog APL FONE LAYOULc.civiiiiiiiieiisieiecsieseeese e 470
StANAArd CharaCterSc.veiiiiiiie ettt 470
ARErNALIVE CATACTEISociiveiii et e s 471
OVErstrike COmMDINATIONSvvieieriee sttt e e e e s eareas 472

SYMDBOIIC INAEXcuriirririssrirs s ———— 473

AIPhabetic INAEX......ccviererecr e seenes 477

CHAPTER 1

Introduction

Workspaces

APL expressions are evaluated within a workspace. The workspace may contain
objects, namely operators, functions and variables defined by the user. APL
expressions may include references to operators, functions and variables provided by
APL. These objects do not reside in the workspace, but space is required for the actual
process of evaluation to accommodate temporary data. During execution, APL records
the state of execution through the STATE INDICATOR which is dynamically
maintained until the process is complete. Space is also required to identify objects in
the workspace in the SYMBOL TABLE. Maintenance of the symbol table is entirely
dynamic. It grows and contracts according to the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace may
subsequently be loaded, or objects may be selectively copied from a saved workspace
into the current workspace.

Under UNIX, workspace names must be valid file names, but are otherwise
unrestricted. See your UNIX documentation for details.

Under Windows, Dyalog APL workspaces are stored in files with the suffix ".DWS".
However, they are referred to from within APL by only the first part of the file name
which must conform to Windows file naming rules.

Dyalog APL/W Language Reference

Namespaces

A namespace is a name class 9 object in Dyalog APL. Namespaces are analogous to

nested workspaces.

‘Flat> APL Workspace

Workspace with Namespaces

DISPLAY

FOO0 MAT VEC
WsDoc_Init

WsDoc_Tree

WsDoc_Xref

WsDoc_prt_Init
WsDoc_prt_Page

WsDoc_current_line

FOO MAT VEC

DISPLAY

Init

Tree Init -
vref |Page line

They provide the same sort of facility for workspaces as directories do for filing
systems. The analogy might prove helpful:

Operation

Create
Change

Relative name
Absolute name

Name separator
Top (Root) object
Parent object

MS-DOS

MKDIR
CD

DIRI\DIR2\FILE
\DIR\FILE

Namespace

)NS or (NS
)CS

NS1.NS2.0BJ
#.NS.OBJ

##

Chapter 1 Introduction

Major Benefits of Namespaces

Namespaces provide static (as opposed to dynamic) local names. This means that a
defined function can use local variables and functions which persist when it exits and
which are available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to
organise the workspace in a tidy fashion. This helps to promote an object oriented
programming style.

APL’s traditional name-clash problem is ameliorated in several ways.

o Workspaces can be arranged so that there are many fewer names at each namespace
level. This means that when copying objects from saved workspaces there is a
much reduced chance of a clash with existing names.

o Utility functions in a saved workspace may be coded as a single namespace and
therefore on being copied into the active workspace consume only a single name.
This avoids the complexity and expense of a solution which is sometimes used in
‘flat’ workspaces, where such utilities dynamically fix local functions on each call.

o Inflat APL, workspace administration functions such as w.SpocC must share names
with their subject namespace. This leads to techniques for trying to avoid name
clashes such as using obscure name prefixes like 'aaL1'. This problem is now
virtually eliminated because such a utility can operate exclusively in its own
namespace.

The programming of GUI objects is considerably simplified.

e An object’s callback functions may be localised in the namespace of the object
itself.

e Static variables used by callback functions to maintain information between calls
may be localised within the object.

This means that the object need use only a single name in its namespace.

4 Dyalog APL/W Language Reference

Arrays

A Dyalog APL data structure is called an array. An array is a rectangular arrangement
of items, each of which may be a single number, a single character, a namespace
reference (ref), another array, or the JoR of an object. An array which is part of
another array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by rank,
shape, and depth.

Rank

An array may have 0 or more axes or dimensions. The number of axes of an array is
known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

e An array with 0 axes (rank 0) is called a scalar.
e An array with 1 axis (rank 1) is called a vector.
e Anarray with 2 axes (rank 2) is called a matrix.

¢ An array with more than 2 axes is called a multi-dimensional array.

Shape

Each axis of an array may contain zero or more items. The number of items along each
axis of an array is called its shape. The shape of an array is itself a vector. Its first item
is the length of the first axis, its second item the length of the second axis, and so on.
An array whose length along one or more axes is zero, is called an empty array.

Depth

An array whose items are all simple scalars (i.e. single numbers, characters or refs) is
called a simple array. If one or more items of an array is not a simple scalar (i.e. is
another array, or a JOR), the array is called a nested array. A nested array may contain
items which are themselves nested arrays. The degree of nesting of an array is called
its depth. A simple scalar has a depth of 0. A simple vector, matrix, or multi-
dimensional array has depth 1. An array whose items are all depth 1 subarrays has
depth 2; one whose items are all depth 2 subarrays has depth 3, and so forth.

Chapter 1 Introduction

Type

An array whose elements are all numeric, is called a numeric array; its TYPE is
numeric. A character array is one in which all items are characters. An array whose
items contain both numeric and character elements is of MIXED type.

Numbers
Numbers are entered or displayed in conventional or scaled decimal form. On entry, a
decimal point is optional if there is no fractional part. On output, a number with no
fractional part (an integer) is displayed without a decimal point.
The scaled form consists of:

a) an integer or decimal number called the mantissa,

b) the letter E or e,

¢) an integer called the scale, or exponent.

The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example
12 23.24 23.0 2.145E2
12 23.24 23 214.5

Negative numbers are preceded by the high minus (7) symbol, not to be confused with
the minus (-) function. In scaled form, both the mantissa and the scale may be
negative.

Example

722 2.145E72 T10.25
722 0.02145 710.25

The empty vector (1 0) may be represented by the numeric constant ¢ called ZILDE.

Dyalog APL/W Language Reference

Characters

Characters are entered within a pair of APL quotes. The surrounding APL quotes are
not displayed on output. The APL quote character itself must be entered as a pair of
APL quotes.

Examples

'"DYALOG APL'
DYALOG APL

'I DON''T KNOW'
I DON'T KNOW

Enclosed Elements

An array may be enclosed to form a scalar element through any of the following
means:

¢ by the enclose function (<)
e by inclusion in vector notation

o as the result of certain functions when applied to arrays

Examples
(e¢1 2 3),c'ABC!
1 2 3 ABC

(1 2 3) '"ABC!
1 2 3 ABC

Chapter 1 Introduction

Legal Names

APL objects may be given names. A name may be any sequence of characters, starting
with an alphabetic character, selected from the following:

1. A to Z
2. a to z
3. A to z (inDyalog Standard Font)
or AACEEEITTIPOO0O0OUUTYPaid68 (in Dyalog Alternate Font)
4, _or A Oor A (underbar, delta, delta underbar characters)
5. National Language Symbols
(Viz. ALARENOPUpasdddaceddéiiinédsguudi)
6. 0 to 9

The first five groups of characters are designated as being alphabetic.

Examples
Legal Illegal
THISAISAAANAME BAD NAME
X123 3421
SALES S!H|PRICE
pjb_1 1_pjb

Specification of Variables

A variable is a named array. An undefined name or an existing variable may be
assigned an array by specification with the left arrow («).

Examples
A<'CHIPS WITH EVERYTHING'

A
CHIPS WITH EVERYTHING

X Y<'ONE' 'TWO'

X
ONE

Y
TWO

8 Dyalog APL/W Language Reference

Vector Notation

A series of two or more adjacent expressions results in a vector whose elements are the
enclosed arrays resulting from each expression. This is known as VECTOR (or
STRAND) NOTATION. Each expression in the series may consist of one of the

following:
a) a single numeric value;
b) a single character, within a pair of quotes;
c) more than one character, within a pair of quotes;
d) the name of a variable;
e) the evaluated input symbol [0;
f) the quote-quad symbol [TJ;
0) the name of a niladic, defined function yielding a result;
h) any other APL expression which yields a result, within parentheses.
Examples
pA<2 4 10

pTEXT«'ONE' 'TWO'
2

Numbers and characters may be mixed:
pX<'THE ANSWER IS ' 10
X[1]

THE ANSWER IS

X[2] + 32
42

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair '«~'
indicates the phrase 'is equivalent to'.

Chapter 1 Introduction

1 2 <> (1)(2) <> 1 (2) <> (1) 2
2'X'3 «»> 2 'X' 3 «> (2) ('X'") (3)
1 (2+2) <> (1) ((2+2)) <> ((1)) (2+2)

Vector notation may be used to define an item in vector notation:

pX « 1 (2 3 4) ('THIS' "AND' 'THAT')

X[2]
2 3 4

X[3]
THIS AND THAT

Expressions within parentheses are evaluated to produce an item in the vector:

Y « (2+2) 'IS' &4
Y
4 IS .4

The following identity holds:

A B C <> (c4), (eB), <C

Restructuring Arrays

A class of primitive functions re-structures arrays in some way. Arrays may be input
only in scalar or vector form. Structural functions may produce arrays with a higher
rank. The Structural functions are reshape (p), ravel, laminate and catenate (,),
reversal and rotation (¢), transpose (&), mix and take (+), split and drop (+), and
enclose (<). These functions are described in Chapter 3.

Examples

2 2p1 2 3 4

2 2 4p'ABCDEFGHIJKLMNOP'
ABCD
EFGH

IJKL
MNOP

10 Dyalog APL/W Language Reference

¥2 UYp'COWSHENS'
COWS HENS

Chapter 1 Introduction 1

Display of Arrays

Simple scalars and vectors are displayed in a single line beginning at the left margin. A
number is separated from the next adjacent element by a single space. The number of
significant digits to be printed is determined by the system variable OPP whose default
value is 10. The fractional part of the number will be rounded in the last digit if it
cannot be represented within the print precision. Trailing zeros after a decimal point
and leading zeros will not be printed. An integer number will display without a
decimal point.

Examples

0.1 1.0 1.12
0.1 1 1.12

1A 92 1B 1Qt
A 2 BC

+3 2 6
0.3333333333 0.5 0.1666666667

If a number cannot be fully represented in OPP significant digits, or if the number
requires more than five leading zeros after the decimal point, the number is represented
in scaled form. The mantissa will display up to OPP significant digits, but trailing
zeros will not be displayed.

Examples

0PP<3

123 1234 12345 0.12345 0.00012345 0.00000012345
123 1.23E3 1.23E4 0.123 0.000123 1.23E 7

Simple matrices are displayed in rectangular form, with one line per matrix row. All
elements in a given column are displayed in the same format, but the format and width
for each column is determined independently of other columns. A column is treated as
numeric if it contains any numeric elements. The width of a numeric column is
determined such that the decimal points (if any) are aligned; that the E characters for
scaled formats are aligned, with trailing zeros added to the mantissae if necessary, and
that integer forms are right-adjusted one place to the left of the decimal point column
(if any). Numeric columns are right-justified; a column which contains no numeric
elements is left-justified. Numeric columns are separated from their neighbours by a
single column of blanks.

12

Dyalog APL/W Language Reference

Examples

2 4p'"HANDFIST'
HAND
FIST

1 2 3 o.x 6 2 5
6 2 5
12 4 10
18 6 15

2 3p2 4 6.1 8 10.24 12
2 4 6.1
8 10.24 12

2 Lpy 'A' 'B' 5 T0.000000003 'C' 'D' 123.56
LEO AB 5
"3E"9 CD 123.56

In the display of non-simple arrays, each element is displayed within a rectangle such
that the rows and columns of the array are aligned. Simple items within the array are
displayed as above. For non-simple items, this rule is applied recursively, with one
space added on each side of the enclosed element for each level of nesting.

Examples

13

cc13
1 2 3

('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' U4)
ONE 1 TWO 2 THREE 3 FOUR &

2 4p'ONE' 1 'TWO' 2 'THREE' 3 'FOUR' 4
ONE 1 TWO 2
THREE 3 FOUR 4

Multi-dimensional arrays are displayed in rectangular planes. Planes are separated by
one blank line, and hyper-planes of higher dimensions are separated by increasing
numbers of blank lines. In all other respects, multi-dimensional arrays are displayed in
the same manner as matrices.

Chapter 1 Introduction

Examples

2 3 4pi2h
1 2 3 4
5 6 7 8
10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

3 1 1 3p'THEREDFOX'
THE

RED

Fox

The power of this form of display is made apparent when formatting reports.

Examples

+AREAS<«'West' 'Central' 'East'
West Central Fast

+PRODUCTS<«'Biscuits' 'Cakes' 'Buns' 'Rolls'
Biscuits Cakes Buns Rolls

SALES<«50 5.25 75 250 20.15 900 500
SALES,«<80.98 650 1000 90.03 1200
+SALES<«4 3pSALES
50 5.25 75
250 20.15 900
500 80.98 650
1000 90.03 1200

' ' PRODUCTS 5., AREAS SALES
West Central Fast

Biscuits 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650
Rolls 1000 90.03 1200

If the display of an array is wider than the page width, as set by the system variable
Opw, it will be folded at or before OPw and the folded portions indented six spaces.

14 Dyalog APL/W Language Reference

The display of a simple numeric or mixed array may be folded at a width less than 0rw
so that individual numbers are not split across a page boundary.

Chapter 1 Introduction

15

Example

OPW<40

73 20p100
54 22 5 68 68 94 39 52 84 U4 6 53 68
85 53 10 66 42 71 92 77 27 5 74 33 6Uu
66 8 6L 89 28 UL 77 48 24 28 36 17 49

1 39 7 42 69 49 9y

76 100 37 25 99 73 76

90 91 7 91 51 52 32

The Display Function

DISPLAY is a defined function distributed with Dyalog APL which may be used to
illustrate the structure of an array. DISPLAY is monadic. Its result is a character
matrix containing a pictorial representation of its argument. DISPLAY is used
throughout this manual to illustrate examples. An array is illustrated with a series of
boxes bordering each sub-array. Characters embedded in the border indicate rank and
type information. The top and left borders contain symbols that indicate its rank. A
symbol in the lower border indicates type. The symbols are defined as follows:

Vector.

Matrix or higher rank array.
Empty along last axis.

Empty along other than last axis.
Nested array.

Numeric data.

- Character data.

Mixed character and numeric data.
UJOR object.

array of refs.

M 0 <« ¥

H < +

DISPLAY '"ABC' (1 4p1l 2 3 U4)

I ST —— .
| |ABC| 41 2 3 u| |
|
1

16

Dyalog APL/W Language Reference

Expressions

An expression is a sequence of one or more syntactic tokens which may be symbols or
constants or names representing arrays (variables) or functions. An expression which
produces an array is called an ARRAY EXPRESSION. An expression which produces
a function is called a FUNCTION EXPRESSION. Some expressions do not produce a
result.

An expression may be enclosed within parentheses.

Evaluation of an expression proceeds from right to left, unless modified by
parentheses. If an entire expression results in an array that is not assigned to a name,
then that array value is displayed. (Some system functions and defined functions return
an array result only if the result is assigned to a name or if the result is the argument of
a function or operator.)

Examples
X<2x3-1
2x3-1

n
(2x3)-1

5

Either blanks or parentheses are required to separate constants, the names of variables,
and the names of defined functions which are adjacent. Excessive blanks or sets of
parentheses are redundant, but permitted. If F is a function, then:

F 2> F(2) <> (F)2 <> (F) (2) <> F (2) «> F ((2))

Blanks or parentheses are not needed to separate primitive functions from names or
constants, but they are permitted:

-2 <> (=)(2) <> (-) 2
Blanks or parentheses are not needed to separate operators from primitive functions,
names or constants. They are permitted with the single exception that a dyadic operator
must have its right argument available when encountered. The following syntactical
forms are accepted:

(+.%x) <> (+).x <> +.,(x)

The use of parentheses in the following examples is not accepted:

+(.)x or (+.)x

Chapter 1 Introduction 17

Functions

A function is an operation which is performed on zero, one or two array arguments and
may produce an array result. Three forms are permitted:

e NILADIC defined for no arguments
e MONADIC defined for a right but not a left argument
e DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.

The name of a non-niladic function is AMBIVALENT; that is, it potentially represents
both a monadic and a dyadic function, though it might not be defined for both. The
usage in an expression is determined by syntactical context. If the usage is not defined
an error results.

Functions have long SCOPE on the right; that is, the right argument of the function is
the result of the entire expression to its right which must be an array. A dyadic
function has short scope on the left; that is, the left argument of the function is the array
immediately to its left. Left scope may be extended by enclosing an expression in
parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be displayed
on completion of evaluation of the expression. This applies on assignment to a variable
name. It applies for certain system functions, and may also apply for defined functions.

Examples
10x5-2x4
~30
2 x4
8
5-8
3
10x" 3
~30

(10x5)-2x4
42

18

Dyalog APL/W Language Reference

Defined Functions

Functions may be defined with the system function OF X, or with the function editor. A
function consists of a HEADER which identifies the syntax of the function, and a
BODY in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its (optional)
arguments. If a function is ambivalent, it is defined with two arguments but with the
left argument within braces ({ }). If an ambivalent function is called monadically, the
left argument has no value inside the function. If the explicit result is to be suppressed
for display purposes, the result is shown within braces. A function need not produce an
explicit result. Refer to Chapter 2 for further details.

Example

V R<{A} FOO B
[1] R<>'MONADIC' 'DYADIC'[OIO+0=[0NC'A']
(2] v

FoOo 1
MONADIC

'X' FOO 'Y!
DYADIC

Functions may also be created by using assignment («).

Chapter 1 Introduction 19

Function Assignment & Display

The result of a function-expression may be given a name. This is known as
FUNCTION ASSIGNMENT (see also Dynamic Functions). If the result of a function-
expression is not given a name, its value is displayed. This is termed FUNCTION
DISPLAY.

Examples
PLUS<«+
PLUS

+
SUM<+/
SUM

+/

Function expressions may include defined functions and operators. These are
displayed as a v followed by their name.

Example
V R<MEAN X @ Arithmetic mean
[1] R<(+/X)+pX
v
MEAN
VMEAN
AVERAGE<MEAN
AVERAGE
VMEAN
AVG<MEANo ,
AVG

VMEAN o,

20 Dyalog APL/W Language Reference

Operators

An operator is an operation on one or two operands which produces a function called a
DERIVED FUNCTION. An operand may be a function or an array. Operators are not
ambivalent. They require either one or two operands as applicable to the particular
operator. However, the derived function may be ambivalent. The derived function
need not return a result. Operators have higher precedence than functions. Operators
have long scope on the left. That is, the left operand is the longest function or array
expression on its left. The left operand may be terminated by:

1. the end of the expression

2. the right-most of two consecutive functions

3. afunction with an array to its left

4. an array with a function to its left

5. anarray or function to the right of a monadic operator.

A dyadic operator has short scope on the right. That is, the right operand of an operator

is the single function or array on its right. Right scope may be extended by enclosing
an expression in parentheses.

Examples
p " X<'WILLIAM' 'MARY' 'BELLE'
7 4 5
pop X
1 1 1
(pop)’'X
1 01 1

Qo«odVR'PLUS' 'MINUS'
V R«A PLUS B

[1] R<A+B

v

V R<A MINUS B
(1] R<A-B

v

PLUS/1 2 3 4
10

Chapter 1 Introduction 21

Defined Operators

Operators may be defined with the system function OF X, or with the function editor. A
defined operator consists of a HEADER which identifies the syntax of the operator,
and a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may have
one or two arguments, and may or may not produce a result. The header syntax defines
the operator name, its operand(s), the argument(s) to its derived function, and the result
(if any) of its derived function. The names of the operator and its operand(s) are
separated from the name(s) of the argument(s) to its derived function by parentheses.

Example
Vv R<A(F AND G)B
[1] R<(A F B)(A G B)
\

The above example shows a dyadic operator called AND with two operands (F and G).
The operator produces a derived function which takes two arguments (4 and B), and
produces a result (r).

12 +AND+ 4
16 3

Operands passed to an operator may be either functions or arrays.

12 (3 AND 5) 4
12 3 4 12 5 4

12 (x AND 5) 4
48 12 5 4

22 Dyalog APL/W Language Reference

Namespace Syntax

Names within namespaces may be referenced explicitly or implicitly. An explicit
reference requires that you identify the object by its full or relative pathname using a
1. ' syntax; for example:

X.NUMB <« 88
sets the variable NUMB in namespace X to 88.

88 UTIL.FOO 99
calls dyadic function 700 in namespace UT I L with left and right arguments of 88 and
99 respectively. The interpreter can distinguish between this use of ' . ' and its use as
the inner product operator, because the leftmost name: vT I L is a (class 9) namespace,
rather than a (class 3) function.
The general namespace reference syntax is:

SPACE . SPACE . (...) EXPR

Where SPACE is an expression which resolves to a namespace reference, and EXPR is
any APL expression to be resolved in the resulting namespace.

There are two special space names:

isthe top level or 'Root' hamespace.
is the parent or space containing the current namespace.

OSE is a system namespace which is preserved across workspace load and clear.

Examples
WSDOC.PAGE .NO +<« 1 a Increment WSDOC page count
#.0ONL 2 a Variables in root space
UTIL.OFX 'Z<DUP A' '"Z<A A' @ Fix remote function
. JED'F00O' o Edit function in parent space
OSE.RECORD < PERS.RECORD a Copy from PERS to [SE
UTIL.(OEX ONL 2) a Expunge variables in UTIL
(o0SE #).(e>+¥0ONL 9).(ONL 2) @ Vars in first 0OSE

A namespace.

Chapter 1 Introduction 23

UTIL.2STRING a Execute STRING in UTIL space

24

Dyalog APL/W Language Reference

You may also reference a function or operator in a namespace implicitly using the
mechanism provided by OExPORT and OPATH. If you reference a name that is
undefined in the current space, the system searches for it in the list of exported names
defined for the namespaces specified by OPATH. See OEXPORT and OPATH for
further details.

Evaluation

When the interpreter encounters a namespace reference, it :

- Switches to the namespace.
- Evaluates the name.
- Switches back to the original namespace.

If for example, in the following, the current namespace is # . W, the interpreter evaluates
the line:

A <« X.Y.DUP MAT
in the following way:

- Evaluate array MAT in current namespace W to produce argument for function.
- Switch to namespace X . Y within w,

- Evaluate function pu P in namespace w . X . ¥ with argument.

- Switch back to namespace w,

- Assign variable 4 in namespace w.

Static Vs Dynamic Localisation

The rules for name resolution have been generalised for namespaces.

In flat APL, the interpreter searches the state indicator to resolve names referenced by a
defined function or operator. If the name does not appear in the state indicator, then
the workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home' namespace.
When a name is referenced, the interpreter searches only those lines of the state
indicator which belong to the home namespace. If the name does not appear in any of
these lines, the home namespace-global value is assumed.

Chapter 1 Introduction

25

For example, if #.rnN1 calls xx.FnN2 calls #.FN3 calls XX .FNu, then:

FN1:
is evaluated in #
can see its own dynamic local names
can see global names in #

FN2:
is evaluated in xX
can see its own dynamic local names
can see global names in xx

FN3:
is evaluated in #
can see its own dynamic local names
can see dynamic local names in Fv1
can see global names in #

FNY:
is evaluated in xx
can see its own dynamic local names
can see dynamic local names in Fn2
can see global names in xx

Namespace References

A namespace reference, or ref for short, is a unique data type that is distinct from and

in addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

NS
NS1
NS1

NS1
#.NS1

You may assign a ref ; for example:

NS1
A<l
.B<«2 3p16

X«NS1

X
#.NS1

a Make a namespace called NS1

A
A

and populate it with variables A
and B

expression results in a ref

In this case, the display of X informs you that X refers to the named namespace

#.NS1.

26

Dyalog APL/W Language Reference

You may also supply a ref as an argument to a defined or dynamic function:

v FOO ARG
(1] ARG

v

FOO NS1
#.NS1

The name class of a ref is 9.

gnc 'x
9

You may use a ref to a namespace anywhere that you would use the namespace itself.
For example:

Notice that refs are references to namespaces, so that if you make a copy, it is the
reference that is copied, not the namespace itself. This is sometimes referred to as a
shallow as opposed to a deep copy. It means that if you change a ref, you actually
change the namespace that it refers to.

X.A+<1
X.A
2
NS1.4A
2

Similarly, a ref passed to a defined function is call-by-reference, so that modifications
to the content or properties of the argument namespace using the passed reference,
persist after the function exits. For example:

Vv F00 nsref

(1] nsref .B+<nsref.A

FOO NS1
NS1.B

FOO X
NS1.B

Chapter 1 Introduction 27

56 7
8 9 10

28

Dyalog APL/W Language Reference

Notice that the expression to the right of a dot may be arbitrarily complex and will be
executed within the namespace or ref to the left of the dot.

X.(C«AxB)
X.C

10 12 14

16 18 20
NS1.C

10 12 14

16 18 20

Unnamed Namespaces

The monadic form of O~S makes a new (and unique) unnamed namespace and returns
arefto it

One use of unnamed namespaces is to represent hierarchical data structures; for
example, a simple employee database:

The first record is represented by JoHN which is a ref to an unnamed namespace:

JOHN<ONS '!
JOHN
#.[Namespace]

JOHN .FirstName<'John'
JOHN.FirstName
John

JOHN.LastName<'Smith'
JOHN.Age<50

Data variables for the second record, PAU L, can be established using strand, or vector,
assignment:

PAUL<0ONS '!
PAUL.(FirstName LastName Age<'Paul' 'Brown' u4h)

The function SHow can be used to display the data in each record (the function is split
into 2 lines only to fit on the printed page). Notice that its argument is a ref.

v R<SHOW PERSON
[1] R<PERSON.FirstName,' ',PERSON.LastName
[2] R, «<' is ',sPERSON.Age

Chapter 1 Introduction 29

SHOW JOHN
John Smith is 50

SHOW PAUL
Paul Brown is u4u

An alternative version of the function illustrates the use of the :wWith :EndWith
control structure to execute an expression, or block of expressions, within a namespace:

V R<SHOW1 PERSON

[1] :With PERSON
[2] R«FirstName,' ',LastName,' is ',(%Age)
[3] :EndWith

v

SHOW1 JOHN
John Smith is 50

In this case, as only a single expression is involved, it can be expressed more simply
using parentheses.

vV R<SHOW2 PERSON

[1] R<PERSON.(FirstName,' ',LastName,' is ', (%Age))
SHOW2 PAUL

Paul Brown is uu

Dynamic functions also accept refs as arguments:
SHOW3+<{

w.(FirstName,' ',LastName,' iIs ',%Age)

SHOW3 JOHN
John Smith is 50

30

Dyalog APL/W Language Reference

Arrays of Namespace References

You may construct arrays of refs using strand notation, catenate (,) and reshape (p).

EMP<JOHN PAUL
pEMP

EMP
#.[Namespace] #.[Namespace]

Like any other array, an array of refs has name class 2:

Onc 'EMP!
2

Expressions such as indexing and pick return refs that may in turn be used as follows:
EMP[1].FirstName

John
(25EMP) . Age

Ly

The each () operator may be used to apply a function to an array of refs:

SHOW 'EMP
John Smith is 50 Paul Brown is u4u

An array of namespace references (refs) to the left of a ©.’ is expanded according to
the following rule, where x and y are refs, and exp is an arbitrary expression:

(x y).exp » (x.exp)(y.exp)
If ex p evaluates to a function, the items of its argument array(s) are distributed to each
referenced function. In the dyadic case, there is a 3-way distribution among: left

argument, referenced functions and right argument.

Monadic function £: (x y).f d e > (x.f d)(y.f e)
Dyadic function g: ab(xy).g de > (ax.gd)(by.ge)

An array of refs to the left of an assignment arrow is expanded thus:
(x y).a<c d > (x.a<c)(y.a<d)

Note that the array of refs can be of any rank. In the limiting case of a simple scalar
array, the array construct: refs.exp is identical to the scalar construct: ref .exp.

Chapter 1 Introduction 31

Note that the expression to the right of the “ .’ pervades a nested array of refs to its left:

((u v)(x y)).exp - ((u.exp)(v.exp))((x.exp)(y.exp))

Note also that with successive expansions (u v).(x y z). ..., the final number of
‘leaf” terms is the product of the number of refs at each level.

Examples:

JOHN.Children<ONS™'' '!
pJOHN.Children

JOHN.Children[1].FirstName<'Andy'
JOHN.Children[1].Age<«23

JOHN.Children[2].FirstName<«'Katherine'
JOHN.Children([2].4ge<«19

PAUL.Children<QONS™"'' 't
PAUL.Children[1].(FirstName Age<«'Tom' 25)
PAUL.Children[2].(FirstName Age<«'Jamie' 22)

pEMP

(osEMP) .Children.(FirstName Age)
Andy 23 Katherine 19

DISPLAY (2>EMP).Children.(FirstName Age)

-

|
| . [
| |Jamiel| 22 | |
| [
' |

EMP.Children o Is an array of refs
#.[Namespace]l #.[Namespace] #.[Namespace]

EMP.Children.(FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

32 Dyalog APL/W Language Reference

Distributed Assignment

Assignment pervades nested strands of names to the left of the arrow. The
conformability rules are the same as for scalar (pervasive) dyadic primitive functions
such as ‘+’. The mechanism can be viewed as a way of naming the parts of a structure.

Examples:

EMP.(FirstName Age)
JOHN 43 PAUL 44

EMP.(FirstName Age)<('Jonathan' 21)('Pauline' 22)

EMP.(FirstName Age)
Johnathan 21 Pauline 22

a Distributed assignment is pervasive
JOHN.Children.(FirstName Age)

Andy 23 Katherine 19
JOHN.Children.(FirstName Age)<('Andrew' 21)('Kate' 19

JOHN.Children.(FirstName Age)
Andrew 21 Kate 19

More Examples:

((a b)(c d))<«(1 2)(3 u) A @<l o b<«2 o c<+3 o d<«u
((Oio Oml)vec)<«o Oav a Oio<0 o Oml«0 o vec<Hav
(1 (j k))+<1 2 A I+<l o jH+«2 o k+<«2

a Naming of parts:
((first last) sex (street city state))<nopvec

a Distributed assignment in :For loop:
:For (1 j)(k I) :In array

@ Ref array expansion:

(x y).(first last)<('John' 'Doe')('Joe' 'Blow')
(f1 f2).(b1 b2).Caption«<'0OK' 'Cancel'

Chapter 1 Introduction 33

34 Dyalog APL/W Language Reference

a Structure rearrangement:

rotatei<«{ a Simple binary tree rotation.
(a b c)d e<«w
a b(c d e)

}

rotate3d«{ o Compound binary tree rotation.

(a b(c d e))f g<«w
(a b c)d(e f g)
b

Distributed Functions

Namespace ref array expansion syntax applies to functions too.

JOHN .PLOT<«{twp '0'}
JOHN.PLOT 110
O
oo
0ao
0oao
0ooao
0ooooo
0ooooao
0ooooooa
0oooooooo
0000000000

PAUL.PLOT<«{(w, "1)p " 'O"'>
PAUL.PLOT 110

g O

O

I I |

Ooodgd

Ooooada
Oooooaod
Oooooogoad
Oooooooo
OoOoooocoooaad
Oooooooooaad

EMP.PLOT<110
O g o
oo g
00O
0000
00000

(temporary vector of functions)

o o o g

OO0OQ4go»

o o o
o 0 O
o 0 O
o O

Ooooo.o
Ooooada
Ooooo.o

g
0
0
O

Chapter 1 Introduction 35
0o00o0o O 0 0 O
00ooooo o o0 0 0
00000000 o o0 o
000000000 0 O
0000000000 0

36 Dyalog APL/W Language Reference

(x y).ONL 2 3 @ x:vars, y:fns
varx funy

(x y).0ONLc2 3 a x&y: vars&fns
funx funy
varx vary

(x y).(ONL7)c2 3 n x8y: separate vars&fns
varx funx vary funy

'v'(x y).ONL 2 3 @ x:v-vars, y:v-fns
varx

'vf'(x y).ONL 2 3 A x:v-vars, y:f-fns

varx funy
A x:v-vars&fns,
'vi'(x y).0ONLc2 3 a y:f-vars&fns

varx funy

x.ONL 2 3 a depth 0 ref
funx
varx

(x y).0ONLc2 3 o depth 1 refs
funx funy
varx vary

((u v)(x y)).0ONLcc2 3 a depth 2 refs
funu funv funx funy
varu varv varx vary

(1 2)3 w(w(x y)z).+1 2(3 4) a argument distribution.
2 3 5 5 7 8

Chapter 1 Introduction 37

Operators

A function passed as operand to a primitive or defined operator, carries its namespace
context with it. This means that if subsequently, the function operand is applied to an
argument, it executes in its home namespace, irrespective of the namespace from which
the operator was invoked or defined.

Examples
VAR<99 a #.VAR
)NS X

#.X
X.VAR<77 a X.VAR

X.OFX'Z«FN R' 'Z<«R,VAR'

)JNS Y

Y.VAR<88 a Y.VAR
Y.OFX'"Z<(F OP)R' 'Z<F R'

X.FN"13
177 277 377

X.FN '"VAR:'
VAR: 77

X.FN Y.OP 'VAR:'

VAR: 77
¢ Y.OP'VAR'
99
Summary

Apart from its use as a decimal separator (3. 14), .’ is interpreted by looking at the
type or class of the expression to its left:

Template | Interpretation Example

°. Outer product 2 3 o.x 4 5
function. | Inner product 2 3 +.x 4 5
ref. Namespace reference 2 3 x.foo 4 5
array. Reference array expansion | (x y).0ncc'foo'

38

Dyalog APL/W Language Reference

MultiThreading

Overview

Dyalog APL supports multithreading - the ability to run more than one APL expression
at the same time.

This unique capability allows you to perform background processing, such as printing,
database retrieval, database update, calculations, and so forth while at the same time
perform other interactive tasks.

Multithreading may be used to improve throughput and system responsiveness.
A thread is a strand of execution in the APL workspace.

A thread is created by calling a function asynchronously, using the new primitive
operator ‘spawn’: & or by the asynchronous invocation of a callback function.

With a traditional APL synchronous function call, execution of the calling environment
is paused, pendent on the return of the called function. With an asynchronous call, both
calling environment and called function proceed to execute concurrently.

An asynchronous function call is said to start a new thread of execution. Each thread
has a unique thread number, with which, for example, its presence can be monitored or
its execution terminated.

Any thread can spawn any number of sub-threads, subject only to workspace
availability. This implies a hierarchy in which a thread is said to be a child thread of its
parent thread. The base thread at the root of this hierarchy has thread number 0.

With multithreading, APL’s stack or state indicator can be viewed as a branching tree
in which the path from the base to each leaf is a thread.

Chapter 1 Introduction 39

When a parent thread terminates, any of its children which are still running, become the
children of (are ‘adopted’ by) the parent’s parent.

Thread numbers are allocated sequentially from 0 to 2147483647. At this point, the
sequence ‘wraps around’ and numbers are allocated from 0 again avoiding any still in
use. The sequence is reinitialised when a) RESET command is issued, or the active
workspace is cleared, or a new workspace is loaded. A workspace may not be saved
with threads other than the base thread: 0, running.

Threads introduce new language elements.

e Primitive operator, spawn: &.

e System functions: OTID, OTCNUMS, OTNUMS, OTKILL, OTSYNC.

e Anextension to the GUI Event syntax to allow asynchronous callbacks.

e A control structure: : Ho 1d.

e System commands:)HOLDS,)TID.

e Extended)SI and)SINL display.

Running CallBack Functions as Threads

A callback function is associated with a particular event via the Event property of the
object concerned. A callback function is executed by 0DQ when the event occurs, or by
One.

If you append the character & to the name of the callback function in the Event
specification, the callback function will be executed asynchronously as a thread when
the event occurs. If not, it is executed synchronously as before.

For example, the event specification:

OWwS'Event' 'Select' 'DoIt&'

tells O0DQ to execute the callback function Do It asynchronously as a thread when a
Select event occurs on the object.

40 Dyalog APL/W Language Reference

Thread Switching

Programming with threads requires care.

The interpreter may switch between running threads at the following points:
e Between any two lines of a defined (or dynamic) function or operator.

e While waiting for a DL to complete.

e While waiting for a OFH0 LD to complete.

e While awaiting input from:
0pe
OSR
0OeD
The session prompt or 0: or 1.

¢ While awaiting the completion of an external operation:
A call on an external (AP) function.
A call ona0Onv4 (DLL) function.
A call on an OLE function.

At any of these points, the interpreter might execute code in other threads. If such
threads change the global environment; for example by changing the value of, or
expunging a name; then the changes will appear to have happened while the thread in
question passes through the switch point. It is the task of the application programmer to
organise and contain such behaviour!

You can prevent threads from interacting in critical sections of code by using the
: Ho 1d control structure.

Chapter 1 Introduction 41

Name Scope

APL’s name scope rules apply whether a function call is synchronous or asynchronous.
For example when a defined function is called, names in the calling environment are
visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local
environment, but can communicate with its parent and ‘sibling’ functions via local
names in the parent.

This point is important. It means that siblings can run in parallel without danger of
local name clashes. For example, a GUI application can accommodate multiple
concurrent instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute, both
child and parent functions may modify values in the calling environment. Both
functions see such changes immediately they occur.

If a parent function terminates while any of its children are still running, those children
will thenceforward ‘see’ local names in the environment that called the parent function.
In cases where a child function relies on its parent’s environment (the setting of a local
value of 010 for example), this would be undesirable, and the parent function would
normally execute a 0T SYNC in order to wait for its children to complete before itself
exiting.

If, on the other hand, after launching an asynchronous child, the parent function calls a
new function (either synchronously or asynchronously), names in the new function are
beyond the purview of the original child. In other words, a function can only ever see
its calling stack decrease in size — never increase. This is in order that the parent may
call new defined functions without affecting the environment of its asynchronous
children.

Debugging

If a thread sustains an untrapped error, its execution is suspended in the normal way. At
the same time, all other thread activity in the workspace is paused until the suspension
is cleared or restarted. A consequence of this is that, at any one time, only a single
thread can be suspended.

The session is attached to the suspended thread, so that you can:

Examine and modify local variables.
Trace and edit functions.

Clear suspensions.

Restart execution.

42

Dyalog APL/W Language Reference

When the last suspension in a thread is cleared or restarted, the session is reattached to
the base thread, and any paused threads are resumed.

From the session in a suspended thread, you can spawn a new thread, but its execution
is immediately paused until the parent’s suspension is removed.

The error message from a thread other than the base is prefixed with its thread number:

260:DOMAIN ERROR
Div[2] rslt«num+div
A
State indicator displays:).SI and) SINL have been extended to show threads’ tree-
like calling structure.

) ST
Calcl1]
&5
DivSub[1]
&7
DivSub[1]
&6
: Div[2]x
&Uu
Sub[3]
Main[4]

Here, ¥a in has called Sub, which has spawned threads 4 and s with functions: Div
and Calc. Div, after spawning Div.Sub in each of threads 6 and 7, has been
suspended at line [2].

Removing stack frames using ‘Quit’ from the tracer or ‘>’ from the session affects only
the current thread. When the final stack frame in a thread (other than the base thread) is
removed, the thread is expunged.

) RESET removes all but the base thread.

Chapter 1 Introduction 43

Using Threads

Put most simply, multithreading allows you to appear to run more than one APL
function at the same time, just as Windows (or UNIX) appears to run more than one
application at the same time. In both cases this is something of an illusion, although it
does nothing to detract from its usefulness.

Dyalog APL implements an internal timesharing mechanism whereby it shares
processing between threads. Although the mechanics are somewhat different, APL
multithreading is rather similar to the multitasking provided by Windows 95/98 and
NT. If you are running more than one application, Windows switches from one to
another, allocating each one a certain time slice before switching. At any point in time,
only one application is actually running; the others are paused, waiting.

If you execute more than one Dyalog APL thread, only one thread is actually running;
the others are paused. Each APL thread has its own State Indicator, or Sl stack. When
APL switches from one thread to another, it saves the current stack (with all its local
variables and function calls), restores the new one, and then continues processing.

Stack Considerations

When you start a thread, it begins with the Sl stack of the calling function and sees all
of the local variables defined in all the functions down the stack. However, unless the
calling function specifically waits for the new thread to terminate (see OTSYNC), the
calling functions will (bit by bit, in their turn) continue to execute. The new thread’s
view of its calling environment may then change. Consider the following example:

Suppose that you had the following functions: RUN[3] calls 78I T which in turn calls
GETDAT A but as 3 separate threads with 3 different arguments:

V RUN;A;B
[1] A<1
[2] B<'Hello World'
[3] INIT
(u] CALC
[5] REPORT
v

v INIT;C;D

(1] C«D<+0

[2] GETDATA&'Sales'
[3] GETDATA&'Costs'
(4] GETDATA& 'Expenses'

44

Dyalog APL/W Language Reference

When each GETDAT 4 thread starts, it immediately sees (via 0ST) that it was called by
1N 1T which was in turn called by RUN, and it sees local variables 4, B, ¢ and D.
However, once INIT [4] has been executed, TNIT terminates, and execution of the
root thread continues by calling c4Zc. From then on, each GETDAT A thread no longer
sees INIT (it thinks that it was called directly from RUN) nor can it see the local
variables ¢ and D that 71T had defined. However, it does continue to see the locals 4
and B defined by RUN, until RUN itself terminates.

Note that if c Arc were also to define locals 4 and B, the GETDAT 4 threads would still
see the values defined by RUN and not those defined by cALcC. However, if CALC were
to modify 4 and B (as globals) without localising them, the GETDAT 4 threads would
see the modified values of these variables, whatever they happened to be at the time.

Globals and the Order of Execution

It is important to recognise that any reference or assignment to a global or semi-global
object (including GUI objects) is inherently dangerous (i.e. a source of programming
error) if more than one thread is running. Worse still, programming errors of this sort
may not become apparent during testing because they are dependent upon random
timing differences. Consider the following example:

vV BUG;SEMI_GLOBAL

[1] SEMI_GLOBAL<0
[2] FOO& 1
[3] GO00& 1
v
v FOO
[1] :If SEMI_GLOBAL=0
[2] DO_SOMETHING SEMI GLOBAL
(3] :Else
[u] DO_SOMETHING_ELSE SEMI_GLOBAL
[5] :EndIf
v
vV GOO
[1] SEMI_GLOBAL<1

Chapter 1 Introduction 45

In this example, it is formally impossible to predict in which order APL will execute
statements in BUG, F00 or Goo from BUG[2] onwards. For example, the actual
sequence of execution may be:

BUG[1] -~ BUG[2] - F00[1] -~ Fo0[2] ~
DO_SOMETHING[1]
or
BUG[1] -~ BUG[2] - BUG[3] -» GOO[1] ~
FO0O[1] -~ Fo0[2] - F0O[3] ~
FOO[4] > DO_SOMETHING ELSE[1]

This is because APL may switch from one thread to another between any two lines in a
defined function. In practice, because APL gives each thread a significant time-slice, it
is likely to execute many lines, maybe even hundreds of lines, in one thread before
switching to another. However, you must not rely on this; thread-switching may
occur at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the Foo0 thread to the Goo
thread after Foo[1 1. If this happens, the value of SEMI_GLOBAL passed to
DO_SOMETHING will be 1 and not 0. Here is another source of error.

In fact, in this case, there are two ways to resolve the problem. To ensure that the value
of SEMI_GLOBAL remains the same from Foo[1] to FOO[2], you may use
diamonds instead of separate statements, e.g.

:If SEMI_GLOBAL=0 ¢ DO_SOMETHING SEMI_GLOBAL

Even better, although less efficient, you may use : Ho 1d to synchronise access to the
variable, for example:

v FOO
[1] :Hold 'SEMI_GLOBAL'
(2] :If SEMI_GLOBAL=0
[3] DO_SOMETHING SEMI_GLOBAL
(4] :Else
[5] DO_SOMETHING _ELSE SEMI_GLOBAL
[6] :EndIf
[7] :EndHo ld
v
vV GO0
(1] :Hold 'SEMI GLOBAL'
[2] SEMI GLOBAL<«1
[3] :EndHold

46

Dyalog APL/W Language Reference

Now, although you still cannot be sure which of 700 and ¢oo will run first, you can be
sure that SEMI_GLOBAL will not change (because Goo cuts in) within Foo.

Note that the string used as the argument to : Ho 1d is completely arbitrary, so long as
threads competing for the same resource use the same string.

A Caution

These types of problems are inherent in all multithreading programming languages, and
not just with Dyalog APL. If you want to take advantage of the additional power
provided by multithreading, it is advisable to think carefully about the potential
interaction between different threads.

Threads & Niladic Functions

In common with other operators, the spawn operator & may accept monadic or dyadic
functions as operands, but not niladic functions. This means that, using spawn, you
cannot start a thread that consists only of a niladic function

If you wish to invoke a niladic function asynchronously, you have the following
choices:

e Turn your niladic function into a monadic function by giving it a dummy argument
which it ignores.

o Call your niladic function with a dynamic function to which you give an argument
that is implicitly ignored. For example, if the function ¥ I L is niladic, you can call it
asynchronously using the expression:

{NIL}& ©
e Call your function via a dummy monadic function, e.g.

v NIL_M DUMMY
(1] NIL
v
NIL_M& "'
e Use execute, e.g.

¢& 'NIL'

Note that niladic functions can be invoked asynchronously as callback functions. For
example, the statement:

OWS'Event' 'Select' 'NIL&'
will execute correctly as a thread, even though ¥ I L is niladic. This is because callback

functions are invoked directly by 0Dg rather than as an operand to a the spawn
operator.

Chapter 1 Introduction 47

Threads & External Functions

External functions in dynamic link libraries (DLLs) defined using the ON 4 interface
may be run in separate C threads. Such threads:

o take advantage of multiple processors if the operating system permits.
o allow APL to continue processing in parallel during the execution of a 0N 4
function.

When you define an external function using ON 4, you may specify that the function be
run in a separate C thread by appending an ampersand (&) to the function name, for
example:

'beep'NA'user32|MessageBeep& 1i'
n MessageBeep will run in a separate C thread

When APL first comes to execute a multi-threaded O~ 4 function, it starts a new C-
thread, executes the function within it, and waits for the result. Other APL threads may
then run in parallel.

Note that when the O~ 4 call finishes and returns its result, its new C-thread is retained
to be re-used by any subsequent multithreaded O~ 4 calls made within the same APL
thread. Thus any APL thread that makes any multi-threaded O~ 4 calls maintains a
separate C-thread for their execution. This C-thread is discarded when its APL thread
finishes.

Note that there is no point in specifying a O~ 4 call to be multi-threaded, unless you
wish to execute other APL threads at the same time.

In addition, if your ON A call needs to access an APL GUI object (strictly, a window or
other handle) it should normally run within the same C-thread as APL itself, and not in
a separate C-thread. This is because Windows associates objects with the C-thread that
created them. Although you can use a multi-threaded 0N 4 call to access (say) a Dyalog
APL Form via its window handle, the effects may be different than if the On 4 call was
not multi-threaded. In general, 0N A calls that access APL (GUI) objects should not be
multi-threaded.

If you wish to run the same On A call in separate APL threads at the same time, you
must ensure that the DLL is thread-safe. Functions in DLLs which are not thread-safe,
must be prevented from running concurrently by using the : Ho 1d control structure.
Note that all the standard Windows APl DLLs are thread safe.

Notice that you may define two separate functions (with different names), one single-
threaded and one multi-threaded, associated with the same function in the DLL. This
allows you to call it in either way.

48

Dyalog APL/W Language Reference

External Variables

An external variable is a variable whose contents (value) reside not in the workspace,
but in a file. An external variable is associated with a file by the system function O0xT.
If at the time of association the file exists, the external variable assumes its value from
the contents of the file. If the file does not exist, the external variable is defined but a
VALUE ERROR occurs if it is referenced before assignment. Assignment of an array
to the external variable or to an indexed element of the external variable has the effect
of updating the file. The value of the external variable or the value of indexed elements
of the external variable is made available in the workspace when the external variable
occurs in an expression. No special restrictions are placed on the usage of external
variables.

Normally, the files associated with external variables remain permanent in that they
survive the APL session or the erasing of the external variable from the workspace.
External variables may be accessed concurrently by several users, or by different nodes
on a network, provided that the appropriate file access controls are established. Multi-
user access to an external variable may be controlled with the system function OFH0LD
between co-operating tasks.

Refer to the sections describing the system functions 0xT and OFH0 LD in Chapter 5
for further details.

Examples

"ARRAY' 0OXT 'v!

V<110
v[i2] + 5

gex'v!
"ARRAY' 0OXT 'r

F
12 3 456 7 8 9 10

Chapter 1 Introduction 49

Component Files

A component file is a data file maintained by Dyalog APL. It contains a series of APL
arrays known as components which are accessed by reference to their relative positions
or component number within the file. A set of system functions is provided to perform
a range of file operations. (See Chapter 5.) These provide facilities to create or delete
files, and to read and write components. Facilities are also provided for multi-user
access including the capability to determine who may do what, and file locking for
concurrent updates. (See User Guide.)

Aucxiliary Processors

Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users
with additional facilities. They run as separate tasks, and communicate with the
Dyalog APL interpreter through pipes (UNIX) or via an area of memory (Windows).
Typically, APs are used where speed of execution is critical, such as in screen
management software, or for utility libraries. Auxiliary Processors may be written in
any compiled language, although 'C' is preferred and is directly supported.

When an Auxiliary Processor is invoked from Dyalog APL, one or more external
functions are fixed in the active workspace. Each external function behaves as if it
were a locked defined function, but is in effect an entry point into the Auxiliary
Processor. An external function occupies only a negligible amount of workspace. (See
User Guide.)

Migration Level

Om L determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Unless otherwise stated, the manual assumes OML has a value of 0.

50

Dyalog APL/W Language Reference

Key to Notation

The following definitions and conventions apply throughout this manual:

f A function, or an operator's left argument when a function.
g A function, or an operator's right argument when a function.
A An operator's left argument when an array.

B An operator's right argument when an array.

X The left argument of a function.

Y The right argument of a function.

R The explicit result of a function.

[K] Axis specification.

[I] Index specification.

{X} The left argument of a function is optional.

{R}<« The function may or may not return a result, or the result may be suppressed.

The term 'function’ may refer to a primitive function, a system function, a defined
(canonical, dynamic or assigned) function or a derived (from an operator) function.

51

CHAPTER 2

Defined Functions & Operators

A defined function is a program that takes 0, 1, or 2 arrays as arguments and may
produce an array as a result. A defined operator is a program that takes 1 or 2 functions
or arrays (known as operands) and produces a derived function as a result. To
simplify the text, the term operation is used within this chapter to mean function or
operator.

Canonical Representation

Operations may be defined with the system function OF x (Fix) or by using the editor
within definition mode. Applying OCR to the character array representing the name of
an already established operation will produce its canonical representation. A defined
operation is composed of lines. The first line (line 0) is called the operation HEADER.
Remaining lines are APL statements, called the BODY.

The operation header consists of the following parts:

1. its model syntactical form,

2. anoptional list of local names, each preceded by a semi-colon (;) character,

3. an optional comment, preceded by the symbol a.

Only the model is required. If local names and comments are included, they must
appear in the prescribed order.

52 Dyalog APL/W Language Reference

Model Syntax

The model for the defined operation identifies the name of the operation, its valence,
and whether or not an explicit result may be returned. Valence is the number of
explicit arguments or operands, either 0, 1 or 2; whence the operation is termed
NILADIC, MONADIC or DYADIC respectively. Only a defined function may be
niladic. There is no relationship between the valence of a defined operator, and the
valence of the derived function which it produces. Defined functions and derived
functions produced by defined operators may be ambivalent, i.e. may be executed
monadically with one argument, or dyadically with two. An ambivalent operation is
identified in its model by enclosing the left argument in braces.

The value of a result-returning function or derived function may be suppressed in
execution if not explicitly used or assigned by enclosing the result in its model within
braces. Such a suppressed result is termed SHY.

Figures 2(i), 2(ii) and 2(iii) show all possible models for defined functions and
operators respectively.

Defined Functions

Result Niladic Monadic Dyadic Ambivalent

None f ry X fy {X) fY

Explicit R<f R«f Y ReX f Y R«{X}y f Y
Suppressed {R)<f {Ry<f Y {RY«X f Y | {RY«{X) f Y

Figure 2(i) : Models for Defined Functions

Chapter 2 Defined Functions & Operators 53

Derived Functions produced by Monadic Operator

Result Monadic Dyadic Ambivalent

None (A op)Y X(4 op)Y {X}(4A op)Y

Explicit R<(4 op)Y R<X(A op)Y R<{XY(4 op)Y
Suppressed | {Ry<(4 op)Y | {R¥y<X(4 op)Y | {R}«{X}(A op)Y

Figure 2(ii) : Models for Defined Operators (Monadic)

Derived Functions produced by Dyadic Operator

Result Monadic Dyadic Ambivalent
None (A op B)Y X(4 op B)Y {X}(A op B)Y
Explicit R<(4 op B)Y R<X(A op B)Y R«<{X}(4 op B)Y
Suppress {R}«(A op B)Y | {RY<X(A op B)Y | {R}y+{X}(4 op B)Y

Figure 2(iii) : Models for Defined Operators (Dyadic)

54 Dyalog APL/W Language Reference

Statements

A statement is a line of characters understood by APL. It may be composed of:

1. aLABEL (which must be followed by a colon :), ora CONTROL STATEMENT
(which is preceded by a colon), or both,

2. an EXPRESSION (see Chapter 1),

3. aSEPARATOR (consisting of the diamond character ¢ which must separate

adjacent expressions),

4. a COMMENT (which must start with the character).

Each of the four parts is optional, but if present they must occur in the given order
except that successive expressions must be separated by ¢. Any characters occurring to
the right of the first comment symbol () that is not within quotes is a comment.

Comments are not executed by APL. Expressions in a line separated by o are taken in
left-to-right order as they occur in the line. For output display purposes, each separated
expression is treated as a separate statement.

Examples

5x10
50

MULT:
50

MULT:
50
8

MULT:
50

5x10 ¢ 2xk4

5x10 ¢ 2xu4

a MULTIPLICATION

Chapter 2 Defined Functions & Operators 55

Global & Local Names

The following names, if present, are local to the defined operation:
1. the result,
2. the argument(s) and operand(s),

3. additional names in the header line following the model, each name preceded by a
semi-colon character,

4. labels,
5. the argument list of the system function 0SHADoW when executed,
6. aname assigned within a Dynamic Function.

All names in a defined operation must be valid APL names. The same name may be
repeated in the header line, including the operation name (whence the name is
localised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic operation.
The name of a label may be the same as a name in the header line. More than one label
may have the same name. When the operation is executed, local names in the header
line after the model are initially undefined; labels are assigned the values of line
numbers on which they occur, taken in order from the last line to the first; the result (if
any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the array
to the left of the function when called; and the right argument (if any) takes the value of
the array to the right of the function when called. In the case of a defined operator, the
left operand takes the value of the function or array to the left of the operator when
called; and the right operand (if any) takes the value of the function or array to the right
of the operator when called.

During execution, a local name temporarily excludes from use an object of the same
name with an active definition. This is known as LOCALISATION or SHADOWING.
A value or meaning given to a local name will persist only for the duration of execution
of the defined operation (including any time whilst the operation is halted). A name
which is not local to the operation is said to be GLOBAL. A global name could itself
be local to a pendent operation. A global name can be made local to a defined
operation during execution by use of the system function JSEADOW. An object is said
to be VISIBLE if there is a definition associated with its name in the active
environment.

56

Dyalog APL/W Language Reference

Examples
A<1
vF

(1] A4<«10

(2] v
F

@ <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED

10
A<1
YERASE F
VF; A
[1] A4<«10
(2] v
F
A <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED
1

Any statement line in the body of a defined operation may begin with a LABEL. A
label is followed by a colon (:). A label is a constant whose value is the number of the
line in the operation defined by system function OF x or on closing definition mode.

The value of a label is available on entering an operation when executed, and it may be
used but not altered in any expression.

Example

OVR'PLUS'
V R«{A)Y PLUS B
[1] +DYADIC p=<2=[0NC'A' ¢ R<«B o —END
[2] DYADIC: R<«A+B
[3] END:
v

1 0OSTOP'PLUS'
2 PLUS 2

PLUS[1]
DY ADIC

Chapter 2 Defined Functions & Operators 57

END

58

Dyalog APL/W Language Reference

Idiom Recognition

Idioms are commonly used expressions that are recognised and evaluated internally,
providing a significant performance improvement.

For example, the idiom BV /1 p 4 (where BV is a Boolean vector and 4 is an array)
would previously have been evaluated in 3 steps as follows:

1. Evaluate p 4 and store result in temporary variable t emp1 (temp1 is just an
arbitrary name for the purposes of this explanation)

2. Evaluate 1 temp1 and store result in temporary variable temp2.

3. Evaluate BV /temp?2

4. Discard temporary variables

In Version 10, the expression is recognised in its entirety and processed as if it were a
single primitive function in a single step. The resultant improvement in performance is
between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly
identical to an expression given in the Idiom List table will not be recognised.

For example, 0AV 1 will be recognised as an idiom, but (04v) v will not. Similarly,
(,)/ would not be recognized as the Join idiom.

Idiom List

In the following table, arguments to the idiom have types and ranks as follows:

Type Description Rank Description

C Character S Scalar or 1-item vector
B Boolean \Y Vector

N Numeric M Matrix

P Nested (pointer) A Array (any rank)

A Any type

For example: NV: numeric vector, CM: character matrix, PV: nested vector.

Chapter 2 Defined Functions & Operators

59

Expression
ppA
BV/1NS
BV/1pA
NA>"cA
A{}YA
A{o}YA
A{w}A

A{o w}A
{0}4A
{0)74

./ PV

64

+oA

56,4

+¢,4

0=pV
0=pp4
0==4
OAV.CA
CM{(Ya)1Yyw}CM
YR+ PV
Y8>PV

A\ 1=CA
+/A\" '=CA
+/A\BA

{(v\'" '"zw)/w)CV
{(+/A\" '"=w)YwliCV

~o! 17yC4

{(+/v\" 'zow)+ yw}C4

Description

Rank

Sequence selection

Index selection

Array selection

Sink

Left (Lev)

Right (Dex)

Link

Zero

Zero Each

Join

Upper right item (Om1<2)
Upper right item (Om 1> 2)
Lower right item (Om1<2)
Lower right item (Om1>2)
Zero shape

Zero rank

Zero depth

Atomic vector index
Matrix lota

Nested vector transpose (Om 1 <2)
Nested vector transpose (Om 1> 2)
Mask of leading blanks.
Number of leading blanks
Number of leading ones
Trim leading blanks

Trim leading blanks
No-blank split
No-trailing-blank split

60

Dyalog APL/W Language Reference

Notes

Sequence Selection /1 and Index Selection /1 p, as well as providing an execution
time advantage, reduce intermediate workspace usage and consequently, the incidence
of memory compactions and the likelihood of a WS FULL.

Array Selection NV>""c4, isimplemented as 4L NV 1, which is significantly faster.
The two are equivalent but the former may now be used as a matter of taste with no
performance penalty.

Join , / is currently special-cased only for vectors of vectors or scalars. Otherwise, the
expression is evaluated as a series of concatenations. Recognition of this idiom turns
join from an “n-squared” algorithm into a linear one. In other words, the improvement
factor is proportional to the size of the argument vector.

Upper and Lower Right Item now take constant time. Without idiom recognition, the
time taken depends linearly on the number of items in the argument.

Zero Depth o== takes a small constant time. Without idiom recognition, time taken
would depend on the size and depth of the argument, which in the case of a deeply
nested array, could be significant.

Nested vector transpose + &+ is special-cased only for a vector of nested vectors, each
of whose items is of the same length.

Matrix lota { (va) 1 vw). As well as being quicker, the Matrix lota idiom can
accommodate much larger character matrices. It is particularly effective when bound
with a left argument using the compose operator:

find<cmato{ (Ya)i+yw} @ find rows in cmat table.

In this case, the internal hash table for cmat is retained so that it does not need to be
generated each time the monadic derived function £ i nd is applied to a character
matrix argument.

Trim leading blanks { (v\' 'zw)/w)}and { (+/A\"' '=w)+w) are two codings
of the same idiom. Both use the same C code for evaluation.

No-blank split ~o ' "y typically takes a character matrix argument and returns a
vector of character vectors from which, all blanks have been removed. An example
might be the character matrix of names returned by the system function ON L. In
general, this idiom accommodates character arrays of any rank.

No-trailing-blank split { (+/v\' '=¢w)+ " vw) typically takes a character matrix
argument and returns a vector of character vectors. Any embedded blanks in each row
are preserved but trailing blanks are removed. In general, this idiom accommodates
character arrays of any rank.

Chapter 2 Defined Functions & Operators 61

Search Functions and Hash Tables

Primitive dyadic search functions, such as 1 (index of) and e (membership) have a
principal argument in which items of the other subject argument are located.

In the case of 1, the principal argument is the one on the left and in the case of ¢, it is
the one on the right. The following table shows the principal (P) and subject (s)
arguments for each of the functions.

P s Index of

s € P Membership
s n P Intersection
s u P Union

s ~ P Without

P {(+a)i1+w) s Matrix lota (idiom)

The Dyalog APL implementation of these functions already uses a technique known as
hashing to improve performance over a simple linear search.

Building a hash table for the principal argument takes a significant time but is
rewarded by a considerably quicker search for each item in the subject. Unfortunately,
the hash table is discarded each time the function completes and must be reconstructed
for a subsequent call (even if its principal argument is identical to that in the previous
one).

For optimal performance of repeated search operations, the hash table may be retained
between calls, by binding the function with its principal argument using the primitive o
(compose) operator. The retained hash table is then used directly whenever this
monadic derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent application
of the derived function. This usually occurs in one of two ways: either the derived
function is named for later (and repeated) use, as in the first example below or it is
applied repeatedly as the operand of a primitive or defined operator, as in the second
example.

62

Dyalog APL/W Language Reference

Example: naming a derived function.

words<'red' 'ylo' 'grn' 'brn' 'blu' 'pnk' 'blk'

find«wordset @ monadic find function
find'blk' 'blu' 'grn' 'ylo' a

7 5 3 2
find'grn' 'brn' 'ylo' 'red' a fast find

3 4 21

Example: repeated application by (") each operator.

eo[JA"'This' 'And' 'That'
1000 100 1000

Control Structures

Control structures provide a means to control the flow of execution in your APL
programs.

Traditionally, lines of APL code are executed one by one from top to bottom and the
only way to alter the flow of execution is using the branch arrow. So how do you
handle logical operations of the form “If this, do that; otherwise do the other”?.

In APL this is often not a problem because many logical operations are easily
performed using the standard array handling facilities that are absent in other
languages. For example, the expression :

STATUS<« (1+AGE<16)>'Adult' 'Minor'
Sets STATUS to 'Adult' if AGE is 16 or more; otherwise sets STATUS t0 'Minor'.

Things become trickier if, depending upon some condition, you wish to execute one set
of code instead of another, especially when the code fragments cannot conveniently be
packaged as functions. Nevertheless, careful use of array logic, defined operators, the
execute primitive function and the branch arrow can produce high quality maintainable
and comprehensible APL systems.

Control structures provide an additional mechanism for handling logical operations and
decisions. Apart from providing greater affinity with more traditional languages,
Control structures may enhance comprehension and reduce programming errors,
especially when the logic is complex. Control structures are not, however, a
replacement for the standard logical array operations that are so much a part of the APL
language.

Chapter 2 Defined Functions & Operators 63

Control Structures are blocks of code in which the execution of APL statements
follows certain rules and conditions. Control structures are implemented using a set of
control words that all start with the colon symbol (:). Control Words are case-
insensitive.

There are eight different types of control structures defined by the control words, : I £,
:While, :Repeat, :For, :Select, :With, :Trapand :Hold . Each one of
these control words may occur only at the beginning of an APL statement and indicates
the start of a particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These are
:Else, Elself, :AndIf, :0rIf,:Until, :Caseand :Caselist.

A third set of control words is used to identify the end of a particular control structure.
These are : EndIf, :EndWhile, :EndRepeat, :EndFor, :EndSelect,
:EndWith, :EndTrap and :EndHolId. Although formally distinct, these control
words may all be abbreviated to : End.

Finally, the : GoTo, :Return, : Leave and : Cont inue control words may be used
to conditionally alter the flow of execution within a control structure.

Key to Notation

The following notation is used to describe Control Structures within this section:

aexp anexpression returning an array,

bexp anexpression returning a single boolean value (0 or 1),

var loop variable used by : For control structure,

code 0 ormore lines of APL code, including other (nested) control structures,

andor either one or more : AndIf statements, or one or more : OrI f statements.

64

Dyalog APL/W Language Reference

If Statement :If bexp

The simplest : 1 £ control structure is a single condition of the form:

(1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :EndIf

If the test condition (in this case AGE<21) is true, the statements between the : 1 f and
the : End 1 f will be executed. If the condition is false, none of these statements will be
run and execution resumes after the : EndIf. Note that the test condition to the right
of : £ must return a single element boolean value 1 (true) or 0 (false).

: T £ control structures may be considerably more complex. For example, the
following code will execute the statements on lines [2-3] if AGE<21 is 1 (true), or
alternatively, the statement on line [6] if AGE<21 is 0 (false).

(1] :If AGE<21
[2] expr 1
[3] expr 2
[5] :Else

[6] expr 3
(7] :EndIf

Instead of a single condition, it is possible to have multiple conditions using the
: E1seIf control word. For example,

(1] :If WINEAGE<S

[2] 'Too young to drink'

(5] :ElseIf WINEAGE<10

(6] 'Just Right'

(7] :ElseIf WINEAGE<15

(8] 'A bit past its prime'
(9] :Else

[10] 'Definitely over the hill'

(11] :EndIf

Notice that APL executes the expression(s) associated with the first condition that is
true or those following the : E 1 se if none of the conditions are true.

Chapter 2 Defined Functions & Operators 65

The : AndIf and :0rIf control words may be used to define a block of conditions
and so refine the logic still further. You may qualifyan : 7f oran :ElseIf withone
or more : And I f statements or with one or more : 0r If statements. You may not
however mix : AndIf and : orIf inthe same conditional block. For example:

[1] :If WINE.NAME='Chateau Lafitte'
[2] :AndIf WINE.YEARe€1962 1967 1970
[3] 'The greatest?'

(4] :Elself WINE.NAME='Chateau Latour'
[5] :0rif WINE.NAME='Chateau Margaux'
(6] :0rif WINE.PRICE>100

(7] 'Almost as good'

(8] :Else

(9] 'Everyday stuff'

[10] :EndIf

Please note that in a : 11 control structure, the conditions associated with each of the
condition blocks are executed in order until an entire condition block evaluates to true.
At that point, the APL statements following this condition block are executed. None of
the conditions associated with any other condition block are executed. Furthermore, if
an : AndI1f condition yields O (false), it means that the entire block must evaluate to
false so the system moves immediately on to the next block without executing the other
conditions following the failing : And1f. Likewise, ifan : 0rIf condition yields 1
(true), the entire block is at that point deemed to yield true and none of the following

: 0r I f conditions in the same block are executed.

66 Dyalog APL/W Language Reference

:If Statement
|
:If bexp
|
| |
| andor
| |
| <------ !
|
code
|
R e
|
| | |
| :Else :ElseIf bexp
| | |
| it .
| | | |
| | | andor
| | | |
| | [<------ !
| | |
| code code
| | |
|
|

Chapter 2 Defined Functions & Operators 67

While Statement :While bexp

The simplest :while loopis:

(1] I<0

[2] :While I<100
[3] expri
(4] expr?2
[5] I<«I+1
(6] :EndWhile

Unless expr1 or expr2 alter the value of I, the above code will execute lines [3-u]
100 times. This loop has a single condition; the value of 1. The purpose of the

: EndWhiIe statement is solely to mark the end of the iteration. It acts the same as if
it were a branch statement, branching back to the :while line.

An alternative way to terminate a : Wwhi le structure isto use a : Unt i I statement.
This allows you to add a second condition. The following example reads a native file
sequentially as 80-byte records until it finds one starting with the string 'widget ' or
reaches the end of the file.

[1] I<0

[2] :While I<[ONSIZE "1

[3] REC<ONREAD "1 82 80
[u] I«<I+pREC

[5] :Until 'Widget'=6pREC

Instead of single conditions, the tests at the beginning and end of the loop may be
defined by more complex ones using : AndIf and :0rIf. For example:

(1] :While 100>1
[2] :AndIf 100>
[3] I j«foo i j
(4] :Until 100<i+j
[5] :0rIf 1i<0

(6] :0rIf j<O

In this example, there are complex conditions at both the start and the end of the
iteration. Each time around the loop, the system tests that both i and j are less than or
equal to 100. If either test fails, the iteration stops. Then, after i and j have been
recalculated by f oo, the iteration stops if i+ j is equal to or greater than 100, or if
either i or j is negative.

68 Dyalog APL/W Language Reference

:While Statement

|
:While bexp

:End[(Whilel

:Until bexp

Chapter 2 Defined Functions & Operators 69

Repeat Statement : Repeat

The simplest type of : Repeat loop is as follows. This example executes lines [3-5]
100 times. Notice that as there is no conditional test at the beginning of a : Repeat
structure, its code statements are executed at least once.

[1] I<0

(2] :Repeat

[3] expri
(4] expr?2
[5] I«I+1
(6] :Until I=100

You can have multiple conditional tests at the end of the loop by adding : AndIf or
:0rIf expressions. The following example will read data from a native file as 80-
character records until it reaches one beginning with the text string 'widget ' or
reaches the end of the file.

[1] :Repeat

[2] REC<ONREAD "1 82 80
[3] :Until 'Widget'=6pREC
(4] :0rIf 0=pREC

A :Repeat structure may be terminated by an : EndRepeat (or : End) statement in
place of a conditional expression. If so, your code must explicitly jump out of the loop
using a : Leave statement or by branching. For example:

(1] :Repeat

[2] REC<[ONREAD ~1 82 80
[3] :If 0=pREC

(4] :0rIf 'Widget'=6pREC
[5] :Leave

[6] :EndIf

[71] :EndRepeat

70

Dyalog APL/W Language Reference

:Repeat Statement

:End[Repeat]

:Until bexp

Chapter 2 Defined Functions & Operators 71

For Statement :For var :In[Each] aexp

Single Control Variable

The : For loop is used to execute a block of code for a series of values of a particular
control variable. For example, the following would execute lines [2-3] successively
for values of 1 from 010 to 10

[1] :For I :In 110
[2] exprl I
[3] expr2 I
(4] :EndFor

The way a : For loop operates is as follows. On encountering the : For, the
expression to the right of : 7n is evaluated and the result stored. This is the control
array. The control variable, named to the right of the : For, is then assigned the first
value in the control array, and the code between : For and : EndFor is executed. On
encountering the : EndFor, the control variable is assigned the next value of the
control array and execution of the code is performed again, starting at the first line after
the : For. This process is repeated for each value in the control array.

Note that if the control array is empty, the code in the : For structure is not executed.
Note too that the control array may be any rank and shape, but that its elements are
assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code
resizes (and compacts) all your component files

[1] :For FILE :In (¥0FLIB '')~""t !
[2] FILE OFTIE 1

[3] OFRESIZE 1

[u] OFUNTIE 1

[5] :EndFor

You may also nest : For loops. For example, the following expression finds the
timestamp of the most recently updated component in all your component files.

[1] TS5<0

[2] :For FILE :In (¥0FLIB '')~""1 !

[3] FILE QOFTIE 1

(4] START END<«2p0FSIZE 1

[5] :For COMP :In (START-1)vi1END-1
[6] TS[«< 140FREAD FILE COMP
[7] :EndFor

[8] OFUNTIE 1

(9] :EndFor

72

Dyalog APL/W Language Reference

Multiple Control Variables

The : For control structure can also take multiple variables. This has the effect of
doing a strand assignment each time around the loop.

Forexample :For a b ¢ :in (1 2 3)(4 5 6),SetSa b c«1 2 3,first
time around the loopand a b c<4 5 &6, the second time.

Another exampleis :For i j :In i1pMatrix,whichsets i and j to each row
and column index of Matrix.

:InEach Control Word

:For var ... :InEach value
Ina : For control structure, the keyword : TnEach is an alternative to : In.

For a single control variable, the effect of the keywords is identical but for multiple
control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:
:For a b c :In (1 2 3)(3 4 5)(5 6 7)(7 8 9)

O«a b c
:EndFor

:For a b ¢ :InFach (1 3 5 7)(2 4 6 8)(3 5 7 9)
O«a b c
:EndFor

In each case, the output from the loop is:

N O w e
o oo F N
O N 01w

Notice that in the second case, the number of items in the values vector is the same as
the number of control variables. A more typical example might be.

:For a b ¢ :InFach avec bvec cvec
:EndFor

Here, each time around the loop, control variable a is set to the next item of avec, b to
the next item of bvec and c to the next item of cvec.

Chapter 2 Defined Functions & Operators 73

:For Statement

|

:For var :Inl[Each] aexp
|

code

|

:End[For]

|

Select Statement :Select aexp

A :Select structure is used to execute alternative blocks of code depending upon the
value of an array. For example, the following displays ' is 1' if the variable 1
hasthevalue l, '7 is 2'ifitis2,0or 'I is neither 1 nor 2" ifithassome

other value.

(1] :Select I

[2] :Case 1

[3] 'IT is 1!

(u] :Case 2

[5] 'T is 2!

(6] :Else

(7] 'IT is neither 1 nor 2!
[8] :EndSelect

In this case, the system compares the value of the array expression to the right of the

: Se Iect statement with each of the expressions to the right of the : Case statements
and executes the block of code following the one that matches. If none match, it
executes the code following the : £ Ise (which is optional). Note that comparisons are
performed using the = primitive function, so the arrays must match exactly. Note also
that not all of the : Case expressions are necessarily evaluated because the process
stops as soon as a matching expression is found.

Instead of a : Case statement, you may also use a : CaselList statement. If so, the
enclose of the array expression to the right of : Se Iect is tested for membership of the
array expression to the right of the : CaserL ist using the e primitive function.

74 Dyalog APL/W Language Reference

Example

(1] :Select 76 6

[2] :Case 6 6

[3] 'Box Cars'
(4] :Case 1 1

[5] 'Snake Eyes'
(6] :Caselist 2p’ 16
(7] 'Pair'

(8] :CaselList (16), 916
(9] 'Seven'

[10] :Else

[11] "Unlucky'

[12] :EndSelect

:Select Statement

:Select aexp

:End[Select]

Chapter 2 Defined Functions & Operators 75

With Statement

:With obj

:With isa control structure that may be used to simplify a series of references to an
object or namespace. : W it h changes into the specified namespace for the duration of
the control structure, and is terminated by : End (Wit h]. For example, you could
update several properties of a Grid object 7. ¢ as follows:

:With F.G
Values<«4 3p0

RowTitles<«'North' 'South' 'Fast' 'West'
ColTitles<«'Cakes' 'Buns' 'Biscuits'

:EndWith

:Withisanalogousto OCsS in the following senses:

e The namespace argumentto : Wit A is interpreted relative to the current space.
o Local names in the containing defined function continue to be visible in the new

space

e Global references from within the :w i ¢ A control structure are to names in the new

space

o Exiting the defined function from within a :w i ¢ & control structure causes the
space to revert to the one from which the function was called.

On leaving the :w it h control structure, execution reverts to the original namespace.
Notice however that the interpreter does not detect branches (-) out of the control

structure.

:W 1t h control structures can be nested in the normal fashion:

(1]

With 'x! A
[2] (With 'y! a
[3] :With 0OSE A
(4] RN A
[5] :EndWith)
[6] :EndWith)
[7] :EndWith)
:With Statement

:With namespace (ref

code

|
:End[With]

Change to #.x

Change to #.x.y

Change to 0OSE
in 0OSE

Back to #.x.y

Back to #.x

Back to #

or name)

76 Dyalog APL/W Language Reference

Chapter 2 Defined Functions & Operators 77

Hold Statement +Hold tkns

Whenever more than one thread tries to access the same piece of data or shared
resource at the same time, you need some type of synchronisation to control access to
that data. This is provided by : Ho 1d.

: Ho 1d provides a mechanism to control thread entry into a critical section of code.

t kns must be a simple character vector or scalar, or a vector of character vectors.

t kns represents a set of ‘tokens’, all of which must be acquired before the thread can
continue into the control structure. : Ho 1d is analogous to the component file system
OFHOLD.

Within the whole active workspace, a token with a particular value may be held only
once. If the hold succeeds, the current thread acquires the tokens and execution
continues with the first phrase in the control structure. On exit from the structure, the
tokens are released for use by other threads. If the hold fails, because one or more of
the tokens is already in use:

1. [Ifthereisno : EIse clause in the control structure, execution of the thread is
blocked until the requested tokens become available.

2. Otherwise, acquisition of the tokens is abandoned and execution resumed
immediately at the first phrase in the : £ Ise clause.

t kns can be either a single token:

|a|
'Red'
‘.Ut

T

'"Program Files'

... Or a number of tokens:

'red' 'green' 'blue'
'doe' 'a' 'deer'
,"tabc!

+0Onl 9

Pre-processing removes trailing blanks from each token before comparison, so that, for
example, the following two statements are equivalent:

:Hold 'Red' 'Green'

:Hold +2 5p'Red Green'!

78 Dyalog APL/W Language Reference

Unlike OFH0 LD, a thread does not release all existing tokens before attempting to
acquire new ones. This enables the nesting of holds, which can be useful when multiple
threads are concurrently updating parts of a complex data structure.

In the following example, a thread updates a critical structure in a child namespace, and
then updates a structure in its parent space. The holds will allow all ‘sibling’
namespaces to update concurrently, but will constrain updates to the parent structure to
be executed one at a time.

:Hold ([cs'! @ Hold child space
R o Update child space
:Hold ##.0cs!'! o Hold parent space

Ce o Update Parent space
:EndHold
:EndHold

However, with the nesting of holds comes the possibility of a ‘deadlock’. For example,
consider the two threads:

Thread 1 Thread 2

:Hold 'red' :Hold 'green'
;ééld 'green' ;é;ld 'red'
.EndHo ld . EndHo 1d

:EndHold :EndHold

In this case if both threads succeed in acquiring their first hold, they will both block
waiting for the other to release its token. Fortunately, the interpreter detects such cases
and issues an error (1008) DEADLOCK. You can avoid deadlock by ensuring that
threads always attempt to acquire tokens in the same chronological order, and that
threads never attempt to acquire tokens that they already own.

Note that token acquisition for any particular : Ho 1d is atomic, that is, either all of the
tokens or none of them are acquired. The following example cannot deadlock:

Thread 1 Thread 2

:Hold 'red'

e tHold 'green' 'red'

:Hold 'green' cen

:EndHold
:EndHo Id

:EndHold

Chapter 2 Defined Functions & Operators 79

Examples

: Ho 1d could be used for example, during the update of a complex data structure that
might take several lines of code. In this case, an appropriate value for the token would
be the name of the data structure variable itself, although this is just a programming
convention: the interpreter does not associate the token value with the data variable.

:Hold'Struct'
ce a Update Struct
Struct <«
:EndHold
The next example guarantees exclusive use of the current namespace:
:Hold QOCS'! a Hold current space
:EndHo ld
The following example shows code that holds two positions in a vector while the
contents are exchanged.

:Hold s 'to Im
:If >/vecl[fm tol
vec[fm tol<«vec[to fm]
:End
:End

Between obtaining the next available file tie number and using it:

:Hold 'OFNUMS'
tie<1+[/0,0FNUMS
fname (FSTIE tie

:End

The above hold is not necessary if the code is combined into a single line:
fname [(OFSTIE tie<«1+[/0,0FNUMS

or,
tie«fname OFSTIE O

80 Dyalog APL/W Language Reference

Note that : Ho 1d, like its component file system counterpart OFH0 LD, is a device to
enable co-operating threads to synchronise their operation.

: Ho 1d does not prevent threads from updating the same data structures concurrently, it
prevents threads only from : Ho 1d-ing the same tokens.

:Hold Statement

|
:Hold token(s)

:End[Hold]
|

Chapter 2 Defined Functions & Operators 81

Trap Statement :Trap ecode

: Trap is an error trapping mechanism that can be used in conjunction with, or as an
alternative to, the DT RAP system variable. It is equivalent to APL2’s OE 4, except that
the code to be executed is not restricted to a single expression and is not contained
within quotes (and so is slightly more efficient).

Operation

The segment of code immediately following the : Trap keyword is executed. On
completion of this segment, if no error occurs, control passes to the code following
:End[Trapl.

If an error does occur, the event code (error number) is noted and:

o If the error occurred within a sub-function, the system cuts the execution stack back
to the function containing the : Trap keyword. In this respect, : Trap behaves like
OTRAP witha ' ¢ qualifier.

e The system searches fora : Case[List] representing the event code.

o |Ifthereissucha :caselList], orfailing that, an : £ 1se keyword, execution
continues from this point.

Otherwise, control passes to the code following : End [Trap] and no error processing
oceurs.

Note that the error trapping is in effect only during execution of the initial code
segment. It is disabled (or surrendered to outer level : Traps or 0T RAPS) immediately
a trapped error occurs. In particular, the error trap is no longer in effect during
processing of : Case[List]’s argument or in the code following the : Casel[List]
or : E Ise statement. This avoids the situation sometimes encountered with OTRAP
where an infinite ‘trap loop” occurs. If an error which is not specified occurs, it is
processed by outer : Traps, OTRAPS, or default system processing in the normal
fashion.

82 Dyalog APL/W Language Reference

Examples

v Ix
(1] :Trap 1000 a Cutback and exit on interrupt
[2] Main
[3] :EndTrap

V ftie«Fcreate file @ Create null component file
[1] ftie<1+[/0,0fnums A next tie number.
[2] :Trap 22 o Trap FILE NAME ERROR
(3] file Ufcreate ftie n Try to create file.
(4] :Else
(5] file Oftie ftie @ Tie the file.
[6] file Oferase ftie o Drop the file.
(7] file Ofcreate ftie n Create new file.
(8] :EndTrap
v

V Ix a Distinguish various cases

(1] :Trap 0 1000
(2] Main
[3] :Case 1002
(4] 'Interrupted ...'
[5] :Caselist 1 10 72 76
[6] 'Not enough resources'
(7] :Caselist 17+120
[8] 'File System Problem'
(9] :Else
[10] 'Unexpected Error'
(11] :EndTrap
v

Note that :Traps can be nested:

V ntie<Ntie file a Tie native file
[1] ntie<« 1+l /0,0nnums a Next native tie num
[2] :Trap 22 a Trap FILE NAME ERRO
R
[3] file Ontie ntie a Try to tie file
(u] :Else
[5] :Trap 22 a Trap FILE NAME ERRO
R
(6] (file,'.txt')Ontie ntie o Try with .txt extn
(7] :Else

[8] file [Oncreate ntie a Create null file.

Chapter 2 Defined Functions & Operators 83

(9] :EndTrap
[10] :EndTrap
v

84 Dyalog APL/W Language Reference

:Trap Statement

:Trap <ecode>

code

|

[<---mmmm e .
| |
emmm e — L mm - |
| | | |
| :Else :Casel[List] <ecode> |
code code		
(R p—— v N e ___ 1		

:End[Trap]

|
Where ecode is a scalar or vector of 0T RAP event codes (see Chapter 5).

Note that within the : Trap control structure, : Case is used for a single event code
and : caserList for avector of event codes.

Chapter 2 Defined Functions & Operators 85

GoTo Statement :GoTo aexp

A :GoTo statement is a direct alternative to ~ (branch) and causes execution to jump
to the line specified by the first element of aexp.

The following are equivalent. See Branch for further details.

>Exit
:GoTo Exit

+>(N<I«I+1)/End
:GoTo (N<I<«I+1)/End

>1+0LC
:GoTo 1+0LC

>10
:GoTo 10

Return Statement :Return

A : Return statement causes a function to terminate and has exactly the same effect
as -0.

The : Return control word takes no argument.

A : Return statement may occur anywhere in a function or operator.

Leave Statement : Leave

A :Leave statement is used to explicitly terminate the execution of a block of
statements withina : For, : Repeat or :Whi le control structure.

The : Leave control word takes no argument.

86 Dyalog APL/W Language Reference

Continue Statement :Continue

A :Cont inue statement starts the next iteration of the immediately surrounding
:For, :Repeat or :While control loop.

When executed within a : For loop, the effect is to start the body of the loop with the
next value of the iteration variable.

When executed within a : Repeat or :Whi le loop, if there is a trailing test that test is
executed and, if the result is true, the loop is terminated. Otherwise the leading test is
executed in the normal fashion.

Chapter 2 Defined Functions & Operators 87

Locked Functions & Operators

A defined operation may be locked by the system function O0zock. A locked operation
may not be displayed or edited. The system function OCR returns an empty matrix of
shape 0 0 and the system functions ONR and OV R return an empty vector for a locked
operation.

Stop and trace vectors may be set by the system functions 0ST0P and OTRACE
respectively. Existing stop or trace settings are cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain pendent
when execution is suspended. The state indicator is cut back as described below.

The State Indicator

The state of execution is dynamically recorded in the STATE INDICATOR. The state
indicator identifies the chain of execution for operators, functions and the evaluated or
character input/output system variables (O and 7). At the top of the state indicator is
the most recently activated operation.

Execution may be suspended by an interrupt, induced by the user, the system, or by a
signal induced by the system function OSIGNAL or by a stop control set by the system
function 0SToP. If the interrupt (or event which caused the interrupt) is not defined as
a trappable event by the system variable 0T RAP, the state indicator is cut back to the
first of either a defined operation or the evaluated input prompt (0) such that there is no
locked defined operation in the state indicator. The topmost operation left in the state
indicator is said to be SUSPENDED. Other operations in the chain of execution are
said to be PENDENT.

The state indicator may be examined when execution is suspended by the system
commands)SI and)SINL. The line numbers of defined operations in the state
indicator are given also by the system variable JLC.

Suspended execution may be resumed by use of the Branch function (see Chapter 3).
Whilst execution is suspended, it is permitted to enter any APL expression for
evaluation, thereby adding to the existing state indicator. Therefore, there may be more
than one LEVEL OF SUSPENSION in the state indicator. If the state indicator is cut
back when execution is suspended, it is cut back no further than the prior level of
suspension (if any).

88 Dyalog APL/W Language Reference

Examples
v F
(1] G
v
v G
(1] "FUNCTION G'+
v
¢ F!

SYNTAX ERROR
G[1] '"FUNCTION G'+

A

VST
G[1]x*
Fl1]

Orock'c:

o 'F!
SYNTAX ERROR
Fl1] @

A

VST
F[11x
k]
GL1]x
Fl1]
]

A suspended or pendent operation may be edited by the system editor or redefined
using OF X provided that it is visible and unlocked. However, pendent operations retain
their original definition until they complete, or are cleared from the State Indicator.
When a new definition is applied, the state indicator is repaired if necessary to reflect
changes to the operations, model syntax, local names, or labels.

Chapter 2 Defined Functions & Operators 89

Dynamic Functions & Operators

A Dynamic Function (operator) is an alternative function definition style suitable for
defining small to medium sized functions. It bridges the gap between operator
expressions: rank<«p o p and full ‘header style” definitions such as:

V rslt«larg func rarg;local...

In its simplest form, a dynamic function is an APL expression enclosed in curly braces
{2} possibly including the special characters o and w to represent the left and right
arguments of the function respectively. For example:

{(+/w)+pw) 1 2 3 4 n Arithmetic Mean (Average)

3 {wx+o)} 64 a oath root
n

Dynamic functions can be named in the normal fashion:

mean<{(+/w)s+pw)
mean (2 3)(4 5)
2.5 4.5

Dynamic Functions can be defined and used in any context where an APL function
may be found, in particular:

In immediate execution mode as in the examples above.
Within a defined function or operator.

As the operand of an operator such as each (7).

Within another dynamic function.

The last point means that it is easy to define nested local functions.

90 Dyalog APL/W Language Reference

Multi-Line Dynamic Functions

The single expression which provides the result of the Dynamic Function may be
preceded by any number of assignment statements. Each such statement introduces a
name which is local to the function.

For example in the following, the expressions sum<« and num< create local variables
sumand num.

mean<A{ a Arithmetic mean
sum<«+/w a Sum of elements
num<pw a Number of elements
sum+num a Mean

¥

Note that Dynamic Functions may be commented in the usual way using a.

When the interpreter encounters a local definition, a new local name is created. The
name is shadowed dynamically exactly as if the assignment had been preceded by:
Oshadow name o.

It is important to note the distinction between the two types of statement above. There
can be many assignment statements, each introducing a new local variable, but only a
single expression where the result is not assigned. As soon as the interpreter encounters
such an expression, it is evaluated and the result returned immediately as the result of
the function.

For example, in the following,

mean<< a Arithmetic mean
sum<+/w a Sum of elements
num<pw o Number of elements
sum,num o Attempt to show sum,num (wrong)!
sum+num a ... and return result.
¥

... as soon as the interpreter encounters the expression sum, num, the function
terminates with the two element result (sum, num) and the following line is not
evaluated.

Chapter 2 Defined Functions & Operators

To display arrays to the session from within a Dynamic function, you can use the
explicit display forms O« or [1< as in:

mean<{ a Arithmetic mean
sum<«+/w a Sum of elements
num<pw a Number of elements
O<«sum, num a show sum,num.
sum+num A@ ... and return result.
¥

Note that local definitions can be used to specify local nested Dynamic Functions:

rms<{ a Root Mean Square
root<{wx0.5%} A V Square root
mean<«{(+/w)+pw) A V Mean
square«{wxuw} A V Square

root mean square w

Default Left Argument

The special syntax: a<expr is used to give a default value to the left argument if a
Dynamic Function is called monadically. For example:

root<{ @ ath root
o<2 a default to sqrt
w* o

¥

The expression to the right of o< is evaluated only if its Dynamic Function is called
with no left argument.

92

Dyalog APL/W Language Reference

Guards
A Guard is a Boolean-single valued expression followed on the right by a ' : '. For
example:

O==w: A Right arg simple scalar

a<0: a Left arg negative

The guard is followed by a single APL expression: the result of the function.
w20: wx0.5 a Square root if non-negative.

A Dynamic function may contain any number of guarded expressions each on a
separate line (or collected on the same line separated by diamonds). Guards are
evaluated in turn until one of them yields a 1. The corresponding expression to the right
of the guard is then evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default result
of the function. For example:

sign<«{
w>0: '"+ve' a Positive
w=0: 'zero' A zero
'-ve! a Negative (Default)
¥

Local definitions and guards can be interleaved in any order.

Note again that any code following the first unguarded expression (which terminates
the function) could never be executed and would therefore be redundant.

Shy Result

Dynamic Functions are usually 'pure' functions that take arguments and return explicit
results. Occasionally, however, the main purpose of the function might be a side-effect
such as the display of information in the session, or the updating of a file, and the value
of a result, a secondary consideration. In such circumstances, you might want to make
the result 'shy’, so that it is discarded unless the calling context requires it. This can be
achieved by assigning a dummy variable after a (true) guard:

Tog<+A{
tie«a Ofstie 0
cno<w [fappend tie
tie<(funtie tie
l1:rslt<cno

Append w to file a.

tie number for file,

new component number,
untie file,

comp number as shy result.

®» ®» ® ©® D

Chapter 2 Defined Functions & Operators 93

Static Name Scope

When an inner (nested) Dynamic Function refers to a name, the interpreter searches for
it by looking outwards through enclosing Dynamic Functions, rather than searching
back along the execution stack. This regime, which is more appropriate for nested
functions, is said to employ static scope instead of APL’s usual dynamic scope. This
distinction becomes apparent only if a call is made to a function defined at an outer
level. For the more usual inward calls, the two systems are indistinguishable.

For example, in the following function, variable ¢y pe is defined both within which
itself and within the inner function fn1. When £ n1 calls outward to fn2 and fn2
refers to ¢ty pe, it finds the outer one (with value 'stat ic ') rather than the one
defined in fn1:

which<{
type<«'static'
fni<{

type<'dynamic'
fn2 w

fn2<{
type w

fnl w

which'scope'
static scope

94

Dyalog APL/W Language Reference

Tail Calls

A novel feature of the implementation of Dynamic Functions is the way in which tail
calls are optimised.

When a Dynamic Function calls a sub-function, the result of the call may or may not be
modified by the calling function before being returned. A call where the result is passed
back immediately without modification is termed a tail call.

For example in the following, the first call on function fact is a tail call because the
result of fact is the result of the whole expression, whereas the second call isn’t
because the result is subsequently multiplied by w.

(axw)fact w-1 a Tail call on fact.
wxfact w-1 a Embedded call on fact.

Tail calls occur frequently in Dynamic Functions, and the interpreter optimises them by
re-using the current stack frame instead of creating a new one. This gives a significant
saving in both time and workspace usage. It is easy to check whether a call is a tail call
by tracing it. An embedded call will pop up a new trace window for the called function,
whereas a tail call will re-use the current one.

Chapter 2 Defined Functions & Operators 95

Using tail calls can improve code performance considerably, although at first the
technique might appear obscure. A simple way to think of a tail call is as a branch
with arguments. The tail call, in effect, branches to the first line of the function after
installing new values for w and o.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps, possibly in a different order
depending on whether we want to test at the ‘top’ or the ‘bottom’ of the loop.

Initialise loop control variable(s). A Init
Test loop control variable. an test
Process body of loop. A proc
Modify loop control variable for next iteration. a mod

Branch to step 2. A jump

aprwdE

For example, in classical APL you might find the following:

v value«limit loop value @ init
(1] top:»(0OCT>value-1limit)/0 A test
[2] value<«Next value @ proc, mod
[3] >top A jump
v
Control structures help us to package these steps:
v value«limit loop value @ init
(1] :While OCT<value-Ilimit a test
[2] value<Next value a proc, mod
[3] :EndWhile A jump
v
Using tail calls:
loop+{ A Init
OCT>o-w:w a test
o V Next w @ proc, mod, jump

96

Dyalog APL/W Language Reference

Error-Guards

An error-guard is (an expression that evaluates to) a vector of error numbers,
followed by the digraph: : :, followed by an expression, the body of the guard, to be
evaluated as the result of the function. For example:

11 5 :: wx0 a Trap DOMAIN and LENGTH errors.

In common with : Trap and OTRAP, error numbers 0 and 1000 are catchalls for
synchronous errors and interrupts respectively.

When an error is generated, the system searches statically upwards and outwards for an
error-guard that matches the error. If one is found, the execution environment is
unwound to its state immediately prior to the error-guard’s execution and the body of
the error-guard is evaluated as the result of the function. This means that, during
evaluation of the body, the guard is no longer in effect and so the danger of a hang
caused by an infinite ‘trap loop’, is avoided.

Notice that you can provide ‘cascading’ error trapping in the following way:

O::try_2nd
O::try_1st
expr

In this case, if expr generates an error, its immediately preceding: o : : catches it and
evaluates try_1st leaving the remaining error-guard in scope. If try_1s¢ fails, the
environment is unwound once again and try_ 2 nd is evaluated, this time with no
error-guards in scope.

Examples:

0 pen returns a handle for a component file. If the exclusive tie fails, it attempts a
share-tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0 is
returned.

open<{
0::0
22::w OFCREATE 0
24 25::w [OFSTIE O
w OFTIE O

Handle for component file w.
Fails:: return 0 handle.
FILE NAME:: create new one.
FILE TIED:: try share tie.
Attempt to open file.

» ®» ® ® D

Chapter 2 Defined Functions & Operators 97

An error in d iv causes it to be called recursively with improved arguments.

div<{
o<1
5::4V/Vv40 w
11::0 V wtw=0
o+t w

Tolerant division:: a+0 - o.
default numerator.

LENGTH:: stretch to fit.
DOMAIN:: increase divisor.
attempt division.

> ®» ® ®» D

}

Notice that some arguments may cause d i v to recur twice:

6 4 2 div 3 2
-> 6 4 2 div 3 2 0
-> 6 4 2 div 3 2 1
- 2 2 2

The final example shows the unwinding of the local environment before the error-
guard’s body is evaluated. Local name ¢ rap is set to describe the domain of its
following error-guard. When an error occurs, the environment is unwound to expose
trap’s statically correct value.

add<«{
trap«'domain' o 11::trap
trap<«'length' o 5::trap

o+ w
¥
2 add 3 a Addition succeeds
5
2 add 'three' a DOMAIN ERROR generated.
domain

2 3 add 4 5 6 o LENGTH ERROR generated.
length

98 Dyalog APL/W Language Reference

Dynamic Operators

The operator equivalent of a dynamic function is distinguished by the presence of
either of the compound symbols ‘aa’ or ‘ww’ anywhere in its definition. oo and ww
represent the left and right operand of the operator respectively.

Example

The following monadic eac h operator applies its function operand only to unique
elements of its argument. It then distributes the result to match the original argument.
This can deliver a performance improvement over the primitive each (**) operator if the
operand function is costly and the argument contains a significant number of duplicate
elements. Note however, that if the operand function causes side effects, the operation
of dynamic and primitive versions will be different.

each<«{ a Fast each:
shp<puw @ Shape and
vec<,w @ ... ravel of arg.
nub<uvec a Vector of unique elements.
res<oo nub a Result for unique elts.
idx<nubivec o Indices of arg in nub
shppidx>""cres m ... distribute result.

}

The dyadic e 1se operator applies its left (else right) operand to its right argument
depending on its left argument.

else<«{
o: oo W a True: apply Left operand
ww w a Else, .. Right
}
0 1 [elsel™ 2.5 a Try both false and true.

Chapter 2 Defined Functions & Operators 99

Recursion

A recursive Dynamic Function can refer to itself using its name explicitly, but because
we allow unnamed functions, we also need a special symbol for implicit self-
reference: ' v '. For example:

fact<{ a Factorial w.
w<l: 1 a Small w, finished,
WXV w-1 a Otherwise recur.

¥

Implicit self-reference using ' v ' has the further advantage that it incurs less
interpretative overhead and is therefore quicker. Tail calls using ' v ' are particularly
efficient.

Recursive Dynamic Operators refer to their derived functions, that is the operator
bound with its operand(s) using v or the operator itself using the compound symbol:
vv. The first form of self reference is by far the more frequently used.

pow<{ a Function power.
o=0:w a Apply function operand o times.
(a=1)V o0 w A GO QO OO0 ... W

}

The following example shows a rather contrived use of the second form of (operator)
self reference. The exp operator composes its function operand with itself on each
recursive call. This gives the effect of an exponential application of the original
operand function:

exp<«{ a Exponential fn application.
a=0:00 w n Apply operand 2xo times.
(a-1)aacao VV w a (odeoa)o(...) ... W

}

succ<«{1+w) a Successor (increment).

10 succ exp O
1024

100 Dyalog APL/W Language Reference

Example: Pythagorean triples

The following sequence shows an example of combining Dynamic Functions and
Operators in an attempt to find Pythagorean triples: (3 4+ 5)(5 12 13) ...

3

sqrt<{wx0.5}% A Square root.

sqrt 9 16 25

hyp«{sqrt+/>wx2} @ Hypoteneuse of triangl

hyp(3 4)(4 5)(5 12)

.403124237 13

n

intg«{w=Llw) a Whole number?

intg 2.5 3 4.5

pyth<{intg hyp w) @ Pythagorean pair?

pyth(3 uw)(4 9)(5 12)

pairs<{,iw w} a Pairs of numbers 1..w.

pairs 3
12 13 21 22 23 31 32 33

filter«<{(ao w)/w} A Op: w filtered by oao.

pyth filter pairs 12 o Pythagorean pairs 1..12
4 3 5 12 6 8 8 6 9 12 12 5 12 9

Chapter 2 Defined Functions & Operators 101

So far, so good, but we have some duplicates: (6 8) is just double (3 u).

rpm<{ A Relatively prime?
w=0:a=1 a C.f. Euclid's gcd.
w VvV wlo

Y/ a Note the /™

rpm(2 4)(3 4)(6 8)(16 27)
01 0 1

rpm filter pyth filter pairs 20
3 4 4 3 5 12 8 15 12 5 15 8

We can use an operator to combine the tests:

and<{ a Lazy parallel '"And'.
mask<oo w a Left predicate selects...
mask\ww mask/w a args for right predi
cate.
}

pyth and rpm filter pairs 20
34 4 3 5 12 8 15 12 5 15 8

Better, but we still have some duplicates: (3 4) (4 3).
less<«{</>w}
less(3 u4)(4 3)
less and pyth and rpm filter pairs 40
3 4 5 12 7 24 8 15 9 40 12 35 20 21

And finally, as promised, triples:

{w,hyp wY 'less and pyth and rpm filter pairs 35
3 4 5 5 12 13 7 24 25 8 15 17 12 35 37 20 21 29

102

Dyalog APL/W Language Reference

A Larger Example

Function t okens uses nested local D-Fns to split an APL expression into its
constituent tokens. Note that all calls on the inner functions: Iex, acc, and the
unnamed D-Fn in each token case, are tail calls. In fact, the only stack calls are those
on function: a I 1, and the unnamed function: {wv~1¢w}, within the ‘Char literal’

case.
tokens<A{ a Lex of APL src line.
alph<0A,04,'_aA'",26417y0AV a Alphabet for names.
all«{+/A\oew) a No. of leading oew.
acc«{(a,t/w)lex>v/w} a Accumulate tokens.
lex<{
O=pw:o ¢ hd<tw a Next char else done.
hd=" '":0{ a White Space.

size<«w all' !
o0 acc size w

Yw

hdealph:a{ a Name
size<«w all alph,0D
o acc size w

Yw

hde':":a{ a System Name/Keyword
size«w all hd,alph
o0 acc size w

Yw

hd=""'""1":a{ a Char literal
size<+/A\{wv 1¢w)rz\hd=w
o acc size w

Yw

hdeD, ' ':a{ @ Numeric literal
size<w all 0OD,'. E!
o acc size w

Tw

hd='a':a acc(pw)w a Comment

o acc 1 w a Single char token.

¥
(Opet'')lex,w

display tokens'xtok<sizet+srce a Next token'

Chapter 2 Defined Functions & Operators

103

e Gl > P i > P il P i .

|
|xtok| |<«| |sizel| |+]| |srcel| | | |a Next token]| |
|

104

Dyalog APL/W Language Reference

Restrictions

Currently multi-line Dynamic Functions can’t be typed directly into the session. The
interpreter attempts to evaluate the first line with its trailing left brace and a
SYNTAX ERROR results.

Dynamic Functions need not return a result. However even a non-result-returning
expression will terminate the function, so you can’t, for example, call a non-result-
returning function from the middle of a Dynamic Function.

You can trace a Dynamic Function only if it is defined on more than one line.
Otherwise it is executed atomically in the same way as an execute () expression. This
deliberate restriction is intended to avoid the confusion caused by tracing a line and
seeing nothing change on the screen.

Dynamic Functions do not currently support Ocs.

Supplied Workspaces

You can find more examples of dynamic functions and operators in workspaces in the
samples\dfns directory.

DFNS.DWS - a selection of utility functions.

MIN.DWS - an example application.

Chapter 2 Defined Functions & Operators 105

APL Line Editor

The APL Line Editor described herein is included for completeness and for adherence
to the ISO APL standard. See User Guide for a description of the more powerful full-
screen editor, JED.

Using the APL Line Editor, functions and operators are defined by entering Definition
Mode. This mode is opened and closed by the del symbol , v. Within this mode, all
evaluation of input is deferred. The standard APL line editor (described below) is used
to create and edit operations within definition mode.

Operations may also be defined using the system function OFx (implicit in a OED fix)
which acts upon the canonical (character), vector, nested or object representation form
of an operation. (See Chapter 5 and User Guide for details.)

Functions may also be created dynamically or by function assignment. (See above and
Chapter 3.)

The line editor recognises three forms for the opening request.

Creating Defined Operation

The opening v symbol is followed by the header line of a defined operation.
Redundant blanks in the request are permitted except within names. If acceptable, the
editor prompts for the first statement of the operation body with the line-number 1
enclosed in brackets. On successful completion of editing, the defined operation
becomes the active definition in the workspace.

Example
VR<F00
[1] R<10
(2] v
FoO

10

106

Dyalog APL/W Language Reference

The given operation name must not have an active referent in the workspace, otherwise
the system reports defn error and the system editor is not invoked:

)VARS
SALES X Y

VR<SALES Y
defn error

The header line of the operation must be syntactically correct, otherwise the system
reportsdefn error and the system editor is not invoked:

VR<«A B C D:G
defn error

Listing Defined Operation

The v symbol followed by the name of a defined operation and then by a closing v,
causes the display of the named operation. Omitting the function name causes the
suspended operation (ie. the one at the top of the state indicator) to be displayed and
opened for editing.

Example
VFOOV
vV R<F00
[1] R<10
v
VST
Fool[1] x
v
vV R<F00
[1] R<10

(2]

Chapter 2 Defined Functions & Operators 107

Editing Active Defined Operation

Definition mode is entered by typing v followed optionally by a name and editing
directive.

The v symbol on its own causes the suspended operation (i.e. the one at the top of the
state indicator) to be displayed. The editor then prompts for a statement or editing
directive with a line-number one greater than the highest line-number in the function.
If the state indicator is empty, the system reports defn error and definition mode
is not entered.

The v symbol followed by the hame of an active defined operation causes the display
of the named operation. The editor then prompts for input as described above. If the
name given is not the name of an active referent in the workspace, the opening request
is taken to be the creation of a new operation as described in paragraph 1. If the name
refers to a pendent operation, the editor issues the message

warning pendent operat ion priorto displaying the operation. If the name
refers to a locked operation, the system reports defn error and definition mode is not
entered.

The v symbol followed by the name of an active defined operation and an editing
directive causes the operation to be opened for editing and the editing directive
actioned. If the editing directive is invalid, it is ignored by the editor which then
prompts with a line-number one greater than the highest line-number in the operation.
If the name refers to a pendent operation, the editor issues the message

warning pendent operat ion priorto actioning the editing directive. If the
name refers to a locked operation, the system reports defn error and definition
mode is not entered.

On successful completion of editing, the defined operation becomes the active
definition in the workspace which may replace an existing version of the function.
Monitors, and stop and trace vectors are removed.

Example

VFoO[2]
[2] R<«R%*2
(3] v

108 Dyalog APL/W Language Reference

Editing Directives

Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank
characters either after the operation name on opening definition mode for an active
defined function, or after a line-number prompt.

Syntax Description

v Closes definition mode

(0] Displays the entire operation

(Onl Displays the operation starting at line n
[(nO] Displays only line n

[an] Deletes line n

[nam] Deletes m lines starting at line n

(n] Prompts for input at line n

(nls Replaces or inserts a statement at line n

[n0m] Edits line n placing the cursor at character

position m
Edit control symbols are:

/ - deletes character above
1 to 9 - inserts that number of spaces
A to Z - inserts multiples of 5 spaces
.text - inserts the text prior to the
character above '.'!'
,text - Inserts the text as above but

continues the edit

Figure 2(iv) : Editing directives

Chapter 2 Defined Functions & Operators 109

Line Numbers

Line numbers are associated with lines in the operation. Initially, numbers are assigned
as consecutive integers, beginning with [o] for the header line. The number
associated with an operation line remains the same for the duration of the definition
mode unless altered by editing directives. Additional lines may be inserted by decimal
numbering. Up to three places of decimal are permitted. On closing definition mode,
operation lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement line
or an editing directive. A statement line replaces the existing line (if there is one) or
becomes an additional line in the operation:

VR<A PLUS B

[1] R<A+B
[2]
Position

The editing directive [n], where n is a line number, causes the editor to prompt for
input at that line number. A statement or another editing directive may be entered. If a
statement is entered, the next line number to be prompted is the previous number
incremented by a unit of the display form of the last decimal digit. Trailing zeros are
not displayed in the fractional part of a line number:

[2] [0.8]

[0.8] a MONADIC OR DYADIC +
[0.9] @ A <> OPTIONAL ARGUMENT
(1]

The editing directive [n1s, where n is a line number and s is a statement, causes the
statement to replace the current contents of line n, or to insert line n if there is none:

(1] [0] R«{A} PLUS B
[1]

Delete

The editing directive [an], where n is a line number, causes the statement line to be
deleted. The form [nam], where n is a line number and m is a positive integer, causes
m consecutive statement lines starting from line number n to be deleted.

110

Dyalog APL/W Language Reference

Edit

The editing directive [n0m], where n is a line number and m is an integer number,
causes line number n to be displayed and the cursor placed beneath the m{th} character
on a new line for editing. The response is taken to be edit control symbols selected

from:

/ - to delete the character immediately above the symbol.

1to9 - to insert from 1 to 9 spaces immediately prior to the character above the
digit.

AtoZ -toinsert multiples of 5 spaces immediately prior to the character above the

letter, where A =5, B =10, C = 15 and so forth.

- to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then re-display the line
for further editing with the text inserted and any preceding deletions or space
insertions also effected.

- to insert the text after the comma, including explicitly entered trailing
spaces, prior to the character above the comma, and then complete the edit
of the line with the text inserted and any preceding deletions or space
insertions also effected.

Invalid edit symbols are ignored. If there are no valid edit symbols entered, or if there
are only deletion or space insertion symbols, the statement line is re-displayed with
characters deleted and spaces inserted as specified. The cursor is placed at the first
inserted space position or at the end of the line if none. Characters may be added to the
line which is then interpreted as seen.

The line number may be edited.

Chapter 2 Defined Functions & Operators 11

Examples

(1] (1071
[1] R<A+B
,>(0=[NC'A")p1<0LC o
[1] >(0=0ONC'"A'")p1<[JLC o R<«A+B

.o>END
(2] R<B
[3] END:
(4]

The form [n0o] causes the line number n to be displayed and the cursor to be
positioned at the end of the displayed line, omitting the edit phase.

Display

The editing directive []causes the entire operation to be displayed. The form [On]
causes all lines from line number n to be displayed. The form [n0] causes only line
number n to be displayed:

(4] (oO]

(o] R«<{A} PLUS B
(0]

(0] (gl

(0] R<{4} PLUS B
[0.1] m MONADIC OR DYADIC +
(1] >(0=0ONC'"A"'")p1+0LC o R<A+B ©-END

[2] R<B
[3] '"END:
(4]

Close Definition Mode

The editing directive v causes definition mode to be closed. The new definition of the
operation becomes the active version in the workspace. If the name in the operation
header (which may or may not be the name used to enter definition mode) refers to a
pendent operation, the editor issues the message warning pendent operation
before exiting. The new definition becomes the active version, but the original one will
continue to be referenced until the operation completes or is cleared from the State
Indicator.

112 Dyalog APL/W Language Reference

If the name in the operation header is the name of a visible variable or label, the editor
reports defn error andremains in definition mode. It is then necessary to edit
the header line or quit.

If the header line is changed such that it is syntactically incorrect, the system reports
defn error, and re-displays the line leaving the cursor beyond the end of the text on
the line. Backspace/linefeed editing may be used to alter or cancel the change:

[3] LoO]
(0] R<{A} PLUS B
[0] R«<{AY} PLUS B:G;H - put syntax error in line 0
defn error
[0] R<{AY PLUS B:G;H - line redisplayed

3G H backspace/linefeed editing

display line 0

(1]

Local names may be repeated. However, the line editor reports warning messages as
follows:

1. Ifaname is repeated in the header line, the system reports "warning duplicate
name" immediately.

2. Ifalabel has the same name as a name in the header line, the system reports
"warning label name present in line 0" on closing definition mode.

3. If alabel has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

Chapter 2 Defined Functions & Operators 113

Improper syntax in expressions within statement lines of the function is not detected by
the system editor with the following exceptions:

o If the number of opening parentheses in each entire expression does not equal the
number of closing parentheses, the system reports "warning unmatched
parentheses", but accepts the line.

o If the number of opening brackets in each entire expression does not equal the
number of closing brackets, the system reports "warning unmatched brackets", but
accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other
syntactical errors in statement lines will remain undetected until the operation is
executed.

Example

(4] R« (A[;1)=2)4¢EXP,'x2
warning unmatched parentheses
warning unmatched brackets

[5]

Note that there is an imbalance in the number of quotes. This will result an a
SYNTAX ERROR when this operation is executed.

Quit Definition Mode

The user may quit definition mode by typing the INTERRUPT character. The active
version of the operation (if any) remains unchanged.

114 Dyalog APL/W Language Reference

115

CHAPTER 3

Primitive Functions

Scalar Functions

There is a class of primitive functions termed SCALAR FUNCTIONS. This class is
identified in Figure 3(i) below. Scalar functions are pervasive, ie. their properties
apply at all levels of nesting. Scalar functions have the following properties:

Symbol Monadic Dyadic
+ Identity Plus (Add)
- Negative Minus (Subtract)
x Signum Times (Multiply)
+ Reciprocal Divide
| Magnitude Residue
L Floor Minimum
r Ceiling Maximum
* Exponential Power
® Natural Logarithm Logarithm
o Pi Times Circular
! Factorial Binomial
~ Not $
? Roll $
€ Type (See Enlist) $
A And
v Or
A Nand
* Nor
< Less
< Less Or Equal
= Equal
2 Greater Or Equal
> Greater
Not Equal
$ Dyadic form is not scalar

Figure 3(i) : Scalar primitive functions

116

Dyalog APL/W Language Reference

Monadic Scalar Functions

a) The function is applied independently to each simple scalar in its argument.

Example

2 (1 4)
0.5 1 0.25

b) The function produces a result with a structure identical to its argument.

c) When applied to an empty argument, the function produces an empty result.
With the exception of + and e, the type of this result depends on the function,
not on the type of the argument. By definition + and e return a result of the
same type as their arguments.

Dyadic Scalar Functions

a) The function is applied independently to corresponding pairs of simple scalars
in its arguments.

Examples

23 4 +1 23

2 (3 4) + 1 (2 3)
3 57

(1 2) 3 + 4 (5 6)
56 8 9

b) A simple scalar will be replicated to conform to the structure of the other
argument. If a simple scalar in the structure of an argument corresponds to a
non-simple scalar in the other argument, then the function is applied between
the simple scalar and the items of the non-simple scalar. Replication of simple
scalars is called SCALAR EXTENSION.

Chapter 3 Primitive Functions 117

Examples
10 x 2 (3 4)
20 30 40

2 4 =2 (4 6)
c) A simple unit is treated as a scalar for scalar extension purposes. A UNIT isa

single element array of any rank. If both arguments are simple units, the
argument with lower rank is extended.

Example
(1 1p5) - 1 (2 3)
4 3 2
d) The function produces a result with a structure identical to that of its

arguments (after scalar extensions).

e) If applied between empty arguments, the function produces a composite
structure resulting from any scalar extensions, with type appropriate to the
particular function. (All scalar dyadic functions return a result of numeric

type.)
Examples

1477410
0

14(0pcst ' (0 0))x""
0 0 0

Note: The Axis operator applies to all scalar dyadic functions.

118 Dyalog APL/W Language Reference

Mixed Functions

Mixed rank functions are summarised in Figure 3(ii). For convenience, they are sub-
divided into five classes:

Structural These functions change the structure of the arguments in some
way.

Selection These functions select elements from an argument.

Selector These functions identify specific elements by a boolean map or by

an ordered set of indices.

Miscellaneous These functions transform arguments in some way, or provide
information about the arguments.

Special These functions have special properties.

In general, the structure of the result of a mixed primitive function is different from that
of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.

Mixed primitive functions are not pervasive. The function is applied to elements of the
arguments, not necessarily independently.

Examples
"CAT' 'DOG' 'MOUSE'i1c'DOG'

34 1 'TWO' 3 'FOUR'
1 TWO 3

Chapter 3 Primitive Functions

119

Class Symbol | Monadic Dyadic
Structural p $ Reshape
s Ravel [] Catenate []
Laminate []
5 Catenate Firstl[]
Laminate []
¢ Reverse [] Rotate []
e Reverse First[] Rotate Firstl[]
® Transpose Transpose
+ Mix/Disclose $
(First) []
¥ Split [] $
c Enclose [] Partitioned
Enclose []
€ Enlist $
(See Type)
Selection > Disclose/Mix Pick
4 $ Take []
¥ $ Drop [1
/ Replicate []
+ Replicate Firstl[]
\ Expand []
X Expand First []
~ $ Without (Excludin
g)
n Intersection
v Unique Union
Selector 1 Index Generator Index Of
€ $ Membership
A Grade Up Grade Up
\ Grade Down Grade Down
? $ Deal
£ Find

[1 Implies axis specification is optional

$ This function is in another class

120 Dyalog APL/W Language Reference

Figure 3(ii) : Mixed Primitive Functions

Chapter 3 Primitive Functions

121

Class Symbol Monadic Dyadic
Miscellaneous p Shape $
= Depth Match
Not Match
® Execute Execute
¥ Format Format
1 Decode (Base)
T Encode
(Representation)
5] Matrix Div Matrix
ide Inverse
Special - Abort
(Niladic)
- Branch
<« $ Assignment
[I]l< $ Assignment
(Indexed)
(I« Assignment
(Selective)
L] Indexing

[1 Implies axis specification is optional

$ This function is in another class

Figure 3(ii) : Mixed Primitive Functions (Continued)

122 Dyalog APL/W Language Reference

Conformability

The arguments of a dyadic function are said to be CONFORMABLE if the shape of
each argument meets the requirements of the function, possibly after scalar extension.

Fill Elements

Some primitive functions may include fill elements in their result. The fill element for
an array is the enclosed type of the disclose of the array (ce>Y for array v). The Type
function (e) replaces a numeric value with zero and a character value with * 1.

The Disclose function (=) returns the first item of an array. If the array is empty, oY is
the PROTOTYPE of Y. The prototype is the type of the first element of the original
array.

Primitive functions which may return an array including fill elements are Expand (\ or
%), Replicate (/ or +), Reshape (p) and Take (+).

Examples

€1s
00 000

e>(13)('"ABC")

ces>(13)("ABC")

ceoc(13)('"ABC")
0 0 O

A«<'"ABC' (1 2 3)

A<OpA

ceo4

' '=ceod
11 1

Chapter 3 Primitive Functions 123

Axis Specification

The axis operator may be applied to all scalar dyadic primitive functions and certain
mixed primitive functions. An integer axis identifies a specific axis along which the
function is to be applied to one or both of its arguments. If the primitive function is to
be applied without an axis specification, a default axis is implied, either the first or last.

Example

1 0 1/[1] 3 2p16

1 2 3+[2]2 3p10 20 30
11 22 33
11 22 33

Sometimes the axis value is fractional, indicating that a new axis or axes are to be
created between the axes identified by the lower and upper integer bounds of the value
(either of which might not exist).

Example

"NAMES',[0.5]'="

0dro is an implicit argument of an axis specification.

Function Presentation

Scalar and mixed primitive functions are presented in alphabetical order of their
descriptive names as shown in Figures 3(i) and 3(ii) respectively. Scalar functions are
described in terms of single element arguments. The rules for extension are defined at
the beginning of this chapter.

The class of the function is identified in the heading block. The valence of the function
is implied by its syntax in the heading block.

124 Dyalog APL/W Language Reference

Abort: >

This is a special case of the Branch function used in the niladic sense. If it occursina
statement it must be the only symbol in an expression or the only symbol forming an

expression in a text string to be executed by ¢. It clears the most recently suspended
statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain of

operators.
Examples
vV F
(1] '"FL11!
[2] G
(3] 'FL3]!
v
vV G
(1] '¢GL11!
[2] ->
(3] 'GL3]!
v
F
Fl1]
GL1]

OVR'VALIDATE"
V VALIDATE
(1] >(12=140A4I)p0 o '"ACCOUNT NOT AUTHORISED' o -

VALIDATE

ACCOUNT NOT AUTHORISED

1+0AT
52

Chapter 3 Primitive Functions 125

Add:

R«X+Y

Y must be numeric. X must be numeric. R is the arithmetic sumof X and Y. R is
numeric. This function is also known as Plus.

Examples

12 + 3 4

1 2 + 3,ck 5

And

R<«XAY

Y must be boolean. x must be boolean. R is boolean. & assumes the following result
for each corresponding value of x and Y:

X Y R
0 0 0
0 1 0
1 0 0
1 1 1

Note that the ASCII caret () will also be interpreted as an APL And ().

Example

01 01 A0011
0 0 0 1

126

Dyalog APL/W Language Reference

Assignment: X<Y

Assignment allocates the result of the expression ¥ to the name or names in X.

If ¥ is an array expression, X must contain one or more names which are variables,
system variables, or are undefined. Following assignment, the name(s) in X become
variable(s) with value(s) taken from the result of the expression v.

If X contains a single name, the variable assumes the value of v.
The assignment arrow (or specification arrow) is often read as 'ls' or 'Gets'.

Examples

A<2 .3

More than one name may be specified in X by using vector notation. If so, ¥ must be a
vector or a scalar. If v is a scalar, its value is assigned to all names in x. If v isa
vector, each element of Y is assigned to the corresponding name in X.

Examples
A B<2
A

2
B

2

P 0I0 Q<«'TEXT' 1 (1 2 3)

P
TEXT

gro
1

Q
12 3

For compatibility with IBM's APL2, the list of names specified in X may be enclosed in
parentheses.

Examples

Chapter 3 Primitive Functions 127

(A B C)«1 2 3
(D E)«'Hello' 'World'

128

Dyalog APL/W Language Reference

Multiple assignments are permitted. The value of Y is carried through each
assignment:

I<«J<K<0

I,J,K

Function Assignment

If v is a function expression, X must be a single name which is either undefined, or is
the name of an existing function or defined operator. x may not be the name of a
system function, or a primitive symbol.

Examples
PLUS<+
PLUS

+
SUM<+/
SUM

+/

MEAN<{(+/w)+pw}

Namespace Reference Assignment

If an expression evaluates to a namespace reference, or ref, you may assign it to a
name. A name assigned to a simple scalar ref, has name class 9, whereas one assigned
to an array containing refs has name class 2.

'f1'OWC'Form!

'ns1' ONS '

N<ns1

gncr'h:! a name class of a scalar ref
9

F<«f1

OnC'F! a name class of a scalar ref
9

refs<N F a vector of refs.

ONC'refs' a nameclass of vector.

Chapter 3 Primitive Functions 129

F2<«2>orefs
gnc 'F2!

130 Dyalog APL/W Language Reference

Assignment (Indexed): {R}Y«X[I]+«Y

Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [I]« is treated as the function for descriptive purposes.

Y may be any array. X may be the name of any array. I must be a valid index
specification. The shape of ¥ must conform with the shape (implied) of the indexed
structure defined by 1. If Y is a scalar or a unit vector it will be extended to conform.
A side effect of Indexed Assignment is to change the value of the indexed elements of
X.

R is the value of y. If the result is not explicitly assigned or used it is suppressed.
010 is an implicit argument of Indexed Assignment.
Three forms of indexing are permitted.

Simple Indexed Assignment

For vector X, T is a simple integer array whose items are from the set 1 pR. Elements
of x identified by index positions I are replaced by corresponding elements of Y.

Examples

+A<15
12 3 4 5

A[2 3]«10 ¢ 4
1 10 10 4 5

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]1«100 101 o A
1 101 10 4 5

For matrix x, T is composed of two simple integer arrays separated by the semicolon
character (;). The arrays select indices from the rows and columns of X respectively.

Examples

+B<2 3p'REDSUN'
RED
SUN

B[2;2]«'0'" ¢ B
RED

SON

Chapter 3 Primitive Functions 131

For higher-order array X, I is a series of simple integer arrays with adjacent arrays
separated by a single semicolon character (;). Each array selects indices from an axis
of x taken in row-major order.

Examples

c
11 12 13
14 15 16

21 22 23
24 25 26

Cl1;1;3]1«103 o C

11 12 103
14 15 16
21 22 23
24 25 26

An indexing array may be ELIDED. That is, if an indexing array is omitted from the
Kth axis, the indexing vector 1 (pX) [k] is implied:

Cl;1;2 3]«2 2p112 113 122 123 o C
11 112 113
14 15 16

21 122 123
24 25 26

Cl;3;]«0 o C

132

Dyalog APL/W Language Reference

Choose Indexed Assignment

The index specification I is a non-simple integer array. Each item identifies a single
element of x by a set of indices with one element per axis of X in row-major order.

Examples

c
11 12 13 14
21 22 23 24

Clc1l 1]«101 o C
101 12 13 14
21 22 23 24

Cl(1 2) (2 3)]«102 203 o C
101 102 13 14
21 22 203 24

Cl2 2p(1 3)(2 4)(2 1)(1 4)l«2 2p103 204 201 104oC
101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10
S[c10]«c'VECTOR' o S
VECTOR
S[c10]«5 o S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (1) and Structural functions in order to assign into an array:

c
11 12 13 14
21 22 23 24

1pC
11 1 2 1 3 1 4
2 1 2 2 2 3 2 4

C[1 181pCl«1 2 o C
1 12 13 14

Chapter 3 Primitive Functions 133

21 2 23 24

134

Dyalog APL/W Language Reference

Cl2 "141pC1<«99 o C
1 12 13 99
21 2 23 99

Reach Indexed Assignment

The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of x. The items of an item of I are simple vectors (or
scalars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
D<(2 3p16)(2 2p'SMITH' 'JONES' 'SAM' 'BILL')

D
1 2 3 SMITH JONES
4L 5 6 SAM BILL
=J<c2 (1 2)

D[J]«<c'WILLIAMS' o D
123 SMITH WILLIAMS
4 5 6 SAM BILL

DI(1 (1 1))(2 (2 2) 1)]«10 'W' o D
10 2 3 SMITH WILLIAMS
4 5 6 SAM WILL

E
GREEN YELLOW RED

Elc2 1]«'M'" o E
GREFEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would be
required for Choose. Observe that:

c2 1 <> c(c2),(<c1)

Chapter 3 Primitive Functions 135

Assignment (Selective): (EXP X)<«Y

X is the name of a variable in the workspace. EXP is an expression that selects
elements of X. Y is an array expression. The result of the expression Y is allocated to
the elements of x selected by EXxP.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [.

+ Take

Drop

Ravel

Reverse, Rotate

Reshape

Disclose, Pick

Transpose (Monadic and Dyadic)
Replicate

Expand

<«

~ N & U © 6 -

Note that Mix and Split (monadic + and +) may not be used in the selection expression.

Examples

A<'"HELLO'
((Ae"AEIOU'")/A)<"x"

A

HxLLx
Z<3 L4p112
(54,Z)<«0
Z

o 0 o0

0O 6 7 8

9 10 11 12

MAT<3 3p19
(1 18{MAT)<«0

MAT

F
o O N
o OO W

136 Dyalog APL/W Language Reference

Binomial:

R«X1Y

Y may be any number other than a negative integer. X may be any number other than a
negative integer. R is numeric. An element of R is integer if corresponding elements
of x and Y are integers. Binomial is defined in terms of the function Factorial for
positive integer arguments:

X'Y <> (1Y)+(1X)x!Y-X
For other arguments, results are derived smoothly from the Beta function:
Beta(X,Y) «» sYx(X-1)!X+Y-1
For positive integer arguments, R is the number of selections of x things from v things.

Example

1 1.2 1.4 1.6 1.8 2!5
5 6.105689248 7.219424686 8.281104786 9.227916704 10

Chapter 3 Primitive Functions 137

Branch:

>Y

Y may be a scalar or vector which, if not empty, has a simple numeric scalar as its first
element. The function has no explicit result. It is used to modify the normal sequence
of execution of expressions or to resume execution after a statement has been
interrupted. Branch is not in the function domain of operators.

The following distinct usages of the branch function occur:

Entered in a Entered in
Statement in a Immediate
Defined Function Execution Mode
Continue with the Restart execution at
>LINE specific line the specific line of

the most recently
suspended function

Continue with the No effect
next expression

In a defined function, if ¥ is non-empty then the first element in Y specifies a statement
line in the defined function to be executed next. If the line does not exist, then
execution of the function is terminated. For this purpose, line 0 does not exist. (Note
that statement line numbers are independent of the index origin 010).

If v is empty, the branch function has no effect. The next expression is executed on the
same line, if any, or on the next line if not. If there is no following line, the function is
terminated.

The : GoTo statement may be used in place of Branch in a defined function.

138 Dyalog APL/W Language Reference

Example
VTEST
(1] 1
(2] >4
(3] 3
(4]
v
TEST
1
n

In general it is better to branch to a LABEL than to a line number. A label occurs in a
statement followed by a colon and is assigned the value of the statement line number
when the function is defined.

Example
v TEST
[1] 1
(2] ~FOUR
[3] 3
(4] FOUR:u
v
TEST
1
[

The previous examples illustrate unconditional branching. There are numerous APL
idioms which result in conditional branching. Some popular idioms are identified:

Chapter 3 Primitive Functions

139

Branch Expression

Comment

-TEST/L1

-TESTpL1
-TEST+L1
+L1p=<TEST
>L1[TEST
>L1x1TEST
>(L1,L2,L3)[N]

-(r1,72,73)/L1,L2,L3

-N¢L1,L2,L3

Branches to label L1 if TEST
results in 1 but not if TEST
results in 0.

Similar to above.

Similar to above.

Similar to above.

Similar to above but only if
O10«~->1

Similar to above but only if
010«->1

Unconditional branch to a
selected label.

Branches to the first selected
label dependent on tests
T1,T2,T3. If all tests result
in 0, there is no branch.
Unconditional branch to the
first label after rotation.

A branch expression may occur within a statement including ¢ separators:

[5] >NEXTp=TEST o A<A+1 o -END

[6] NEXT:

In this example, the expressions ' A<A+1' and '-END"' are executed only if TEST
returns the value 1. Otherwise control branches to label NEXT.

140 Dyalog APL/W Language Reference

In immediate execution mode, the branch function permits execution to be continued
within the most recently suspended function, if any, in the state indicator. If the state
indicator is empty, or if the argument Y is the empty vector, the branch expression has
no effect. If a statement line is specified which does not exist, the function is
terminated. Otherwise, execution is restarted from the beginning of the specified
statement line in the most recently suspended function.

Example
v F
(1] 1
[2] 2
[3] 3
[u] v
2 OSTOP'F!
F
1
F[2]
VST
F[2]x
>2

3
The system constant JLC returns a vector of the line numbers of statement lines in the
state indicator, starting with that in the most recently suspended function. Itis
convenient to restart execution in a suspended state by the expression:

~0LC

Chapter 3 Primitive Functions 141

Catenate/Laminate: R<X,[K]Y

Y may be any array. X may be any array. The axis specification is optional. If
specified, ¥ must be a numeric scalar or unit vector which may have a fractional value.
If not specified, the last axis is implied.

The form R«<X+Y may be used to imply catenation along the first axis.
Two cases of the function catenate are permitted:
1. With an integer axis specification, or implied axis specification.

2. With a fractional axis specification, also called laminate.

Catenation with Integer or Implied Axis Specification

The arrays X and Y are joined along the required axis to form array R. A scalar or unit
vector is extended to the shape of the other argument except that the required axis is
restricted to a unit dimension. x and ¥ must have the same shape (after extension)
except along the required axis, or one of the arguments may have rank one less than the
other, provided that their shapes conform to the prior rule after augmenting the array of
lower rank to have a unit dimension along the required axis.

The rank of R is the greater of the ranks of the arguments, but not less than 1.

Examples
"FUR','LONG'
FURLONG

1,2
(2 Wp'THISWEEK')s'="

THIS
WEEK

S,[1]1+45S«2 3p16

g F
N N
o O w

If one of X and Y are empty, then the data type of R will be that of the other. If both
arguments are empty, then the data type of r will be that of v.

142 Dyalog APL/W Language Reference

Lamination with Fractional Axis Specification

The arrays x and Y are joined along a new axis created before the [xkth axis. The new
axis has a length of 2. k¥ must exceed 010 (the index origin) minus 1, and ¥ must be
less than 010 plus the greater of the ranks of X and Y. A scalar or unit vector argument
is extended to the shape of the other argument. Otherwise X and ¥ must have the same
shape.

The rank of R is one plus the greater of the ranks of x and Y.

Examples

"HEADING',[0.5]'-"
HEADING

"NIGHT',[1.5]'x"'

0I10<0

"HEADING,[0.5]"-"
HEADING

Catenate First: R<X<[K]Y

The form R<Xx+Y implies catenation along the first axis whereas the form R<X, Y
implies catenation along the last axis (columns). See Catenate/Laminate above.

Chapter 3 Primitive Functions 143

Ceiling: R«[Y

Y must be numeric. R is the least integer greater than or equal to Y.

Example

[T2.3 0.1 100 .3

T2 1 100 4

gcr is an implied argument of Ceiling.
Circular: R<XoY

Y must be numeric. X must be an integer in the range ~ 7 X < 7. Risnumeric.

X determines which of a family of trigonometric functions to apply to v, from the

following table:

Range Domain (-X) oY | X X oY Range
<Rx< (lY)=<1 (1-Y*2)x.5 0 (1-Yx2)x.5 | 0<R<1
-0)<R<0.5 (1Y)<1 Arcsin Y 1 Sine Y (IR)<1

0<R<o1 (1Y)<1 Arccos Y 2 Cosine Y (IR)<1
(_R)<0.5 Arctan Y 3 Tangent Y

>0 (1Y)=21 (T1+Y*x2)*x.5 [4 (1+Y%x2)x.5

Arcsinh Y 5 Sinh Y
R20 Y>1 Arccosh Y 6 Cosh Y R>1
(1Y)<1 Arctanh Y 7 | Tanh Y (IR)<1
Examples
0 "1 01

0 1.570796327

1o0(PI«01)+2 3 4
1 0.8660254038 0.7071067812

20PI+3

144 Dyalog APL/W Language Reference

Deal: R«X?Y
Y must be a simple scalar or unit vector containing a non-negative integer. X must be a
simple scalar or unit vector containing a non-negative integer and x<v.

R is an integer unit vector obtained by making X random selections from 1 Y without
repetition.
Examples
13752
7 40 24 28 12 3 36 49 20 44 2 35 1
13252
20 4 22 36 31 49 u5 28 5 35 37 48 4O
0r0 and ORL are implicit arguments of Deal. A side effect of Deal is to change the
value of ORL.
Decode: R«X1Y

Y must be a simple numeric array. X must be a simple numeric array. R is the numeric
array which results from the evaluation of ¥ in the number system with radix x.

X and Y are conformable if the length of the last axis of X is the same as the length of
the first axis of Y. A scalar or unit vector is extended to a vector of the required length.
If the last axis of x or the first axis of ¥ has a length of 1, the array is extended along
that axis to conform with the other argument.

The shape of R is the catenation of the shape of x less the last dimension with the shape
of Y less the first dimension. That is:

PR <« (" 1vypX),1vpY

For vector arguments, each element of x defines the ratio between the units for
corresponding pairs of elements in Y. The first element of x has no effect on the result.

This function is also known as Base Value.

Chapter 3 Primitive Functions 145

Examples

60 6013 13
193

0 6013 13
193

6013 13
193

211 0 1 0
10

For higher order array arguments, each of the vectors along the last axis of x is taken as
the radix vector for each of the vectors along the first axis of v.

Examples
M

0
00 11
1

o o K
= o K
[SENSN
Rk R

F w N e
F w N e
F w N e

2 1 2 2 3
3 4+ 5 6 7
b 9 10 12 13
5 16 17 20 21

o o o o
I S
F w N P

Scalar extension may be applied:

2.M
01 2 3 4 56 7

Extension along a unit axis may be applied:

+A«<2 1p2 10

146 Dyalog APL/W Language Reference

ALM
01 2 3 4 5 6 7
01 10 11 100 101 110 111

Chapter 3 Primitive Functions 147

Depth:

(OML) Re=Y

Y may be any array. R is a simple integer scalar which indicates the number of levels
of nesting for the simple scalar item in the array with the greatest number of levels of
nesting. A simple scalar has a depth of 0. A simple array has a depth of 1. An array
containing non-simple elements has a depth whose magnitude is greater than 1. The

array has uniform depth if all simple scalars in the array have the same depth.

If OML<2, anegative value of R indicates non-uniform depth.

Examples

=1
0

=14
0

='ABC'?
1

=1 4!
1

OML<0

=4«<(1 2)(3 (4 5))

3
oy
1 72
ey
0 0 0 1
OML<2
=4
3
oy
1 2
“

o
o
[«3]
[N

148 Dyalog APL/W Language Reference

Disclose: (OML) R«>Y or R<«4tY

The symbol chosen to represent Disclose depends on the current Migration Level.

If OML<2, Disclose is represented by the symbol: -.
If OML> 2, Disclose is represented by the symbol: +.

Y may be any array. Risanarray. If Y is non-empty, R is the value of the first item of
Y taken in ravel order. If ¥ is empty, R is the prototype of v.

Disclose is the inverse of enclose. The identity R<-><R holds for all R. Disclose is
also referred to as First.

Examples

o1
1

52 4 6
2

>'MONDAY' 'TUESDAY'
MONDAY

>(1 (2 3)) (4 (5 6))

>1+Vcl1,c2 3

Chapter 3 Primitive Functions 149

Divide: R«X+Y

Y must be a numeric array. X must be a numeric array. R is the numeric array resulting
from x divided by v. System variable ODIV is an implicit argument of Divide.

If Op1Iv=0and Y=0 then if X=0, the result of X+Y is 1; if Xz0 then Xx+Y isa
DOMAIN FERROR.

If OpIV=1 and Y=0, the result of X+ is o for all values of x.

Examples

2 0 5+4 0 2
0.5 1 2.5

ODIV<«1
2 0 5+4 0 O
0.5 0 O

150

Dyalog APL/W Language Reference

Drop:

R«X+Y

Y may be any array. X must be a simple scalar or vector of integers. If x is a scalar, it
is treated as a one-element vector. If v is a scalar, it is treated as an array whose shape
is (pX)p1. After any scalar extensions, p X must equal p pY (the shape of x must
equal the rank of v).

R is an array with the same rank as v but with elements removed from the vectors
along each of the axes of ¥. For the rth axis:

1. ifx(1] ispositive, all but the first X[I] elements of the vectors result.
2. if X[I]isnegative, all but the last x [1] elements of the vectors result.

If the magnitude of x [7] exceeds the length of the rth axis, the result is an empty
array with zero length along that axis.

Examples

44 'OVERBOARD'
BOARD

“54'OVERBOARD'
OVER

p10+'OVERBOARD'

ONE
FAT
FLY

0 2vM

=

ON

Chapter 3 Primitive Functions 151

Drop with Axes: R«<XV[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. X isa
vector of zero or more axes of Y.

R is an array of the elements of ¥ with the first or last X[i] elements removed. Elements
are removed from the beginning or end of v according to the sign of xTi].

The rank of R is the same as the rank of v:

pPPR <> ppY

The size of each axis of R is determined by the corresponding element of x:
(pR)[,K] <> o[(pY)[,K]I-1|,X

Examples

J«M<«2 3 Lp124
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

1v[21M

9 10 11 12

17 18 19 20
21 22 23 24

2v[31M

15 16
19 20
23 24

2 1v[3 21M

152 Dyalog APL/W Language Reference

19 20
23 24

Chapter 3 Primitive Functions

153

Enclose:

RecY

Y may be any array. R is a scalar array whose item is the array Y. If ¥ is a simple

scalar, R is the simple scalar unchanged. Otherwise, R has a depth whose magnitude is
one greater than the magnitude of the depth of Y.

Examples

cil

clT A

c1 2 3

cl,c'CAT!
1 CAT

10

154 Dyalog APL/W Language Reference

Enclose with Axes: R«c[K]Y

Y may be any array. K is a vector of zero or more axes of Y. R is an array of the
elements of Y enclosed along the axes k. The shape of R is the shape of v with the
axes removed:

pR «> (pY)[(1ppR)~K]
The shape of each element of R is the shape of the x'th axes of v:

poR «> (pY)[,K]

Examples

DISPLAY A<«2 3 4p'DUCKSWANBIRDWORMCAKESEED'
P gt
Y¥DUCK |
| | SWAN |
| | BIRD|
[l |
| IWORM |
| | CAKE |
| | SEED|

T

—_——

DISPLAY <c[3]A

>-—=. P s> -

v o .
| |DUCK| |SWAN| |BIRD]|
[N S DS B p—
|
|
|
1

|[WORM| |CAKE| |SEED|

LIS | | I | | ISR |

|
|
|
R
|
|

| v - |
¥+DUCK	YWORM			
	SWAN		CAKE	
	BIRD		SEED	
I |
1

| ommmm e el
| +DUCK| +SWAN| BIRD| |
| |WORM| |CAKE| |SEED| |

Chapter 3 Primitive Functions

155

156 Dyalog APL/W Language Reference

Encode:

R«XTY

Y must be a simple numeric array. X must be a simple numeric array. R is the numeric
array which results from the representation of Y in the number system defined by x.

The shape of Ris (pX), pY (the catenation of the shapes of x and).

If X is a vector or a scalar, the result for each element of Y is the value of the element
expressed in the number system defined by radix x. If ¥ is greater than can be
expressed in the number system, the result is equal to the representation of the residue
(x/X) Y. Ifthe first element of x is 0, the value will be fully represented.

This function is also known as Representation.

Examples

1075 15 125

0 10T5 15 125
01 12
55 5

Chapter 3 Primitive Functions 157

If X is a higher order array, each of the vectors along the first axis of x is used as the
radix vector for each element of v.

Examples
4

N NN NNDNNN
W ©® W W O O O O
O OO O O O O O O

SN

AT75

P PO BFPr OO K O
W kP PO O O O O
P £ O O O ©O O O

=

The example shows binary, octal and hexadecimal representations of the decimal
number 75.

Examples

0 171.25 10.5
1 10
0.25 0.5

4 13713752
310 23201 31231
12 2 4 12 1 7 6 3 10 1 0 3 8

158 Dyalog APL/W Language Reference

Enlist: (OML21) R«eY

Migration level must be such that 0¥ L > 1 (otherwise see function Type).

Y may be any array, R is a simple vector created from all the elements of v in ravel

order.
Examples
OML<1 a Migration level 1
MAT<2 2p'MISS' 'IS' 'SIP' 'PI' ¢ MAT
MISS IS
SIP PI
eMAT
MISSISSIPPI
M«1 (2 2p2 3 4 5) (6(7 8))
M
1 6 7 8
eM

12 3 456 7 8

Equal: R«X=Y

Y may be any array. X may be any array. R isboolean. OcCT is an implicit argument of
Equal.

If X and Y are character, then R is 1 if they are the same character. If x is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other. Thatis, X is considered equal to ¥ if (| X-Y) is not greater than
gerx(l1x)rly .

Chapter 3 Primitive Functions 159

Examples

3=3.1 3 "2 73
0100

"CAT'='"FAT'
011

'CAT'=1 2 3

'"CAT'='C' 2 3

OCT<1E~10
1=1.000000000001

1=1.0000001

Excluding: R«X~Y

X must be a scalar or vector. R is a vector of the elements of x excluding those
elements which occur in Y taken in the order in which they occur in X.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.
gdcr is an implicit argument of Excluding.

This function is also known as Without.

Examples

'"HELLO'~'GOODBYE"
HLL

'"MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY'
MONDAY WEDNESDAY

5 10 15~110
15

For performance information, see Search Functions and Hash Tables in Chapter 2.

160

Dyalog APL/W Language Reference

Execute (Monadic): R«eY

Y must be a simple character scalar or vector. If Y is an empty vector, it is treated as an
empty character vector. Y is taken to be an APL statement to be executed. R is the
result of the last-executed expression. If the expression has no value, then ¢ Y has no
value. If Y is an empty vector or a vector containing only blanks, then ¢« ¥ has no value.
If Y contains a branch expression which evaluates to a non-empty result, R does not
yield a result. Instead, the branch is effected in the environment from which the
Execute was invoked.

Examples

2 '2+42"
h=¢'2+2"

A

24!

0 "A<2 | T140TS o »0p=4 o A

A

Execute (Dyadic): ReXeoY

Y must be a simple character scalar or vector. If ¥ is an empty vector, it is treated as an
empty character vector. X must be a simple character scalar or vector representing the
name of a namespace. Y is then taken to be an APL statement to be executed in
namespace X. R is the result of the last-executed expression. If the expression has no
value, then X ¢ ¥ has no value.

Example

'OSE' ¢ 'ONL 9'

Chapter 3 Primitive Functions 161

Expand:

R«X\[K]Y

Y may be any array. X is a simple integer scalar or vector. The axis specification is
optional. If present, ¥ must be a simple integer scalar or unit vector. The value of ¥
must be an axis of Y. If absent, the last axis of ¥ is implied. The form R<x\Y implies
the first axis. If v is a scalar, it is treated as a one-element vector.

The number of positive elements in x must be the length of xth (or implied) axis of v.

R is composed from the sub-arrays along the xth axis of . If X[1] (an element of x)
is the Jth positive element in x, then the Jth sub-array along the kth axis of v is
replicated x [1] times. If X[I] is negative, then a sub-array of fill elements of ¥
(ce>Y) isreplicated | X[I1] timesand inserted in relative order along the xth axis of
the result. If X[1] is zero, it is treated as the value ~1. The shape of R is the shape of
Y except that the length of the kth axisis +/11 | X.

Examples

o\i10

1 72 3 "4 5\'4!
A AAdA AAAAA

[
N
w

2 2 0 1\M

N -

1 0 1\M

1 0 1\[11M

=

T2 1\(1 2)(3 4 5)
12 00 00 3 45

162 Dyalog APL/W Language Reference

Expand First: R«XX\Y

The form R<XxY implies expansion along the first axis whereas the form R<x\Y
implies expansion along the last axis (columns). See Expand above.

Exponential: RexY
Y must be numeric. R is numeric and is the yth power of e, the base of natural
logarithms.

Example
*x1 0

2.718281828 1

Factorial: Re«!Y

Y must be numeric excluding negative integers. R is numeric. R is the product of the
first ¥ integers for positive integer values of Y. For non-integral values of v, 'Y is
equivalent to the gamma function of Y+1.

Examples
1.2 3 4 5
12 6 24 120

'"/1.5 0 1.5 3.3
73.544907702 1 1.329340388 8.85534336

Chapter 3 Primitive Functions 163

Find

R«XeY

X and Y may be any arrays. R is a simple boolean array the same shape as ¥ which

identifies occurrences of X within ¥

If the rank of X is smaller than the rank of v, X is treated as if it were the same rank
with leading axes of size 1. For example a vector is treated as a 1-row matrix.

If the rank of x is larger than the rank of v, no occurrences of x are found in Y.

gcr and 010 are implicit arguments to Find.

Examples

"AN'e "BANANA'
010100

'"ANA'e '"BANANA'
010100

'"BIRDS' 'NEST'e'BIRDS' 'NEST'

1 00
MAT
IS YOU IS
OR IS YOU
IS'NT
'IS'"eMAT
100 00 0O010O0
00 01 0O0O0O00O0
100 000 O0O0O0
'IS YOU'eMAT
100 0 00 O0O0O0
00 01 00O0O0D0O
00 0O0O0O0OO0OO0O0

'SOUP'!

164 Dyalog APL/W Language Reference
First: (OML) R«>Y or R<«+tY
See function Disclose.
Floor: R«lY
Y must be numeric. R is the largest integer value less than or equal to Y.
Examples
L72.3 0.1 100 3.3
"3 0 100 3
L0.5 + 0.4 0.5 0.6
011
gdcr is an implicit argument of Floor.
Format (Monadic): R«3Y

Y may be any array. R is asimple character array which will display identically to the
display produced by Y. The result is independent of OPw. If Y is a simple character
array, then Ris Y.

Example
+B<%A<2 6p'HELLO PEOPLE'
HELLO
PEOPLE
B =4
1

If v is a simple numeric scalar, then R is a vector containing the formatted number
without any spaces. A floating point number is formatted according to the system
variable OPP. OPP is ignored when formatting integers.

Chapter 3 Primitive Functions 165

Examples
OPP<5
pC<+%10
0
pC<+%10
2
C
10
pC<«%12.34
5
C
12.34
$123456789
123456789

$123.456789
123.46

Scaled notation is used if the magnitude of the non-integer number is too large to
represent with PP significant digits or if the number requires more than five leading
zeroes after the decimal point.

166 Dyalog APL/W Language Reference

Examples
$123456.7
1.2346E5

$0.0000001234
1.234E77

If Y is a simple numeric vector, then R is a character vector in which each element of v
is independently formatted with a single separating space between formatted elements.

Example

pC<«3% 123456 1 22.5 ~0.000000667 5.00001
27

c
"1.2346E5 1 22.5 "6.67E 7 5

If v is a simple numeric array rank higher than one, R is a character array with the same
shape as Y except that the last dimension of Y is determined by the length of the
formatted data. The format width is determined independently for each column of v,

such that:
a) the decimal points for floating point or scaled formats are aligned.
b) the £ characters for scaled formats are aligned, with trailing zeros added to the

mantissae if necessary.

c) integer formats are aligned to the left of the decimal point column, if any, or
right-adjusted in the field otherwise.

d) each formatted column is separated from its neighbours by a single blank
column.

e) the exponent values in scaled formats are left-adjusted to remove any blanks.

Chapter 3 Primitive Functions 167

Examples

C<+22 ~0.000000123 2.34 212 123456 6.00002 O

pC<+3%2 2 3pC

2 2 29
c
22 "1.2300E77 2.3400E0
T212 1.2346F5 6.0000E0
0 2.2000E1 ~1.2300E77

2.34 T2.1200E2 1.2346E5

If Y is non-simple, and all items of v at any depth are scalars or vectors, then R is a
vector.

Examples

B<%A<"ABC' 100 (1 2 (3 4 5)) 10

pA
i

=4
3

pB
26

=B
1

A

ABC 100 1 2 3 4 5 10

B
ABC 100 1 2 3 4 5 10

By replacing spaces with a, it is clearer to see how the result of s is formed:
AABCAALOOAALA2AABALASAAALD

If Y is non-simple, and all items of Y at any depth are not scalars, then R is a matrix.

168 Dyalog APL/W Language Reference

Example

D«3C<«1 '"AB' (2 2pi+14) (2 2 3p'CDEFGHIJKLMN')

C
1 AB 2 3 CDE
5 FGH
IJK
LMN
pC
I
=C
2
D
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pD
5 16
=D
1

By replacing spaces with «, it is clearer to see how the result of s is formed:

AAANABAA2A3AACDEA
AAAAAAAYUASAAFGHA
AAAAAAAAAAAAAAAA
AAAAANAAAAAAAATTKA

AAAAAAAAAAAANLMNA

gpp is an implicit argument of Monadic Format.

Chapter 3 Primitive Functions 169

Format (Dyadic): R«X3Y

Y must be a simple numeric array. X must be a simple integer scalar or vector. R isa
character array displaying the array Y according to the specification x. R has rank
1[ppYand "14pRIiS “14pY.

Conformability requires that if X has more than two elements, then p X must be
2x~14pY. If X contains one element, it is extended to (2x " 14pY)p0,X. If X
contains 2 elements, it is extended to (2x~1+pY)pX.

X specifies two numbers (possibly after extension) for each column in y. For this
purpose, scalar Y is treated as a one-element vector. Each pair of numbers in x
identifies a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples
5 0 % 2 3p16
1 2 3
5 6

4 0%1.1 2 "4 2,547
1 2 4 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.

Example

L 1%1.1 2 "4 2,547
1.1 2.0°4.0 2.5

If P is negative, scaled format is used with | P digits in the mantissa.

Example

7 “3%5 15 155 1555
5.00E0 1.50E1 1.55E2 1.56F3

If w is 0 or absent, then the width of the corresponding columns of r are determined by
the maximum width required by any element in the corresponding columns of v, plus
one separating space.

170 Dyalog APL/W Language Reference

Example

3%2 3p10 15.2346 17.1 2 3 4
10.000 15.235 717.100
2.000 3.000 4.000

If a formatted element exceeds its specified field width when w >0, the field width for
that element is filled with asterisks.

Example

3 06 2 3% 3 2p10.1 15 1001 22.357 101 1110.1
10 15.00
*xx 22.36

101 %% %% %%

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_".

Example

26%2x100
12676506002282

p2632%x100
59

0 207+3
0.33333333333333___

0 "20%+3
3.333333333333333____E1

The shape of R is the same as the shape of ¥ except that the last dimension of Y is the
sum of the field widths specified in x or deduced by the function. If v is a scalar, the
shape of R is the field width.

p5 2 % 2 3 Upi124
2 3 20

Chapter 3 Primitive Functions 171

Grade Down (Monadic): R«VY

Y must be a simple character or simple numeric array of rank greater than 0. Risan
integer vector being the permutation of 1 1 4 pY that places the sub-arrays of ¥ along the
first axis in descending order. The indices of any set of identical sub-arrays in Y occur
in R in ascending order.

If Y is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to the
first element and least weight being given to the last element.

Example
M
2 5 3 2
34 11
2 5 4 5
2 53 2
2 5 3 4L
M
2 3514
MLYM;]
34 11
2 54 5
2 5 3 4L
2 53 2
2 53 2

If Y is a character array, the implied collating sequence is the ordering of characters in
0AV (see Chapter 8).

172 Dyalog APL/W Language Reference

Example

4
SUCH
SURE
SIRE
SUMP
SAFE

VA
52 4 1 3

AlV4;]
SAFE
SURE
SUMP
SUCH
SIRE

0ro isanimplicit argument of Grade Down.

Chapter 3 Primitive Functions 173

Grade Down (Dyadic): R«XVY

Y must be a simple character array of rank greater than 0. X must be a simple character
array of rank 1 or greater. R is a simple integer vector of shape 1 +pY containing the
permutation of 1 1 4 pY that places the sub-arrays of Y along the first axis in descending
order according to the collation sequence x. The indices of any set of identical sub-
arrays in Y occur in R in ascending order.

If X is a vector, the following identity holds:
XVY <> yX1Y

A left argument of rank greater than 1 allows successive resolution of duplicate
orderings in the following way.

Starting with the last axis:
e The characters in the right argument are located along the current axis of the left
argument. The position of the first occurrence gives the ordering value of the

character.

o If a character occurs more than once in the left argument its lowest position along
the current axis is used.

o If a character of the right argument does not occur in the left argument, the ordering
value is one more than the maximum index of the current axis - as with dyadic iota.

The process is repeated using each axis in turn, from the last to the first, resolving
duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1:

Left argument: Right argument:
abc ab
ABA ac

Aa

174 Dyalog APL/W Language Reference

Along last axis:

Character: Value: Ordering:

ab 12 3

ac 13 =1 A < duplicate ordering with
Aa 11 4

Ac 13 =1 < respect to last axis.

Duplicates exist, so resolve these with respect to the first axis:

Character: Value: Ordering:
ac
Ac 1

So the final row ordering is:

ab
ac
Aa
Ac

P F N W

That is, the order of rows is 4 2 1 3 which corresponds to a descending row sort of:

ac
ab
Aa

F w N P

Chapter 3 Primitive Functions

175

Examples
pS1
2 27
S1

ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLIMNOPQRSTUVWXYZ

S2
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKIMNOPQRSTUVWXYZ

S3
AABBCCDDEEFFGGHHIIJJKKLILMMNNOOPPQQRRSSTTUUVYWWXXYYZZ

St
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXY?Z
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ

The following results are tabulated for comparison:

X X[S1yX;] X[S2vX;] X[S3vX;] X[SuvX;]
FIRST TAPE RAT TAPE TAPE
TAP TAP FIRST TAP TAP
RATE RATE TAPE RAT RATE
FIRST RAT TAP RATE RAT
FIRST RAT RATE RAT RAT
RAT MAT RAT MAT MAT
FIRST FIRST MAT FIRST FIRST
TAPE FIRST FIRST FIRST FIRST
MAT FIRST FIRST FIRST FIRST
RAT FIRST FIRST FIRST FIRST

gdzo is an implicit argument of Grade Down.

176 Dyalog APL/W Language Reference

Grade Up (Monadic): R«AY

Y must be a simple character or simple numeric array of rank greater than 0. Risan
integer vector being the permutation of 1 1 4 pY that places the sub-arrays along the first
axis in ascending order.

If ¥ is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to the
first element and least weight being given to the last element.

Examples

A22.5 1 15 3 "4
52 4% 31

M

AM
3 2 1

If v is a character array, the implied collating sequence is the ordering of characters in
AV (see Chapter 8).

A
AA1V o

AA
31 245

gzo is an implicit argument of Grade Up.

Chapter 3 Primitive Functions 177

Grade Up (Dyadic): R<«XAY

Y must be a simple character array of rank greater than 0. X must be a simple character
array of rank 1 or greater. R is a simple integer vector being the permutation of 114 pY
that places the sub-arrays of ¥ along the first axis in ascending order according to the
collation sequence X.

If X is a vector, the following identity holds:

XAY <> AX1Y
If X is a higher order array, each axis of x represents a grading attribute in decreasing
order of importance. If a character is repeated in x, it is treated as though it were
located at the position in the array determined by the lowest index in each axis for all
occurrences of the character. The character has the same weighting as the character
located at the derived position in x.

Refer to dyadic Grade Down for an illustrative example of these principles.

Greater:

R<X>Y

Y must be numeric. x must be numeric. R is boolean. Ris 1 if X is greater than v and
X=Y is 0. Otherwise R is 0.

gdcr is an implicit argument of Greater.

Examples
1 23 45 > 2
00111
OCT<«1E"10

1 1.00000000001 1.000000001 > 1

178 Dyalog APL/W Language Reference

Greater Or Equal: R«X>Y

Y must be numeric. X must be numeric. R isboolean. Ris 1if X is greater than ¥ or
X=Y. Otherwise R is 0.

gdcr is an implicit argument of Greater Or Equal.

Examples
12345 >3

00111
OCT«1E~10
1>1

1

1>1.00000000001

121.00000001

Identity: Re+Y

Y isany array. R is the same array unchanged. ldentity may be used to generate a
printed result after an assignment or from a function with an otherwise suppressed
result.

Examples

+A<15
1 2 3 4 5

+0EX" A"

Chapter 3 Primitive Functions 179

Index Generator: Re1Y

Y must be a simple scalar or vector array of non-negative humbers. R is a numeric
array composed of the set of all possible coordinates of an array of shape y. The shape
of R is ¥ and each element of R occurs in its self-indexing position in . In particular,
the following identity holds:

1Y <> (1Y)[1Y]

0ro is an implicit argument of Index Generator. This function is also known as
Interval.

Examples
gro

+A<2 Lp'MAINEXIT'

MAIN
EXIT
Al1pA]
MAIN
EXIT
0I0<0
15
01 2 3 4
12 3
Al1pA]
MAIN

EXIT

180 Dyalog APL/W Language Reference

Index Of:

R«XY

Y may be any array. X may be any vector. R is a simple integer array with the same
shape as Y identifying where elements of v are first found in x. If an element of Y
cannot be found in X, then the corresponding element of r will be 0T0+pX.
Elements of X and Y are considered the same if X=Y returns 1 for those elements.

010 and OcT are implicit arguments of Index Of.

Examples

0I0<1

24 3 1 411 2 3 4 5
4 1 3 2 6

"CAT' 'DOG' 'MOUSE'1'DOG' 'BIRD'
2y

For performance information, see Search Functions and Hash Tables in Chapter 2.

Indexing:

R<X[Y]

X may be any array. Y must be a valid index specification. R is an array composed of
elements indexed from X and the shape of x is determined by the index specification.

Bracket Indexing does not follow the normal syntax of a dyadic function.

0o is an implicit argument of Indexing.

Three forms of indexing are permitted. The form used is determined by context.
Simple Indexing

For vector X, Y is a simple integer array composed of items from the set 1 p X.

R consists of elements selected according to index positions in Y. R has the same shape
asy.

Chapter 3 Primitive Functions

181

Examples

A«<10 20 30 40 50
A[2 3p1 1 1 2 2 2]
10 10 10
20 20 20

Al3]
30

"ONE' 'TWO' 'THREE'[2]
TWO

For matrix X, Y is composed of two simple integer arrays separated by the semicolon

character (;). The arrays select indices from the rows and columns of x respectively.

Examples

+M<2 Lpl0x18
10 20 30 40
50 60 70 80

M[2;3]
70

For higher order array X, v is composed of a simple integer array for each axis of x
with adjacent arrays separated by a single semicolon character (;). The arrays select
indices from the respective axes of X, taken in row-major order.

Examples

+A<2 3 Lpl10Ox124
10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160
170 180 190 200
210 220 230 240

Al15151]
10

A[233 23;4 1]
240 210
200 170

182 Dyalog APL/W Language Reference

If an indexing array is omitted for the xth axis, the index vector « (pX) [X] is assumed
for that axis.

Chapter 3 Primitive Functions 183

Examples

Al;2;5]
50 60 70 80
170 180 190 200

M
10 20 30 40
50 60 70 80

M[;]
10 20 30 40
50 60 70 80

M[1;]
10 20 30 40

M[;1]
10 50

Choose Indexing

The index specification Y is a non-simple array. Each item identifies a single element
of X by a set of indices with one element per axis of X in row-major order.

Examples

M
10 20 30 40
50 60 70 80

Mlc1 2]
20

M[2 2pc2 4]
80 80
80 80

ML(2 1)(1 2)]
50 20

A scalar may be indexed by the enclosed empty vector:
S« 7!

S[3pc10]

184 Dyalog APL/W Language Reference

2727

Chapter 3 Primitive Functions 185

Simple and Choose indexing are indistinguishable for vector x:

V<10 20 30 40

Vic2]
20

c?
2

vi2]
20

Reach Indexing

The index specification Y is a non-simple integer array, each of whose items reach
down to a nested element of x. The items of an item of v are simple vectors (or
scalars) forming sets of indices that index arrays at successive levels of x starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
G<('"ABC' 1)('DEF' 2)('GHI' 3)('JKL' 4)
G<2 3pG,('MNO' 5)('PQR' 6)
G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

GL((1 2)1)((2 3)2)]
DEF 6

G[2 2pc(2 2)2]
Glecec1l 1]
ABC 1

Gle1l 1]
ABC 1

Ve,G

Vlicel]
ABC 1

Vlie1]

186 Dyalog APL/W Language Reference

ABC 1

vIii]
ABC 1

Chapter 3 Primitive Functions 187

Intersection: R«XnY

Y must be a scalar or vector. x must be a scalar or vector. A scalar x or Y is treated as
a one-element vector. R is a vector composed of items occurring in both X and Y in the
order of occurrence in x. If an item is repeated in X and also occurs in v, the item is
also repeated in R.

Items in X and Y are considered the same if x=Y returns 1 for those items.

gcr is an implicit argument of Intersection.

Examples

"ABRA'n'CAR'
ARA

1 'PLUS' 2 n 15
1 2

For performance information, see Search Functions and Hash Tables in Chapter 2.

Less:

R«X<Y

Y may be any numeric array. X may be any numeric array. R is boolean. Ris1if X is
less than ¥ and X=Y is 0. Otherwise R is 0.

gcr is an implicit argument of Less.

Examples

(2 4) (6 8 10) < 6
11 000

OCT<1E~10

1 1.00000000001 1.000000001 < 1

188 Dyalog APL/W Language Reference

Less Or Equal: R«X<Y

Y may be any numeric array. X may be any numeric array. R isboolean. Ris 1 if X is
less than Y or x=Y. Otherwise R is 0.

gcr is an implicit argument of Less Or Equal.

Examples
2 4 6 8 10 < 6
11100
OCT<1E" 10

1 1.00000000001 1.00000001 < 1

Logarithm: R<XeoY

Y must be a positive numeric array. X must be a positive numeric array. X cannot be 1
unless Y isalso 1. R is the base X logarithm of v.

Examples

10 © 100 2
2 0.3010299957

1 e 1
1
2 & 1
0
Magnitude: R«|Y
Y may be any numeric array. R is numeric composed of the absolute (unsigned) values
of v.
Example

[2 "3.4 0 2.7
2 3.4 0 2.7

Chapter 3 Primitive Functions 189

Note that the ASCII pipe (}) is also interpreted as Magnitude ().

190 Dyalog APL/W Language Reference

Match:

R«X=Y

Y may be any array. X may be any array. R is a simple boolean scalar. If x is identical
to v, then R is 1. Otherwise R is 0.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape and
the same prototype (disclosed nested structure).

gcr is an implicit argument of Match.

Examples
8=10
1
'1=10
0
A
THIS
WORD

A=2 Yp'THISWORD'
A=110
+B<A4A A

THIS THIS
WORD WORD

A=>B
1
(0pA)=0pB
0
' '"=50pB
1
1
' '"=50p4

Chapter 3 Primitive Functions 191

Matrix Divide: R<XBY

Y must be a simple numeric array of rank 2 or less. X must be a simple numeric array
of rank 2 or less. Y must be non-singular. A scalar argument is treated as a matrix with
one-element. If v is a vector, it is treated as a single column matrix. If X is a vector, it
is treated as a single column matrix. The number of rows in X and ¥ must be the same.
Y must have at least the same number of rows as columns.

R is the result of matrix division of X by ¥. That is, the matrix product Y+ . xR is X.
R is determined such that (X-Y+.xR) x2 is minimised.

The shape of RiS (1vpY),14pX.

Examples

OPP<5

B

o 0
a O F

35 89 79 @ B
2.1444 8,2111 5.0889

A
35 36
89 88
79 75

A B B
2.1444 2.,1889
8.2111 7.1222
5.0889 5.5778

192 Dyalog APL/W Language Reference
If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P =a + bQ are determined:
Q
11
12
13
14
15
16
P
12.03 8.78 6.01 3.75 ~0.31 ~2.79
PHQ
14.941 T2.9609
Matrix Inverse: R<HQY

Y must be a simple array of rank 2 or less. ¥ must be non-singular. If ¥ is a scalar, it is
treated as a one-element matrix. If v is a vector, it is treated as a single-column matrix.
Y must have at least the same number of rows as columns.

R is the inverse of Y if ¥ is a square matrix, or the left inverse of Y if ¥ is not a square
matrix. Thatis, R+ . xY is an identity matrix.

The shape of R is $p7Y.

Examples

M
T
2 1

+A<EM

0.1666666667 0.1666666667
70.3333333333 0.6666666667

Within calculation accuracy, A+ . xM is the identity matrix.

A+ . xM

Chapter 3 Primitive Functions 193

Maximum:; R«X[Y

Y may be any numeric array. X may be any numeric array. R is numeric. R isthe
larger of the numbers x and v.

Example

72.01 0.1 15.3 [73.2 "1.1 22.7
T2.01 0.1 22.7

Membership: R<XeY

Y may be any array. X may be any array. R is boolean. An element of R is 1 if the
corresponding element of x can be found in Y.

An element of X is considered identical to an element in Y if X=Y returns 1 for those
elements.

gcr is an implicit argument of Membership.

Examples

'"THIS NOUN' € 'THAT WORD'
110010100

'CAT' 'DOG' 'MOUSE' e 'CAT' 'FOX' 'DOG' 'LLAMA'
110

For performance information, see Search Functions and Hash Tables in Chapter 2.

Minimum: R<«X|Y

Y may be any numeric array. X may be any numeric array. R is humeric. R isthe
smaller of x and v.

Example

2.1 0.1 15.3 | 73.2 1 22
3.2 0.1 15.3

Minus: R«X-Y

194 Dyalog APL/W Language Reference

See function Subtract.

Chapter 3 Primitive Functions 195

Mix:

(OML) R«4+[K]Y or R«o[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.

If OML<2, Mix is represented by the symbol: +.
If OML>2, Mix is represented by the symbol: >.

Y may be any array. All of the items of ¥ must be scalars and/or arrays of the same
rank. It is not necessary that nonscalar items have the same shape.

K is an optional axis specification. If present it must be a scalar or unit vector. The
value of ¥ must be a fractional number indicating the two axes of ¥ between which
new axes are to be inserted. If absent, new ones are added at the beginning.

R is an array composed from the items of a ¥ assembled into a higher order array with
one less level of nesting. If items of ¥ have different shapes, each is padded with the
corresponding prototype to a shape that represents the greatest length along each axis
of all items in Y. The shape of R is the shape of ¥ with the shape of a typical
(extended) item of Y inserted between the | Xth and the [xth axes of Y.

Examples

4+(1)(1 2)(1 2 3)

+00.51(1) (1 2) (1 2 3)

A«<('andy' 19)('geoff' 37)('pauline' 21)

+4
andy 19
geoff 37
pauline 21

+[0.5]4
andy geoff pauline
19 37 21

196 Dyalog APL/W Language Reference

Multiply:

R<«XxY

Y may be any numeric array. X may be any numeric array. R is the arithmetic product
of xand Y.

This function is also known as Times.

Example

3210 x 24 96
6 8 9 0

Nand:

ReXnY

Y must be a boolean array. X must be a boolean array. R is boolean. The value of R is
the truth value of the proposition "not both x and v", and is determined as follows:

X Y R
0 0 1
0 1 1
1 0 1
1 1 0

Example

(0 1)(1 0) ~ (0 0)(1 1)
11 01

Natural Logarithm: R«eY

Y must be a positive numeric array. R is numeric. R is the natural (or Napierian)
logarithm of ¥ whose base is the mathematical constant e=2.71828....

Example

®1 2
0 0.6931471806

Chapter 3 Primitive Functions 197

Negative: Re-Y
Y may be any numeric array. R is numeric. R is the negative value of Y.
Example
-4 2 0 73 75
4 T2 0 35
Nor: ReXwY

Y must be a boolean array. X must be a boolean array. R is boolean. The value of r is
the truth value of the proposition "neither X nor Y", and is determined as follows:

X Y R
0 0 1
0 1 0
1 0 0
1 1 0

Example

0 011~ 0101
10 0 O

Not:

R«~Y

Y must be a boolean array. R is boolean. The value of RisOif yis1,and Ris1if Y is
0.

Example

~0 1

198 Dyalog APL/W Language Reference

Not Equal: R«XzY

Y may be any array. X may be any array. R isboolean. Ris 0 if x=y. Otherwise R is
1.

For boolean X and v, the value of R is the “exclusive or” result, determined as follows:

X Y R
0 0 0
0 1 1
1 0 1
1 1 0

gcr is an implicit argument of Not Equal.

Examples

123 =2 1.1 2 3

OCT«1E~10

1#1 1.00000000001 1.0000001

1 2 3 =z'CAT!

Not Match: R<XzY

Y may be any array. X may be any array. R is a simple boolean scalar. If X is identical
to v, then R is 0. Otherwise R is 1.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape and
the same prototype (disclosed nested structure).

gdcr is an implicit argument of Not Match.

Chapter 3 Primitive Functions 199

Examples
8#£10
0
110
1

+A«c(13) 'ABC'
1 2 3 ABC

A#(13)'"ABC'

1
A#c(13) '"ABC!
0
8#0p4
1
(l¢OpA)¢C(O 0 0) ! !
1
Or: R«XvY

Y must be a boolean array. X must be a boolean array. R is boolean. The value of R is
determined as follows:

X Y R
0 0 0
0 1 1
1 0 1
1 1 1

Example

0011 v 0101
0111

200

Dyalog APL/W Language Reference

Partition:

(OML23) R<«Xc[K]Y

Y may be any non scalar array.
X must be a simple scalar or vector of non-negative integers.

The axis specification is optional. If present, it must be a simple integer scalar or one
element array representing an axis of v. If absent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.

A new partition is started in the result whenever the corresponding element in X is
greater than the previous one. Items in Y corresponding to 0s in X are not included in
the result.

Examples

OML<3
DISPLAY 1 1 1 2 2 3 3 3c'NOWISTHE'

[I |
| INOW| |IS| |THE]| |
I |
1

T

T___1 1 1 1 1

DISPLAY 1 1 1 0 0 3 3 3<'NOWISTHE'

[e .

[== -

| INOW| |THE| |

(LIRS S g

P, !
TEXT<' NOW IS THE TIME !
DISPLAY (' '"#TEXT)<TEXT

> e e

o >— >—-=, >——=

LI | rT__1 LIS | 1

_——

I .o . <
| INOW| |IS| |THE| |TIME| |
I |
1

,ROWS),COLSsNMAT

¥ Jan Feb Mar |
| Cakes 0 100 150 |
| Biscuits 0 0 350 |
| Buns 0 1000 500 |

Chapter 3 Primitive Functions 201

202

Dyalog APL/W Language Reference

DISPLAY
T T T T~
1 e e - = 1 1
T
|Cakes |

._> _______
| Buns |
1 o 1 1
-_> __________ .
vy 1 2 3 4|
| 5 6 7 8 |
| 9 10 11 12|
|13 14 15 16|
! o e e e e e e 1
DISPLAY
=== =
¥ >--, -
[11 2] 4]
| | R | 11
| >—— >
| 15 6| | 8]
| 1T __1 1T 1
| o>-—-. L
[19 101 [12]
| LR | 1T 1
| i -
[113 14| [16]
| 1o — — — 1 T
'6 ____________
R e e

[11 51 1261 [3 7] |4 8]

| LU | | R |

(v#" '"#2CMAT)<CMAT

>—— >
—— | I
> >
ol | 100]
v ____
>-—-, >—--=
ol |
—— | I
> >
0l [1000]

1 1 0 1cN

>-=. T

1 1 1

a Split at blank cols.

Chapter 3 Primitive Functions

203

i Pl il il

[13] [14 | [15] [16]

LU | T o1 T o1 T o1

204 Dyalog APL/W Language Reference

Partitioned Enclose: (OML<3) R<«Xc[K]Y

Y may be any array. X must be a simple boolean scalar or vector.

The axis specification is optional. If present, it must be a simple integer scalar or one-
element vector. The value of ¥ must be an axis of v. If absent, the last axis of v is
implied.

X must have the same length as the xth axis of Y. However, if X is a scalar or one-
element vector, it will be extended to the length of the xth axis of v.

R is a vector of items selected from y. The sub-arrays identified along the xth axis of ¥
at positions corresponding to each 1 in X up to the position before the next 1 in X (or
the last element of X) become the successive items of Y. The length of R is +/x (after
possible extension).

Examples

01 0011000 <19
2 3 4 5 6 7 8 9

101 (1] 3 upu12
2 3 4 9 10 11 12
8

1 0 0 1 <[2]3 u4pr12
1 2 3 [
5 6 7 8

Pi Times:

R<o0Y

Y may be any numeric array. R is numeric. The value of R is the product of the
mathematical constant 1=3.14159... (Pi), and Y.

Example

00.5 1 2
1.570796327 3.141592654 6.283185307

Chapter 3 Primitive Functions 205

Pick:

R<«X>Y

Y may be any array. X is a scalar or vector of indices of v, viz. 1pY. Risan item
selected from the structure of v according to X.

Elements of X select from successively deeper levels in the structure of Y. The items of
X are simple integer scalars or vectors which identify a set of indices, one per axis at
the particular level of nesting of Y in row-major order. Simple scalar items in ¥ may be
picked by empty vector items in X to any arbitrary depth.

0ro isan implicit argument of Pick.

Examples
G<('"ABC'" 1)('DEF' 2)('GHI' 3)('JKL' &)
G«2 3pG,('MNO' 5)('PQR' 6)

G
ABC 1 DEF 2 GHI 3
JKL 4 MNO 5 PQR 6

((e2 1),1)>CG

JKL
(c2 1)>oG
JKL 4
((2 1)1 2)=G
K
(5pc10)210
10

Plus:

R«X+Y

See function Add.

206 Dyalog APL/W Language Reference

Power:

R«X*Y

Y must be a numeric array. X must be a numeric array. R is numeric. The value of R is
X raised to the power of Y.

If v is zero, R is defined to be 1.
If X is zero, ¥ must be non-negative.

If X is negative, and Y can be approximated as a rational number of the form P+Q
where P and @ are relatively prime integers, then:

a) if Q iseven, XxY givesa DOMAIN ERROR
b) if @ isodd and P iseven, then XY <> (|X)xY
c) if @ and P are both odd, then XxY <> -(|X)*Y

If X is negative, and Y cannot be approximated as a rational number, then
X*xY <> -(|X)*Y.

Examples

2%x2 72
4L 0.25

9 64*x0.5
3 8

T27%x2 3,(1 2%3),1.2
729 19683 3 9 52.19591521

Chapter 3 Primitive Functions 207

Ravel: R«,Y
Y may be any array. R is a vector of the elements of ¥ taken in row-major order.
Examples
M
12
y
M

A
ABC
DEF
GHI
JKL
A
ABCDEFGHIJKL
p,10
1
Ravel with Axes: R«,[K]Y

Y may be any array.

K is either:

o Asimple fractional scalar adjacent to an axis of v, or
e Asimple integer scalar or vector of axes of v, or

e Anempty vector.

Ravel with axis can be used with selective specification.

R depends on the case of k¥ above.

If k is a fraction, the result R is an array of the same shape as Y, but with a new axis of
length 1 inserted at the k'th position.

ppR <> 1+ppY
PR <> (1,pY)[AK,1ppY]

208 Dyalog APL/W Language Reference

Examples

ABC

If is an integer scalar or vector of axes of v, then:

K must contain contiguous axes of ¥ in ascending order.
R contains the elements of ¥ raveled along the indicated axes.

Note that if X is a scalar or single element vector, R <~ Y.

ppR <> 1+(ppY)-p,K

Examples

13
17
21

1y
18
22

,[0.5]"ABC!
p,[0.5]"4BC!

,[1.5]"4BC"

p,[1.5]"4BC!
MAT<3 uLp112
o,[0.5]MAT
o,[1.5]MAT

p,[2.51MAT

15
19
23
oM

16
20
24

Chapter 3 Primitive Functions

209

,[1 21M

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24
p,[1 21M

,[2 31M
1 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 19 20 21 22 23 24

p,[2 3]M
2 12

If k is an empty vector a new last axis of length 1 is created.

pR «> (pY),1

Examples
Qi«'January' 'February' 'March'
DISPLAY Q1
P e e e e e
> == e . ==

. .o o
| January| |February| |March| |
' |

DISPLAY ,[10]Q1

T

|March |

210 Dyalog APL/W Language Reference

Reciprocal: ResY

Y must be a numeric array. R is numeric. R is the reciprocal of v; thatis 1+Y. If
O0DIV=0, +0 resultsina DOMAIN ERROR. If ODIV=1, +0 returns 0.

O0pI1v is an implicit argument of Reciprocal.

Examples

+4 2 5
0.25 0.5 0.2

ODIV « 1

+0 0.5

Replicate:

R<X/[K]Y

Y may be any array. X is a simple integer vector or scalar.

The axis specification is optional. If present, k must be a simple integer scalar or unit
vector. The value of X must be an axis of v. If absent, the last axis of Y is implied.
The form R<Xx+Y implies the first axis of Y. If Y is a scalar, it is treated as a one-
element vector.

The length of X must be the length of the xth (or implied) axis of Y. However, if X is a
scalar or one-element vector, it will be extended to the length of the xth axis.

R is composed from sub-arrays along the xth axis of . If X[1] (an element of X) is
positive, then the corresponding sub-array is replicated X[1] times. If X[I] is zero,
then the corresponding sub-array of v is excluded. If x[1] is negative, then the fill
elementof Y (ce>Y) isreplicated | X[I] times. Each of the (replicated) sub-arrays
and fill items are joined along the xth axis in the order of occurrence. The shape of r
is the shape of ¥ except that the length of the (implied) kth axis is +/ | X (after possible
extension).

This function is sometimes called Compress when X is boolean.

Chapter 3 Primitive Functions 211

Examples

1 01 0 1/:15

T2 3 "4 5/15
1003 33 00O0O0S555H565

2 0 1/M

0 1+M

0 1/[11M

Replicate First: R«X+[K]Y

The form R<Xx+Y implies replication along the first axis of Y. See Replicate above.

Reshape: R<XpY

Y may be any array. X must be a simple scalar or vector of non-negative integers. R is
an array of shape X whose elements are taken from Y in row-major sequence and
repeated cyclically if required. If Y is empty, R is composed of fill elements of Y
(ce>Y). If X contains at least one zero, then R is empty. If X is an empty vector, then
R is scalar.

Examples

2 3p18

212 Dyalog APL/W Language Reference

Chapter 3 Primitive Functions 213

Residue:

R«X|Y

Y may be any numeric array. X may be any numeric array.

For positive arguments, R is the remainder when Y is divided by x. If x=0, Ris Y. For
other argument values, R is Y-NxX where N is some integer such that R lies between 0
and x, but is not equal to X.

gcr is an implicit argument of Residue.

Examples

33 3 3|55 "4 4
0.5[3.12 "1 70.6
0.12 0 0.4

1 0 1]75.25 0 2.u41
“0.25 0 0.41

Note that the ASCII pipe (}) may also be interpreted as Residue ().

Reverse:

R«¢[K]Y

Y may be any array. The axis specification is optional. If present, X must be an integer
scalar or one-element vector. The value of ¥ must be an axis of v. If absent, the last
axis is implied. The form rR«eY implies the first axis.

R is the array Y rotated about the xth or implied axis.

Examples

¢1 2 3 4 5
5 43 2 1

M

oM

214 Dyalog APL/W Language Reference

eM
n
' oL11M
n
1
Reverse First: R«o[K]Y

The form R<eY implies reversal along the first axis. See Reverse above.

Roll:

R<«?Y

Y may be any positive integer array. R is an integer, pseudo-randomly selected from
the integers 1 Y with each integer in this population having an equal chance of being
selected.

010 and ORL are implicit arguments of Roll. A side effect of Roll is to change the
value of ORL.

Examples

29 9 9

Rotate:

R<X¢[K]Y

Y may be any array. X must be a simple integer array. The axis specification is
optional. If present, kK must be a simple integer scalar or one-element vector. The
value of ¥ must be an axis of v. If absent, the last axis of Y is implied. The form
R<XeY implies the first axis.

If Y is a scalar, it is treated as a one-element vector. X must have the same shape as the
rank of Y excluding the xth dimension. If X is a scalar or one-element vector, it will be
extended to conform. If Y is a vector, then X may be a scalar or a one-element vector.

R is an array with the same shape as ¥, with the elements of each of the vectors along
the kth axis of Y rotated by the value of the corresponding element of x. If the value is
positive, the rotation is in the sense of right to left. If the value is negative, the rotation
is in the sense of left to right.

Chapter 3 Primitive Functions 215

Examples

312 3 4567
4 56 71 2 3
"2 61 2 3 45

b 5123
M
1 3 4
5 7 8
9 10 11 12

13 14 15 16

I
B 0
1
I¢[21M
1 7 4
5 3 8

9 14 11 16
13 10 15 12

J
2 3
3 72
JoOM
b 1 2
7 8 5

12 9 10 11
15 16 13 14

Rotate First: R<Xeoe[K]Y

The form R<XxeY implies rotation along the first axis. See Rotate above.

216 Dyalog APL/W Language Reference

Shape: R«pY

Y may be any array. R is a non-negative integer vector whose elements are the
dimensions of Y. If v is a scalar, then R is an empty vector. The rank of Y is given by

ppY.
Examples
pl10
p'CAT!
3
p3 Ubp112
3 4

+G<«(2 3p16)('CAT' '"MOUSE' 'FLEA')
123 CAT MOUSE FLEA

4 5 6
oG
2
ppG
1
o
2 3 3
R
3 5 4
Signum: RexY

Y may be any numeric array. R is an integer array whose value indicates whether the
value of Y is negative (T 1), zero (0) or positive (1).

Example

x 15,3 0 101
1.0 1

Chapter 3 Primitive Functions 217

Split:

R«+y[K]Y

Y may be any array. The axis specification is optional. If present, ¥ must be a simple
integer scalar or one-element vector. The value of ¥ must be an axis of v. If absent,
the last axis is implied.

The items of R are the sub-arrays of Y along the xth axis. R is a scalar if Y is a scalar.
Otherwise R is an array whose rank is ~1+ppY and whose shape is (K=1pY)/pY.

Examples
¥3 W4p'MINDTHATSTEP'
MIND THAT STEP

¥2 5p110
123 45 67 8 9 10

v[1]2 5p110
16 27 38 4L 9 510

Subtract:

R«X-Y

Y may be any numeric array. X may be any numeric array. R is numeric. The value of
R is the difference between x and Y.

This function is also known as Minus.

Example

218 Dyalog APL/W Language Reference

Take: R<X4Y

Y may be any array. X must be a simple integer scalar or vector.

If Y is a scalar, it is treated as a one-element array of shape (p,X)p1. The length of x
must be the same as the rank of Y. However, if X is a scalar or a one-element vector, it
will be extended to conform.

R is an array of the same rank as v (after possible extension), and of shape | x. If

X[11 (an element of X) is positive, then X[I] sub-arrays are taken from the beginning
of the rth axis of y. If X[I] is negative, then x[I] sub-arrays are taken from the end
of the rth axis of Y.

If more elements are taken than exist on axis I, then the extra positions in R are filled
with the fill element of ¥ (ce>Y).

Examples
54 ' ABCDEF"
ABCDE

541 2 3
12 3 00

541 2 3
001 23

54(13) (w4) (15)
1 2 3 1 2 3 4 1 2 3 4 5 0 0 O 0 0 O

o e
o N
N w
o F X

2 3+M

Chapter 3 Primitive Functions 219

Take with Axes: R<«X+([K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. X isa
vector of zero or more axes of Y.

R is an array of the first or last elements of v taken along the axes ¥ depending on
whether the corresponding element of X is positive or negative respectively.

The rank of R is the same as the rank of v:
ppR <> ppY

The size of each axis of R is determined by the corresponding
element of x:

(pR)L,K] <> 1.,X

Examples

J«M<«2 3 Lpi24
1 2 3 4
5 6 7 8
10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

2+[2]1M
3 u
7 8

13 14 15 16
17 18 19 20

24[31M

13 14
17 18
21 22

220

Dyalog APL/W Language Reference

2 "2+4[3 21M
5 6
9 10

17 18
21 22

Times:

R<«XxY

See function Multiply.

Transpose (Monadic): R«{Y

Y may be any array. R is an array of shape ¢pY, similar to ¥ with the order of the axes
reversed.

Examples
M

[

M

Transpose (Dyadic): R<XyY

Y may be any array. X must be a simple scalar or vector whose elements are included
inthe set 1 ppY. Integer values in X may be repeated but all integers inthe set + [/X
must be included. Also the number of elements in X must not exceed the rank of Y.

R is an array formed by the transposition of the axes of ¥ as specified by x. The Ith
element of X gives the new position for the rth axis of y. If X repositions two or more
axes of Y to the same axis, the elements used to fill this axis are those whose indices on
the relevant axes of v are equal.

0ro is an implicit argument of Dyadic Transpose.

Chapter 3

Primitive Functions 221

Examples

13 14
17 18
21 22

10

1 2
17 18

15 16
19 20
23 24

2 1 384
3 4
15 16

11 12
23 24

1 1 184

1 1 284

3 4
19 20

Type:

(OML<1)

R<«eY

Migration level must be such that 0¥ L <1 (otherwise e means Enlist).

Y may be any array. R is an array with the same shape and structure as v in which a
numeric value is replaced by 0 and a character value is replaced by ' .

Examples

€(2 3p16)(1 Lp'TEXT')

1oty

222 Dyalog APL/W Language Reference

Union: R«XuY
Y must be a vector. x must be a vector. If either argument is a scalar, it is treated as a
one-element vector. R is a vector of the elements of x catenated with the elements of ¥
which are not found in x.

Items in X and Y are considered the same if X=Y returns 1 for those items.
gcr is an implicit argument of Union.
Examples
'"WASH' v 'SHOUT'
WASHOUT
"ONE' 'TWO' u 'TWO' 'THREE'
ONE TWO THREE
For performance information, see Search Functions and Hash Tables in Chapter 2.
Unique: R«vYy

Y must be a vector. R is a vector of the elements of ¥ omitting non-unique elements
after the first.

gdcr is an implicit argument of Unique.

Examples
U 'CAT' 'DOG' 'CAT' 'MOUSE' 'DOG' 'FOX'
CAT DOG MOUSE FOX

u 22 10 22 22 21 10 5 10
22 10 21 5

Without:

ReX~Y

See function Excluding.

Zilde:

R<@

Chapter 3 Primitive Functions 223

The empty vector (1 0) may be represented by the numeric constant & called ZILDE.

224 Dyalog APL/W Language Reference

225

CHAPTER 4

Primitive Operators

Operator Syntax

Operators take one or two operands. An operator with one operand is monadic. The
operand of a monadic operator is to the left of the operator. An operator with two
operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function
or array expression to its left (see Chapter 1). A dyadic operator has short scope on the
right. Right scope may be extended by the use of parentheses.

An operand may be an array, a primitive function, a system function, a defined function
or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a DERIVED FUNCTION. The derived function
may be monadic or dyadic and it may or may not return an explicit result.

Examples

+/15
15
(x02)13

PLUS < + ¢ TIMES <« x
1 PLUS.TIMES 2

2
ONL 2

A

X
OEXVONL 2

ONL 2

226 Dyalog APL/W Language Reference

Axis Specification

Some operators may include an axis specification. Axis is itself an operator. However
the effect of axis is described for each operator where its specification is permitted.
0ro is an implicit argument of the function derived from the Axis operator.

The description for each operator follows in alphabetical sequence. The valence of the
derived function is specifically identified to the right of the heading block.

Class of Name Producing Monadic Producing Dyadic
Operator derived function derived function
Monadic Assignment Xf<Y
Assignment X[I1f<Y
Assignment (EXP X)f<Y
Commute X2y
Each 'y X'y
Reduction f/y [1]
Ay [1]
Scan Ay []
5y [1]
Spawn f&Y XY
Dyadic Axis fI(BlY Xf[BlY
Composition fogY XfogY
AogY
(feB)Y
Inner Product Xf.gY
Outer Product
Xo.gY
[] Indicates optional axis specification

Figure 4(i) : Primitive Operators

Chapter 4 Primitive Operators 227

Operator Presentation

Monadic and Dyadic primitive operators are presented in alphabetical order of their

descriptive names as shown in Figure 4(i).

The valence of the operator and the derived function are implied by the syntax in the
heading block.

Assignment (Modified):

{RY«Xf<«Y

f may be any dyadic function which returns an explicit result. ¥ may be any array
whose items are appropriate to function £. X must be the name of an existing array

whose items are appropriate to function f.

R is the “pass-through” value, that is, the value of v. If the result of the derived

function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by x to the
resultof xfy.

Examples
A
12345
A+<10
A
11 12 13 14 15
O<«Ax<«2
2
A
22 24 26 28 30

3 51

vec< L4+979 o vec
1 "2 4 0 "3 2
vec/=<«vec>0 ovec
b 2

228 Dyalog APL/W Language Reference

Assignment (Indexed Modified): {R}Y«X[I]f+Y

£ may be any dyadic function which returns an explicit result. ¥ may be any array
whose items are appropriate to function £. X must be the name of an existing array. I
must be a valid index specification. The items of the indexed portion of X must be
appropriate to function £.

R is the “pass-through” value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the indexed elements of X, thatis X[I], to
the result of X[71 Y. This result must have the same shape as X[I 1.

Examples

A
12 3 45

+A[2 4]1+<«1

1
A

13355
Al3]+<2
A

1 3 1.5 5 5

If an index is repeated, function f will be applied to the successive values of the
indexed elements of x, taking the index occurrences in left-to-right order.

Example

B<5p0
B[22 4 1 2 1 4 2 4 1 3]+=<«1

B
33130

Chapter 4 Primitive Operators 229

Assignment (Selective Modified): {R}«(EXP X)f+«Y

f may be any dyadic function which returns an explicit result. ¥ may be any array
whose items are appropriate to function £. X must be the name of an existing array.
EXP is an expression that selects elements of x. (See Selective Assignment in Chapter
3 for a list of allowed selection functions.) The selected elements of X must be
appropriate to function f.

R is the “pass-through” value, that is, the value of Y. If the result of the derived
function is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the selected elements of X to the result of
X[I]1fy where X[I] defines the elements of X selected by ExP.

Example

A
12 36 23 78 30

((A>30)/4) x<« 100
A
12 3600 23 7800 30

230

Dyalog APL/W Language Reference

Axis (with Monadic Operand): R«f[BlY

£ must be a monadic primitive mixed function taken from those shown in Figure 4(ii)
below, or a function derived from the operators Reduction (/) or Scan (\). B must be a
numeric scalar or vector. Y may be any array whose items are appropriate to function
f. Axis does not follow the normal syntax of an operator.

Function Name Range of B

¢ or e Reverse BeippY

4 Mix (0#1|B)A(B>0I0-1)A(B<0I0+ppY)

¥ Split BeippY

s Ravel fraction, or zero or more axes of Y
< Enclose (B=10)v(A/BeippY)

Figure 4(ii) : Primitive monadic mixed functions with optional axis.

In most cases, B is required to be an integer which identifies a specific axis of Y. An
exception occurs when f is the Mix function (+) in which case B is a fractional value
whose lower and upper integer bounds select an adjacent pair of axes of ¥ or an
extreme axis of . For Ravel (,) and Enclose (<) , B can be a vector of two or more
axes.

0zo is an implicit argument of the derived function which determines the meaning of
B.

Examples
6[1]2 3p16
4 5
1 2
+[.1]'ONE' 'TWO'
orT
NW

EO

Chapter 4 Primitive Operators 231

Axis (with Dyadic Operand): R«Xf[BlY

£ must be a dyadic primitive scalar function, or a dyadic primitive mixed function
taken from Figure 4(iii) below. B must be a numeric scalar or vector. X and ¥ may be
any arrays whose items are appropriate to function £. Axis does not follow the normal
syntax of an operator.

Function | Name Range of B

/ or + | Replicate BeippY

\ or X | Expand BeippY
Partitioned
Enclose BeippY

¢ or e | Rotate Bei1ppY

, or s | Catenate/ (021 |B)A(B>0I0-1)A(B<OIO0+(ppX)lppY)
Laminate

4 Take zero or more axes of Y

¥ Drop zero or more axes of Y

Figure 4(iii) : Primitive dyadic mixed functions with optional axis.

In most cases, B must be an integer value identifying the axis of X and ¥ along which
function £ is to be applied. Exceptionally, B must be a fractional value for the
Laminate function (,) whose upper and lower integer bounds identify a pair of axes or
an extreme axis of x and v. For Take (+) and Drop (+) , B can be a vector of two or
more axes.

0zo is an implicit argument of the derived function which determines the meaning of
B.

232 Dyalog APL/W Language Reference

Examples
145 =[1] 3 2p16
10
0 1
10
2 "2 1/[2]2 3p'ABCDEF'
A4 C
DD F
"ABC',[1.1]'="
A=
B=
C=
"ABC',[0.1]'="
ABC
0I0<«0
"ABC',[T0.5]"'="
ABC

Axis with Scalar Dyadic Functions

The axis operator [x] can take a scalar dyadic function as operand. This has the effect
of ‘stretching’ a lower rank array to fit a higher rank one. The arguments must be
conformable along the specified axis (or axes) with elements of the lower rank array
being replicated along the other axes.

For example, if 4 is the higher rank array; L the lower rank one; X is an axis

specification; and f a scalar dyadic function, then the expression: Hf [X 1L is
conformable if: (pL)«~(pH)[X]. Each element of L is replicated along the
remaining (pH)~X axes of #

Chapter 4 Primitive Operators

233

Examples

10
o)

11
42

11
b1

20
50

21
52

22
52

100
400

700
1000

101
401

702
1002

101
401

701
1001

110
4y

710
1040

110
410

mat
30
60

mat+[1]11 2
31
62

mat+[2]1 2 3

33

63

cube

200 300
500 600
800 900
1100 1200

cube+[1]11 2

201 301
501 601
802 902
1102 1202

cube+[3]1 2 3

202 303
502 603
802 903
1102 1203

cube+[2 31mat

220 330
550 660
820 930
1150 1260

cube+[1 31mat
220 330
520 630

o add along first axis

a add along last axis

234 Dyalog APL/W Language Reference

740 850 960
1040 1150 1260

Chapter 4 Primitive Operators 235

Commute: {R}Y<«Xf<Y

f may be any dyadic function. x and Y may be any arrays whose items are appropriate
to function £.

The derived function is equivalent to Y fx. The derived function need not return a
result.

Example

N
3254 6 1 3

N/Z2|N
351 3

The following statements are equivalent:
F/Z«I
FeF/=T
F<«I/F

Commute often eliminates the need for parentheses. The pair p =~ may be read as “if” in
the following context:

~LABELp=A=1

236

Dyalog APL/W Language Reference

Composition (Form I): {R}<«fogY

f may be any monadic function. g may be any monadic function which returns a
result. ¥ may be any array whose items are appropriate to function g. The items of gv
must be appropriate to function f.

The derived function is equivalent to fgy. The derived function need not return a
result.

Composition allows functions to be “glued” together to build up more complex
functions.

Examples
RANK <« pop
RANK = '"JOANNE' (2 3p16)
1 2
+/0172 4 6
3 10 21
OVR'SUM!
V R<SUM X
[1] R<«+/X
v

SUMe1"2 4 6
3 10 21

Chapter 4 Primitive Operators 237

Composition (Form Il): {R}<«AogY

g may be any dyadic function. 4 may be any array whose items are appropriate to
function g. Y may be any array whose items are appropriate to function g.

The derived function is equivalent to 4gY. The derived function need not return a
result.

Examples

2 20p T 'AB!
AA BB
AA BB

SINE <« 100

SINE 10 20 30
“0.5440211109 0.9129452507 ~0.98803162u41

The following example uses Composition Forms | and 1l to list functions in the
workspace:

ONL 3
ADD
PLUS
Oo<oOVR"YONL 3
vV ADD X
[1] ~LABp=0z[ONC'SUM' o SUM<0
[2] LAB:SUM<SUM++/X
v
V R<A PLUS B
[1] R<A+B

238 Dyalog APL/W Language Reference
Composition (Form ll): {R}«(feoB)Y
f may be any dyadic function. B may be any array whose items are appropriate to
function f. Y may be any array whose items are appropriate to function f.
The derived function is equivalent to Y £B. The derived function need not return a
result.
Examples
(¥x00.5)4 16 25
2 4 5
SQRT « 0.5
SQRT 4 16 25
2 4 5
The parentheses are required in order to distinguish between the operand B and the
argument Y.
Composition (Form IV): {R}«XfogY

£ may be any dyadic function. g may be any monadic function which returns a result.
Y may be any array whose items are appropriate to function g. Also gy must return a
result whose items are appropriate as the right argument of function 7. X may be any
array whose items are appropriate to function £.

The derived function is equivalent to X fgY. The derived function need not return a
result.

Examples
+o+/L0p1 a Golden Ratio! (Bob Smith)
1.618033989

0,01 15
0 1 01 2 01 2 3 01 2 3 4 01 2 3 4 5

Chapter 4 Primitive Operators 239

Each (with Monadic Operand): {R}Y«f"Y

f may be any monadic function. Y may be any array, each of whose items are
separately appropriate to function 7.

The derived function applies function f separately to each item of Y. The derived
function need not return a result. If a result is returned, R has the same shape as v, and
its elements are the items produced by the application of function f to the
corresponding items of Y.

If ¥ is empty, the derived function is applied once to the prototype of ¥, and the shape
of R is the shape of v.

Examples
G+ ('TOM' (13))('DICK' (14))('HARRY' (15))
oG
3
oG
2 2 2
e
3 3 4 L 5 5

+0FX " ('FOOL' '"A«1'")('F002' '"A<«2'")
F001 F002

240

Dyalog APL/W Language Reference

Each (with Dyadic Operand): {R}Y«XfY

£ may be any dyadic function. X and ¥ may be any arrays whose corresponding items
(after scalar extension) are appropriate to function £ when applied separately.

The derived function is applied separately to each pair of corresponding elements of x
and v. If X or Y is a scalar or single-element array, it will be extended to conform with
the other argument. The derived function need not produce an explicit result. If a
result is returned, R has the same shape as Y (after possible scalar extension) whose
elements are the items produced by the application of the derived function to the
corresponding items of x and Y.

If X or Y is empty and scalar conformable, the derived function is applied once to the
prototypes of x and Y, and the shape of Rr is determined by the rules for scalar
conformability.

Examples

+G<(1 (2 3))(4 (5 6))(8 9)10
1 23 4 5 6 9 8 10

167G

1 2 3 447G
1 4 5 6 8 9 0 10 0 0 O

"ABC','XYZ!
AX BY (CZ

Chapter 4 Primitive Operators 241

Inner Product: R«Xf.gY

£ must be a dyadic function. g may be any dyadic function which returns a result. The
last axis of X must have the same length as the first axis of Y.

The result of the derived function has shape (“1+pX), 1+pY. Each item of R is the
result of £/xg""y where x and y are typical vectors taken from all the combinations of
vectors along the last axis of X and the first axis of ¥ respectively.

Function £ (and the derived function) need not return a result in the exceptional case
when 2="1+pX. In all other cases, function f must return a result.

If the result of xg ™"y is empty, for any x and y, a DOMAIN ERROR will be reported
unless function £ is a primitive scalar dyadic function with an identity element shown
in Figure 4(iv).

Examples

1 2 3+.x10 12 14
76

1 2 3 PLUS.TIMES 10 12 14
76

+/1 2 3x10 12 14
76

NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN

NAMESA.="WILLIAM '
0100

242 Dyalog APL/W Language Reference

Outer Product: {R}+«Xo.gY

g may be any dyadic function. The left operand of the operator is the symbol -. X and
Y may be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of x and . If function g
returns a result, the shape of Ris (pX), pY. Each element of R is the item returned by
function g when applied to the particular combination of elements of x and v.

Examples

1 2 30.x10 20 30 40
10 20 30 4O
20 40 60 80
30 60 90 120

1 2 30.p'AB!

A B
AA BB
AAA BBB
20,,1 2 3
1 3
2 3
(13)e0.=13

O O -
o B O
R O O

Chapter 4 Primitive Operators 243

Reduction:

R«f/[K]Y

£ must be a dyadic function. ¥ may be any array whose items in the sub-arrays along

the Kth axis are appropriate to function .

The axis specification is optional. If present, X must identify an axis of v. If absent,
the last axis of Y is implied. The form R«£#Y implies the first axis of Y.

R is an array formed by applying function £ between items of the vectors along the kth

(or implied) axis of v.

Function

APL

Identity

Plus (Add)
Minus (Subtract)
Times (Multiply)

Divide
Residue
Minimum
Maximum
Power
Binomial

And

Oor

Less

Less Or Equal
Equal

Greater
Greater Or Equal
Not Equal
Encode

Union
Replicate
Expand

Rotate

A A < > o= % T — — o

v

c 4 N v

\ X
de

R ORLr B O O

I
S

ORr P ®OOR OREOOR R R

the machine.

M is the largest number which is representable on

244 Dyalog APL/W Language Reference

Figure 4(iv) : Identity Elements

Chapter 4 Primitive Operators 245

For a typical vector v, the result is:

c(12Y)f(22Y)f...... f(n>Y)
The shape of R is the shape of ¥ excluding the kth axis. If ¥ isascalar then R is a
scalar. If the length of the kth axis is 1, then R is the same as Y. If the length of the

Kth axis is 0, then DOMAIN ERROR is reported unless function £ occurs in Figure
4(iv), in which case its identity element is returned in each element of the result.

Examples

v/0 010010

+/M

++M

+/011M

+/(1 2 3)(4 5 6)(7 8 9)

12 15 18

,/'ONE' 'NESS'
ONENESS

+/10

’/II
DOMAIN ERROR
AR

A

Reduce First: R«f+Y

The form R<£#Y implies reduction along the first axis of Y. See Reduce above.

246 Dyalog APL/W Language Reference

Chapter 4 Primitive Operators 247

Reduce N-Wise: R«Xf/[K]Y

£ must be a dyadic function. X must be a simple scalar or one-item integer array. Y may
be any array whose sub-arrays along the kth axis are appropriate to function f.

The axis specification is optional. If present, ¥ must identify an axis of v. If absent, the
last axis of Y is implied. The form R<x £ +Y implies the first axis of v.

R is an array formed by applying function £ between items of sub-vectors of length x
taken from vectors along the xth (or implied) axis of v.

X can be thought of as the width of a ‘window’ which moves along vectors drawn from
the xth axis of 1.

If X is zero, the resultisa (pY)+(ppY)=1ppY array of identity elements for the
function f. See Figure 4(iv).

If X is negative, each sub-vector is reversed before being reduced.

Examples
th
1 2 3 4
3+/ 1k A (1+2+43) (2+3+4)
6 9
2+/ 14 a (1+2) (2+43) (3+4)
3 5 7
1+/ 1k A (1) (2) (3) (W)
12 3 4
O+/ 14 a Identity element for +
00 00O
Ox/ 1k a Identity element for x
11111
2,/14 A (1,2) (2,3) (3,4)
12 23 3 4
T2,/ Ao (2,1) (3,2) (4,3)

21 3 2 4 3

248 Dyalog APL/W Language Reference

Scan: R«f\[K]Y

£ may be any dyadic function that returns a result. ¥ may be any array whose items in
the sub-arrays along the xth axis are appropriate to the function f.

The axis specification is optional. If present, X must identify an axis of v. If absent,
the last axis of Y is implied. The form R<fxY implies the first axis of Y.

R is an array formed by successive reductions along the xth axis of v. If v is a typical
vector taken from the xth axis of v, then the 1th element of the result is determined as
f/I4V.

The shape of R is the same as the shape of v. If ¥ is an empty array, then R is the same
empty array.

Examples

v\0
00111

= o
SN
o
o
-
o

[
[
o
[
[
[

A1
11100

o
o

+\1 2 3 4 5
1 3 6 10 15

+\(1 2 3)(4 5 6)(7 8 9)
1 2 3 57 9 12 15 18

Chapter 4 Primitive Operators 249

+\[11M

,\"4ABC'
A AB ABC

T<'ONE(TWO) BOOK(S)'

2\Te' ()"
0001 1110O0O0O0O0O0110O0

((Te' ()")»=\Te'()")/T
ONE BOOK

Scan First: R<«f\Y

The form R«<f\Y implies scan along the first axis of Y. See Scan above.

250 Dyalog APL/W Language Reference

Spawn: {R}Y«{X}f&Y

& is a monadic operator with an ambivalent derived function. & spawns a new thread in
which £ is applied to its argument Y (monadic case) or between its arguments X and Y
(dyadic case). The shy result of this application is the number of the newly created
thread.

When function f terminates, its result (if any), the thread result, is returned. If the
thread number is the subject of an active 0T SYNC, the thread result appears as the
result of OTsync. If no OTSYNC is in effect, the thread result is displayed in the
session in the normal fashion.

Note that & can be used in conjunction with the each operator " to launch many threads

in parallel.
Examples
&4 o Reciprocal in background
0.25
O«+&y o Show thread number
1
0.25
F00&88 o Spawn monadic function.
2 FOO0&3 a dyadic
{NIL}&O a niladic
¢&'NIL' A
X.G008&99 @ thread in remote space.
2&'0d1 2 n Execute async expression.
'NS'¢&'FOO' a .. remote

PRT&vOnl 9 a PRT spaces in parallel.

Chapter 4 Primitive Operators 251

253

CHAPTER 5

System Functions & Variables

System Functions, Variables, Constants and Namespaces provide information and
services within the APL environment. Their case-insensitive names begin with 0.

0 0 04 04 OAI

0AN OARBIN OARBOUT OAT 04v
OCLEAR dcup OCR acs dcr

dcy ap aprv 0prL Opm

0bpQ 0ODR OED OEM OEN

OEX OEXCEPTION OEXPORT OFAPPEND OFAVAIL
OFCREATE OFDROP OFERASE OFHOLD OFLIB
OrFmMT OFNAMES OFNUMS OFRDAC OFRDCI
OFREAD OFRENAME OFREPLACE OFRESIZE OFSIZE
OFSTAC OFSTIE OFTIE OFUNTIE arx

gro UKL drc OLOAD dLock
OLx OMAP OML OMONITOR On4
ONAPPEND dnc ONCREATE ONERASE Onve
ONLoCK ONNAMES ONNUMS ane ONR
ONREAD ONRENAME ONREPLACE ONRESIZE aons
OnsI ONSIZE ONTIE ONULL ONUNTIE
ONXLATE dorr dOoR OPATH OPFKEY
gpp OPw OREFS ORL ORTL
OSAVE asb 0sE 0sH OSHADOW
0sI OSIGNAL OSIZE asm OSR
OSTACK OSTATE dsTop asvce asvo
gsve OSVR asvs arc drcNums
arip OTKILL arnumMs OTRACE OTRAP
ars OrsSync OQUSING avrr OvRr

254 Dyalog APL/W Language Reference

OwA awc awG Own Ows

OwsID Owx 0xsI oxr

Chapter 5 System Functions & Variables 255

System Variables

System variables retain information used by the system in some way, usually as
implicit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate,
otherwise an error will be reported immediately.

Example

0I0<«3
DOMAIN ERROR
0I0<«3

A

System variables may be localised by inclusion in the header line of a defined function
or in the argument list of the system function OSHADowW. When a system variable is
localised, it retains its previous value until it is assigned a new one. This feature is
known as “pass-through localisation”. The exception to this rule is JTRAP.

A system variable can never be undefined. Default values are assigned to all system
variables in a clear workspace.

Unless otherwise stated, system variables are associated with namespaces.

System variables are summarised in the following Figure.

Name Description Scope

0 Character Input/Output Session

0 Evaluated Input/Output Session
gcr Comparison Tolerance Namespace
gpIv Division Method Namespace
gro Index Origin Namespace
OLx Latent Expression Workspace
oML Migration Level Namespace
OPATH Search Path Session
gpp Print Precision Namespace
Oprw Print Width Session
ORL Random Link Namespace
ORTL Response Time Limit Namespace
OsuM Screen Map Workspace
OTRAP Event Trap Workspace
QUSING Microsoft .Net Search Path Namespace
OwsSID Workspace ldentification Workspace
Owx Window Expose Namespace

256 Dyalog APL/W Language Reference

Chapter 5 System Functions & Variables 257

In other words, 0, 0, OSE, OPATH and OPw relate to the session. O0LX, 0SM, OTRAP
and Ow S 1D relate to the active workspace. All the other system variables relate to the
current namespace.

Session Workspace | Namespace
u 0rx gcr
0 OsH OpIv
OPATH OTRAP gro
ni% OWSID UML
OSE QPP
ORL
ORTL
QUSING
owx

System Namespaces

OSE is currently the only system namespace.

System Constants

System constants, which can be regarded as niladic system functions, return
information from the system. They have distinguished names, beginning with the quad
symbol, 0. A system constant may not be assigned a value. System constants may not
be localised or erased.

System constants are summarised in the following Figure:

Name Description

04 Underscored Alphabetic upper case characters
04 Alphabetic upper case characters

04I Account Information

04N Account Name

g4v Atomic Vector

ap Digits

OEN Event Number

OEXCEPTION | Reportsthe most recent Microsoft .net Exception
grc Line Count

ONULL Null Item

agsp Screen (or window) Dimensions

grc Terminal Control (backspace, linefeed, newline)
ars Time Stamp

Ow A Workspace Available

258

Dyalog APL/W Language Reference

System Functions

System functions provide various services related to both the APL and the external
environment. System functions have distinguished names beginning with the O
symbol. They are implicitly available in a clear workspace.

The following Figure identifies system functions divided into relevant categories. Each

function is described in alphabetical order in this chapter

System Commands

These functions closely emulate system commands (see Chapter 6)

Name Description

OCLEAR Clear workspace (WS)

dcy Copy objects into active WS
Orx Expunge objects

0LOAD Load a saved WS

ONL Name List

dorr End the session

OSAVE Save the active WS

External Environment

These functions provide access to the the external environment, such as file systems,
Operating System facilities, and input/output devices.

Name Description

OARBIN Avrbitrary Input

OARBOUT Avrbitrary Output

gcMb Execute a (DOS) Command or another program
gcup Start a (DOS) AP

OMAP Map a file

On4 Declare a DLL function

OsH Execute a (UNIX) command or another program
OSH Start a (UNIX) AP

Chapter 5 System Functions & Variables

259

Defined Functions and Operators

These functions provide services related to defined functions and operators.

Name Description
OAT Object Attributes
0dCRr Canonical Representation
acs Change Space
0ED Edit one or more objects
OEXPORT Export objects
Orx Fix definition
OLoCk Lock a function
OMONITOR Monitor set
OMONITOR Monitor query
ONR Nested Representation
ans Create Namespace
dor Object Representation
OPATH Search Path
OREFS Local References
OSHADOW Shadow names
gsTop Set Stop vector
gsTop Query Stop vector
OTRACE Set Trace vector
OTRACE Query Trace vector
VR Vector Representation
Error Trapping
These functions are associated with event trapping and the system variable OTRAP.
Name Description
OeM Event Messages
OSIGNAL Signal event

260 Dyalog APL/W Language Reference

Shared Variables
These functions provide the means to communicate between APL tasks and with other
applications.
Name Description
gsvce Set access Control
gsvce Query access Control
gsvo Shared Variable Offer
gsvo Query degree of coupling
gsve Shared Variable Query
OSVR Retract offer
gsvs Query Shared Variable State

Graphical User Interface

These functions provide access to GUI components.

Name Description

0pQ Await and process events
ane Place an event on the Queue
wc Create GUI object

weG Get GUI object properties
Own Query GUI object Names
aws Set GUI object properties
0w X Expose GUI property names

External Variables

These functions are associated with using external variables.

Name Description

Oxr Associate External variable
0xr Query External variable
OFHOLD External variable Hold

Chapter 5 System Functions & Variables

261

MultiThreading
These functions are associated with using the Spawn operator (&).
Name Description
grip Current Thread ldentity
OTCNUMS Thread Child Numbers
OTKILL Kill Threads
OTNUMS Thread Numbers
OTSYNC Wait for Threads to Terminate

Component Files

The functions provide the means to store and retrieve data on APL Component Files.

See User Guide for further details.

Name Description

OFAPPEND Append a component to File
OFAVAIL File system Availability
OFCREATE Create a File

OFDROP Drop a block of components
OFERASE Erase a File

OFHOLD File Hold

OFLIB List File Library

OFNAMES Names of tied Files
OFNUMS Tie Numbers of tied Files
OFRDAC Read File Access matrix
OFRDCI Read Component Information
OFREAD Read a component from File
OFRENAME Rename a File

OFREPLACE Replace a component on File
OFRESIZE File Resize

OFSIZE File Size

OrSTAC Set File Access matrix
OFSTIE Share-Tie a File

OFTIE Tie a File exclusively
OFUNTIE Untie Files

262

Dyalog APL/W Language Reference

Native Files

The functions provide the means to store and retrieve data on native files.

Name Description

ONAPPEND Append to File
ONCREATE Create a File

ONERASE Erase a File

ONLOCK Lock a region of a file
ONNAMES Names of tied Files
ONNUMS Tie Numbers of tied Files
ONREAD Read from File
ONRENAME Rename a File
ONREPLACE Replace data on File
ONRESIZE File Resize

ONSIZE File Size

ONTIE Tie a File exclusively
ONUNTIE Untie Files

ONXLATE Specify Translation Table

Miscellaneous

These functions provide various miscellaneous services.

Name Description

0DL Delay execution

I Diagnostic Message
OFmrT Resolve display

gruT Format array

OKL Key Labels

gnc Name Classification
OnNsSI Namespace Indicator
OPFKEY Programmable Function Keys
gsr State Indicator

0SIZE Size of objects

OSR Screen Read

OSTACK Report Stack

OSTATE Return State of an object
avrr Verify and Fix numerics
gxsr Extended State Indicator

Chapter 5 System Functions & Variables 263

Programming Reference A-Z

There follows an alphabetical list of system functions and variables which are
available in any Dyalog APL workspace. Apart from quote-quad ([1) below, their
names all begin with the quad symbol (0).

Character Input/Output: |

[is a variable which communicates between the user's terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When [7 is assigned with a vector or a scalar, the array is displayed without the normal
ending new-line character. Successive assignments of vectors or scalars to [1 without
any intervening input or output cause the arrays to be displayed on the same output
line.

Example

[«'2+2' o [«'=' o [I«u4
2+2=L

Output through [is independent of the print width in OPw. The way in which lines
exceeding the print width of the terminal is treated is dependent on the characteristics
of the terminal. Numeric output is formatted in the same manner as direct output (see
“Display of Arrays” in Chapter 1).

When 1 is assigned with a higher-order array, the output is displayed in the same
manner as for direct output except that the print width OpPw is ignored.

When 1 is referenced, terminal input is expected without any specific prompt, and the
response is returned as a character vector.

If the [request was preceded by one or more assignments to [without any intervening
input or output, the last (or only) line of the output characters are returned as part of the
response.

Example
ma t<+ o000

264

Dyalog APL/W Language Reference

Examples

(I« "OPTION : ' o R<[l
OPTION : INPUT

R
OPTION : INPUT

PR
14

The output of simple arrays of rank greater than 1 through [7 includes a new-line
character at the end of each line. Input through [includes the preceding output
through [since the last new-line character. The result from [, including the prior
output, is limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while [0 is awaiting
input, and execution is then suspended (unless the interrupt is trapped):

R<1
(Interrupt)
INPUT INTERRUPT

A time limit is imposed on input through M if ORT L is set to a non-zero value:

ORTL«5 o [«'PASSWORD ? ' o R<[l
PASSWORD ?
TIMEOUT

ORTL«5 o [«'PASSWORD : ' o R<[l

A

The TIMEOUT interrupt is a trappable event.

Chapter 5 System Functions & Variables 265

Evaluated Input/Output: 0

0 is a variable which communicates between the users terminal and APL. Its
behaviour depends on whether it is being assigned or referenced.

When O is assigned an array, the array is displayed at the terminal in exactly the same
form as is direct output (see “Display of Arrays” in Chapter 1).

Example

J«2+15
3 4 56 7

O<«2 4p'WINEMART'
WINE
MART

When 0 is referenced, a prompt (O:) is displayed at the terminal, and input is
requested. The response is evaluated and an array is returned if the result is valid. If
an error occurs in the evaluation, the error is reported as normal (unless trapped by a
OTR4P definition) and the prompt (O) is again displayed for input. An EOF interrupt
reports INPUT INTERRUPT and the prompt (0O:) is again displayed for input. A soft
interrupt is ignored and a hard interrupt reports ITNTERRU PT and the prompt (O:) is
redisplayed for input

Examples
10x0+2
d:
13
30 40 50
2+0
d:
X
VALUE ERROR
X
A
0:
2+13

266

Dyalog APL/W Language Reference

A system command may be entered. The system command is effected and the prompt
is displayed again (unless the system command changes the environment):

p3,0
0:

YWSID
WS/MYWORK
0:

) ST
a
0:

JCLEAR
CLEAR WS

If the response to a J: prompt is an abort statement (-), the execution will be aborted:

A trap definition on interrupt events set for the system variable OTRAP in the range
1000-1006 has no effect whilst awaiting input in response to a 0: prompt.

Example
OTRAP«(11 'C' '"''ERROR''')(1000 'C' '"''STOP''")
2+0
E
(Interrupt Signal)
INTERRUPT
0:
'C'+2
ERROR

A time limit set in system variable ORT L has no effect whilst awaiting input in
response to a 0: prompt.

Chapter 5 System Functions & Variables 267

Underscored Alphabetic Characters: R<[4

This is a simple character vector, composed of the letters of the alphabet with
underscores (or the extra National Language characters in the Dyalog Alt Font).

Example

U4
ABCDEFGHIJKLIMNOPQRSTUVWXYZ

(or AZACEEEITTIPOOO0UUTYDPE1805)

Alphabetic Characters: R<[4

This is a simple character vector, composed of the letters of the alphabet.

Example

04
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Account Information: R<[AI

This is a simple integer vector, whose four elements are:

OAI[1] - user identification.
Under DOS & Windows, this is the ap1nid (network ID from
configuration dialog box).
Under UNIX, this is the UID of the account.

OAI[2] - compute time for the APL session in milliseconds.
0A4I1([3] - connecttime for the APL session in milliseconds.
OAICu4] - keying time for the APL session in milliseconds.

Elements beyond 4 are not defined but reserved.

Example

OAI
52 7396 2924216 2814831

268 Dyalog APL/W Language Reference
Account Name: R<[AN
In Windows 95 and Windows NT this is a simple character vector containing the user
name. Under UNIX this is the login name for the account. The length of the vector is
the number of characters in the login name.
Under DOS and Windows 3.1 JAN returns an empty character vector.
Example
gAnN
PROJECT1
pJAN
8
Arbitrary Input: R«{X}OARBIN Y

This transmits the prompt ¥ to an output device specified by x prior to reading from an
input device specified by x.

Under Windows, the use of JARBIN to the screen or in conjunction with RS232 ports
is not supported.

Y may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of the simple arrays of ¥ must each be a character, or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the
standard J4v to ASCII translation. If v is an empty vector, no codes are sent to the
output device.

X may take several forms:
terminate (input output) DARBIN prompt
terminate input OARBIN prompt
terminate OARBIN prompt
OARBIN prompt

Each of these elements is discussed separately.

Chapter 5 System Functions & Variables

269

<terminate>

This defines how the read should be terminated.

If it is omitted, the read terminates on receipt of a Newline character.

If supplied, it must be a simple numeric scalar or vector.

o Ifitisanumeric scalar, it defines the number of characters to be read.
o Ifitisanumeric vector, it defines a set of terminating characters.

e Ifitis the null vector, the read terminates on Newline.

<input>

This defines the input device.
If this is omitted, input is taken from standard input (usually the keyboard).

If supplied, it must be a simple numeric scalar or a simple text vector.

o Ifitisanumeric scalar, it must correspond to a DOS handle or UNIX stream

number (see User Guide).
e Ifitis atext vector, it must correspond to a valid device or file name.

You must have permission to read from the chosen device.

270

Dyalog APL/W Language Reference

<output>

This defines the output device.
If this is omitted, output is sent to standard output (usually the screen).
If supplied, it must be a simple numeric scalar or a simple text vector.

o [Ifitisanumeric scalar, it must correspond to a DOS handle or UNIX stream
number (see User Guide).

o Ifitis atext vector, it must correspond to a valid device or file name.
You must have permission to write to the chosen device.

The result R is a simple numeric vector. Each item of R is the numeric representation
of an 8-bit code in the range 0 to 255 received from the input device. The meaning of
the code is dependent on the characteristics of the input device. If a set of delimiters
was defined by <terminate>, the last code returned will belong to that set.

ORT L (Response Time Limit) is an implicit argument of DARBIN. This allows a time
limit to be imposed on input. If the time limit is reached, OARBIN returns with the
codes read up to that point.

Chapter 5 System Functions & Variables

27

Examples

Write HE L L0 on the screen, and read a line of input
from the keyboard:

R <« [ARBIN 'HELLO'

Beep three times, send ARE YOU AWAKE 2 to the screen and wait for a 1 character
answer from the keyboard:

R <« 1 DARBIN 7 7 7 'ARE YOU AWAKE (Y/N)'
Read a line from MYFILE:

R « '' '"MYFILE' OARBIN ''
Read ¥YFI1LE until a SPACE (code 32):

R « (,32) '"MYFILE' [QARBIN ''
Read ¥YF 1 LE until a SPACE (code 32) or a TAB (code 9):

R <« (32 9) '"MYFILE' UARBIN '!

Write HEL L0 on /dev/ttyl (a UNIX terminal screen), then read a line from /dev/ttyl (a

UNIX terminal keyboard):
R « "' ('/dev/tty1' '"/dev/tty1') UARBIN 'HELLO'

Write TITLE to LPT1 (a DOS printer device), then read from COML1 (a DOS serial
port) up to the first NEWLINE character:

R < (,13) ('CoM1i' 'LPT1') UARBIN 'TITLE'
Read 100 characters from COM1; timeout after 10 secs:

ORTL<«10

R«100 'COM1' [JARBIN '!

9(100#pR)/ "' '"Read timed out'''
Read until DELIM from COM1; timeout after 10 secs:

ORTL<«10

R« (,DELIM) 'COM1' [ARBIN ''
¢ (DELIM# 14R)/'''Read timed out''"'

272

Dyalog APL/W Language Reference

Arbitrary Output: {X}OARBOUT Y

This transmits ¥ to an output device specified by X.

Under Windows, the use of JARBOUT to the screen or to RS232 ports is not supported.
Y may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of the simple arrays of Y must each be a character or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the
standard 04V to ASCII translation. If ¥ is an empty vector, no codes are sent to the
output device.

X defines the output device. If X is omitted, output is sent to standard output (usually
the screen). If x is supplied, it must be a simple numeric scalar or a simple text vector.

If it is a numeric scalar, it must correspond to a DOS handle or UNIX stream number
(see User Guide).

If it is a text vector, it must correspond to a valid device or file name.

You must have permission to write to the chosen device.

Examples
Write ASCII digits ' 123 ' to UNIX stream 9:

9 OJARBOUT 49 50 51
Write ASCII characters ' ABC' to MYFILE:
'"MYFILE' [ARBOUT 'ABC'
Beep 3 times:
OARBOUT 7 7 7
Prompt for input

I« 'Prompt: 'o0arbout 12¢ans<(l

Chapter 5 System Functions & Variables 273

Attributes: R<«{X}YOAT Y

Y can be a simple character scalar, vector or matrix, or a vector of character vectors
representing the names of 0 or more defined functions or operators. Used dyadically,
this function closely emulates the APL2 implementation. Used monadically, it returns
information that is more appropriate for Dyalog APL.

Monadic Use

If X is omitted, R is a 4 column matrix with the same number of rows as functions in Y
containing the following attribute information:

R[;1] Each item is a 3-element integer vector representing the function
header syntax:

Item([1] result:
0 - Noresult
1 - Explicit result
“1 - Shyresult

Item[2] Function valence:
0 - Niladic function
1 - Monadic function
2 - Dyadic function
~2 - Ambivalent function
Item[3] Operator valence
0 - Not an operator
1 - Monadic operator
2 - Dyadic operator

The following values correspond to the syntax shown alongside:

FOO

Z<«FO00

{Z}<FO0O0

{A}Y FOO B
{Z}Y<«(F OP G)B

R O Fr B O
B N O O O
N O O © O
R RS EEE S B IR N

274 Dyalog APL/W Language Reference

R[;2] Each item is the (OT s form) timestamp of the time the function was
last fixed.
R[;3] Each item is an integer reporting the current 0L0CK state of the
function:
0 - Not locked
1 - Cannot display function
2 - Cannot suspend function
3 - Cannot display or suspend.

Rl ;4] Each item is a character vector - the network ID of the user who last
fixed (edited) the function.

Example
V {z}<{I}Y(fn myop)r
(1]
v z<foo
(1]
vV z<{larg)util rarg
(1]
OLOCK' foo'!
util2<util
DISPLAY UOAT 'myop' 'foo' 'util' 'util2'
R e e e e e
I e . N |
[171 72 1] 1996 8 2 2 13 56 0] 0 |john| |
I Ve __ 1 - ____ 1 1 ____1 I
[it . e |
[11 0 0} [0 000 0 0 O] 31 | |
| | U, 1 e e e -~ 1 L. | |
| i R . N |
[11 72 0] [1996 3 1 14 12 10 O 0 |pete] |
| | ! e ! | S | I
| ————— e e e m - - >———— |
|
|
1

Chapter 5 System Functions & Variables 275

Dyadic Use

The dyadic form of 0AT emulates APL2. It returns the same rank and shape result
containing information that matches the APL2 implementation as closely as possible.

If v specifies as single name, the result R is a vector. If Y specifies more than one
name, R is a matrix with one row per name in Y. The number of elements (columns)
and their meaning depends upon the value of x which may be 1, 2, 3 or 4.

If X is 1, R specifies valences and contains 3 elements (or columns) whose meaning is
as follows:

1 | Explicit result 1 if the object has an explicit result or is a
variable; 0 otherwise

2 | Function valence | O if the object is a niladic function or not a
function

1 if the object is a monadic function
2 if the object is an ambivalent function

3 | Operator valence | 0 if the object is not an operator
1 if the object is a monadic operator
2 if the object is a dyadic operator

If X is 2, R specifies fix times (the time the object was last updated) for functions and
operators named in Y. The time is reported as 7 integer elements (or columns) whose
meaning is as follows. The fix time reported for names in Y which are not defined
functions or operators is 0.

Year
Month
Day

Hour
Minute
Second

~N|o|jlo|lh~|lW|IN]|EF

Milliseconds (this is always reported as 0)

276 Dyalog APL/W Language Reference

If X is 3, R specifies execution properties and contains 4 elements (or columns) whose
meaning is as follows:

1 | Displayable 0 if the object is displayable
1 if the object is not displayable

2 | Suspendable 0 if execution will suspend in the object
1 if execution will not suspend in the object

3 | Weak Interrupt 0 if the object responds to interrupt
behaviour 1 if the object ignores interrupt

4 (always 0)

Note that the execution properties for primitive and system functionsare o 1 1 o.

If X is 4, R specifies object size and contains 2 elements (or columns) which both report
the 0SIZE of the object.

Chapter 5 System Functions & Variables 277

Atomic Vector: R<[JAV

This is a simple character vector of all 256 characters in the Dyalog APL character set
(see Chapter 8 and User Guide).

Examples

OAV[48+110]
0123456789

5 52p12+0av
%'ow_abcdefghijklmnopgrstuvwxyzUO0™ .e0123us567890-23£¢
AABCDEFGHIJKLMNOPQRSTUVWXYZDDy-EAABCDEFGHIJKLMNOPQRS

—+ix2ep~ty10%[Vo (conulT|;,¥A~VAqbeel!5e95=26660"#08"
I rH—HLir|ewtd i (T:esi0+>n)l==100%% 'ow_abcdefghijk

Clear Workspace: OCLEAR

A clear workspace is activated, having the name CLEAR WS. The active workspace is
lost. All system variables assume their default values. The maximum size of
workspace is available.

The contents of the session namespace OSE are not affected.

Example

OCLEAR
OwsSID
CLEAR WS

278

Dyalog APL/W Language Reference

Execute (DOS) Command: R<0CMD Y

OcmD executes a DOS or UNIX shell command or starts another Windows application
program. OCMD is a synonym of O.SH. Either system function may be used in either
environment (Windows or UNIX) with exactly the same effect. OCMD is probably
more natural for the Windows user. This section describes the behaviour of OcuD and
0sH under Windows. See 0SH for a discussion of the behaviour of these system
functions under UNIX.

The system commands) c¥D and) SH provide similar facilities but may only be
executed from the APL Session.

Executing a DOS Command

If Y is a simple character vector, JcMD invokes the DOS command processor (normally
COMMAND.COM) and passes Y to it for execution. R is a vector of character vectors
containing the result of the command. Each element in R corresponds to a line of
output produced by the command.

The implementation of this form of OcMD differs between Dyalog APL Version 7 and
Version 8. Specifically, Version 8 takes advantage of Windows 95 and Windows NT
facilities that are not available in Windows 3.X. The two different implementations are
described below.

Version 7 Implementation

Under Windows 3., the execution of a DOS command must be done using a .PIF file.
dcup first creates a temporary .PIF file called QCMD1234.PIF in the root directory of
your default drive (usually C:). This file is initially a copy of
WDYALOG\QUADCMD.PIF which is then dynamically changed to run your DOS
shell together with the particular command that you have asked to be run; i.e. the right
argument you supplied to Oc¥D. The DOS shell to be run is obtained from your
COMSPEC environment variable. If this is not defined, it defaults to
C:\COMMAND.COM.

The temporary .PIF file is then executed in a new (but invisible) window. The result of
the command (if any) is captured by redirecting output to a temporary file and then
reading and deleting the file on completion of the command. The result is then
displayed in the APL session. The temporary file is created in the directory specified
by your TMP environment variable, or in the root directory of the current drive if TMP
is undefined. The file is called POPEN.TMP prefixed by your Task ID and the value
of the aplnid entry in APL.INI.

Chapter 5 System Functions & Variables 279

Example
Z<[JCMD'DIR"
pZ

8
+Z

Volume in drive C has no label
Directory of C:\DYALOG

<DIR> 5-07-89 3.02p
.. <DIR> 5-07-89 3.02p
SALES DWS 110092 5-07-89 3.29p
EXPENSES DWS 154207 5-07-89 3.29p

If the command specified in Y already contains the redirection symbol (>) the capture
of output through a temporary file is avoided and the result r is empty. If the
command specified by Y issues prompts and expects user input, it is ESSENTIAL to
explicitly redirect output to the console. If this is done, APL detects the presence of a
">" in the command line, runs COMMAND.COM in a visible window, and does not
direct output to the temporary file. If you fail to do this your system will appear to

hang because there is no mechanism for you to receive or respond to the prompt.

Example

(0CMD '"DATE>CON'
(DOS window appears)
Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95
(DOS window disappears)

Errors

cannot create temp file
APL was unable to create a temporary .PIF file or could not find a shell to run.

could not execute command

APL has successfully started the .PIF file but has timed out waiting for the DOS
window to be created. The time-out is defined by the gcmd _timeout= parameter in
APL.INI (default 5000 msecs).

not enough memory
not enough memory or corrupt shell
invalid shell

280

Dyalog APL/W Language Reference

Version 8 Implementation

Under Version 8, the right argument of OcMD is simply passed to the appropriate
command processor for execution and its output is received using an unnamed pipe.

By default, OcmD will execute the string (' command.com /c',Y) under
Windows 95 and the string ('cmd.exe /c',Y) under Windows NT; where Y is
the argument given to OCc¥D. However, the implementation permits the use of
alternative command processors as follows.

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the name
defined by the environment variable COMSPEC followed by ““ /c”. If COMSPEC is
not defined, it defaults to COMMAND.COM or CMD.EXE as appropriate. If
CMD_POSTFIX is not defined, it defaults to an empty vector.

OcMD treats certain characters as having special meaning as follows:
marks the start of a trailing comment,

; divides the command into sub-commands,

> if found within the last sub-command, causes JCMD to use a visible
window.

If you simply wish to open a DOS command window, you may (in Version 8) execute
the command as a Windows Program (see below). For example:

(cMD 'command.com' '!'

Chapter 5 System Functions & Variables 281

Executing a Windows Program

If Y is a 2-element vector of character vectors, OCMD starts the executable program
named by Y [1] with the initial window parameter specified by Y[21. The shy result
is an integer scalar containing the window handle allocated by the window manager.

Y [1] must specify the name or complete pathname of an executable program. If the
name alone is specified, Windows will search the following directories :

the current directory,

the Windows directory,

the Windows system directory,

the directories specified by the PATH variable,
the list of directories mapped in a network.

agrwnE

Note that ¥ [1] may contain the complete command line, including any suitable
parameters for starting the program. If Windows fails to find the executable program,
Ocup will fail and report FILE ERROR 2.

Y [21 specifies the window parameter and may be one of the following. If not, a
DOMAIN ERROR is reported.

"Normal! Application is started in a normal
window, which is given the input focus.

U Same as Norma I

'"Unfocused' Application is started in a normal
window, which is NOT given the input
focus.

'"Hidden' Application is run in an invisible window.

'Minimized' Application is started as an icon

which is NOT given the input focus.
'Minimised' SameasMinimized.

'Maximized' Application is started maximized (full
screen) and is given the input focus.

'Maximised' Same as Maximized.

282

Dyalog APL/W Language Reference

An application started by Oc¥D may ONLY be terminated by itself or by the user.
There is no way to close it from APL. Furthermore, if the window parameter is
HIDDEN, the user is unaware of the application (unless it makes itself visible) and has
no means to close it.

Examples

U<0CMD 'C:\EXCEL\EXCEL' 'Normal'
2390
OcMD 'winword /mMyMacro' 'Minimized'

Start (DOS) Auxiliary Processor: X OcMD Y

Used dyadically, OcMD starts an Auxiliary Processor. The effect, as far as the APL
workspace is concerned, is identical under both DOS and UNIX, although the method
of implementation differs. OcMD is a synonym of 0.SH. Either function may be used in
either environment (DOS or UNIX) with exactly the same effect. OcMD is probably
more natural for the DOS user. This section describes the behaviour of OcMD and OSH
under DOS. See 0sH for a discussion of the behaviour of these system functions under
UNIX.

X must be a simple character vector containing the name (or pathname) of a Dyalog
APL Auxiliary Processor (AP). See User Guide for details of how to write an AP.

Y may be a simple character scalar or vector, or a vector of character vectors. Under
DOS the contents of Y are ignored.

OcmD loads the Auxiliary Processor into memory. If no other APs are currently
running, OcMD also allocates an area of memory for communication between APL and
its APs.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same way
as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are passed
to the AP for processing via the communications area described above. APL halts
whilst the AP is processing, and waits for a result. Under DOS, unlike under UNIX, it
is not possible for external functions to run in parallel with APL.

Chapter 5 System Functions & Variables 283

Canonical Representation: R<(CR Y

Y must be a simple character scalar or vector which represents the name of a defined
function or operator.

If v is a name of a defined function or operator, R is a simple character matrix. The
first row of R is the function or operator header. Subsequent rows are lines of the
function or operator. R contains no unnecessary blanks, except for leading indentation
of control structures, trailing blanks that pad each row, and the blanks in comments. If
Y is the name of a variable, a locked function or operator, an external function, or is
undefined, R is an empty matrix whose shape is 0 0.

Example
VR<MEAN X a Arithmetic mean
[1] R«(+/X)+pX
(2] v
+F<[JCR'MEAN"
R<MEAN X a Arithmetic mean

R<(+/X)+pX

pF
2 30

The definition of OCR has been extended to names assigned to functions by
specification (<), and to local names of functions used as operands to defined
operators.

If v is a name assigned to a primitive function, R is a one-element vector containing the
corresponding function symbol. If Y is a name assigned to a system function, R is a
one element nested array containing the name of the system function.

Examples

PLUS<+
+F<(CR'PLUS'

pF

Cc<+0CRr

crc!
OCR

pC'C!

284

Dyalog APL/W Language Reference

VR<CONDITION (FNi1 ELSE FN2) X
[1] ~CONDITION/L1
[2] R«FN2 X o =0
[3] L1:R<FN1 X
(4] v

2 0STOP 'ELSE'
(X20) L ELSE [X« 2.5

ELSE[2]
X
“2.5
OCR'FN2'!
r
~0JLC
2

If ¥ is a name assigned to a derived function, R is a vector whose elements represent
the arrays, functions, and operators from which Y was constructed. Constituent
functions are represented by their own OCRs, so in this respect the definition of OCR is
recursive. Primitive operators are treated like primitive functions, and are represented
by their corresponding symbols. Arrays are represented by themselves.

Example

BOX<2 20p

+F<[JCR'BOX'
2 2 op

pF

DISPLAY F

If Y is a name assigned to a defined function, R is the Oc R of the defined function. In
particular, the name that appears in the function header is the name of the original
defined function, not the assigned name Y.

Example

AVERAGE<MEAN
OCR'"AVERAGE"
R<MEAN X a Arithmetic mean
Re(+/X)+pX

Chapter 5 System Functions & Variables 285

Change Space: {R}«+{X}0CS Y

Y must be namespace reference (ref) or a simple character scalar or vector identifying
the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of character
vectors identifying zero or more workspace objects to be exported into the namespace
Y.

The identifiers in X and ¥ may be simple names or compound names separated by ' . '
and including the names of the special namespaces '0OSE ", '#', "##'and ' '.

The result R is the full name (starting "# . ") of the space in which the function or
operator was executing prior to the OCS.

gdcs changes the space in which the current function or operator is running to the
namespace Y and returns the original space, in which the function was previously
running, as a shy result. After the Ocs, references to global names (with the exception
of those specified in X) are taken to be references to global names in Y. References to
local names (i.e. those local to the current function or operator) are unaffected.

When the function or operator terminates, the calling function resumes execution in its
original space.

The names listed in x are temporarily exported to the namespace Y. If objects with the
same name exist in Y , these objects are effectively shadowed and are inaccessible.

Note that calling Oc's with an empty argument Y obtains the namespace in which a
function is currently executing.

Example

This simple example illustrates how ¢S may be used to avoid typing long pathnames
when building a tree of GUI objects. Note that the objects NEW and 0 PEN are created
as children of the T LE menu as a result of using JCS to change into the 7 . MB.FILE
namespace.

286

Dyalog APL/W Language Reference

v
[1]
[2]
(3]
(u]
(5]
[6]
[7]
[8]
(9]
[10]
[11]
[12]
[13]
[1y4]
[15]
[16]

Example

MAKE FORM;F;0LD

'"F'OWC'Form'
'"F.MB'OWC'MenuBar'
'"F.MB.FILE'OWC'Menu' '&File'

OLD<[CS'F.MB.FILE'
'"NEW'OWC'MenuItem' '&New'
"OPEN'IWC'MenuItem' '&0Open'
acs oLD

'"F.MB.EDIT'IWC'Menu' '&Edit'

OLD<[JCS'F.MB.EDIT'
'"UNDO'OWC'MenuItem' '&Undo’
'"REDO'OWC 'MenuItem' '&Redo’
gcs orLb

This example illustrates how OC S can be used to handle multiple instances of an object

Suppose a form F1 contains buttons B1 and B2. Each button maintains a count of the
number of times it has been pressed, and the form maintains a count of the total number

of button

presses. The single callback function PRESS and its subfunction FMT can

reside in the form itself

(1]
(2]

(3]

)CS F1

a Note that both instances reference
a the same callback function
'"B1'OWS'Event' 'Select' 'PRESS'
'"B2'[IWS'Event' 'Select' 'PRESS'

@ Initialise total and instance counts.
TOTAL < B1.COUNT <« B2.COUNT <« O

PRESS MSG
"FMT TOTAL'0CS>MSG =n Switch to instance space.
(TOTAL COUNT)+<1) Incr total & instance count

OwS'Caption' (COUNT FMT TOTAL) m Set instance caption

Chapter 5 System Functions & Variables 287

v CAPT<«INST FMT TOTL o Format button caption.
(1] CAPT<(3INST),'/',sT0TL o E.g. 40/100.

288 Dyalog APL/W Language Reference

Example

This example uses OC S to explore a namespace tree and display the structure. Note
that it must export its own name (tree) each time it changes space, because the name
tree is global.

vV tabs tree space;subs @ Display namespace tree
[1] tabs,space
(2] "tree'llCS space
[3] >(psubs<+[ONL 9)+0
(u] (tabs,'. ")otree subs

)ns x.y
#.x.y
)ns z

'""tree '#!

Comparison Tolerance: gcr

The value of OCT determines the precision with which two numbers are judged to be
equal. Two numbers, X and Y, are judged to be equal if:

(1Xx-y)<OCT=(l1X)IY
where < is applied without tolerance.

0dcT may be assigned any value in the range from o to 16+ ~8. A value of 0 ensures
exact comparison. The value in a clear workspace is 1714,

Ocr is an implicit argument of the monadic primitive functions Ceiling (1), Floor (L)
and Unique (v), and of the dyadic functions Equal (=), Excluding (~), Find (¢), Greater
(>), Greater or Equal (2), Index of (1), Intersection (n), Less (<), Less or Equal (<),
Match (=), Membership (e), Not Match (#), Not Equal (=), Residue (|) and Union (v),
as well as OFmT O-format.

Examples

OCT«1E~10
1.00000000001 1.0000001 = 1

Chapter 5 System Functions & Variables 289

290

Dyalog APL/W Language Reference

Copy Workspace: {Xx0CcYy Y

Y must be a simple character scalar or vector identifying a saved workspace. X is
optional. If present, it must be a simple character scalar, vector or matrix. A scalar or
vector is treated as a single row matrix. Each (implied) row of x is interpreted as an
APL name.

Each (implied) row of X is taken to be the name of an active object in the workspace
identified by v. If X is omitted, the names of all defined active objects in that
workspace are implied (defined functions and operators, variables, labels and
namespaces).

Each object named in x (or implied) is copied from the workspace identified by v to
become the active object referenced by that name in the active workspace if the object
can be copied. A copied label is re-defined to be a variable of numeric type. If the
name of the copied object has an active referent in the active workspace, the name is
disassociated from its value and the copied object becomes the active referent to that
name. In particular, a function in the state indicator which is disassociated may be
executed whilst it remains in the state indicator, but it ceases to exist for other
purposes, such as editing.

You may copy an object from a namespace by specifying its full pathname. The object
will be copied to the current namespace in the active workspace, losing its original
parent and gaining a new one in the process. You may only copy a GUI object into a
namespace that is a suitable parent for that object. For example, you could only copy a
Group object from a saved workspace if the current namespace in the active workspace
is itself a Form, SubForm or Group.

A DOMAIN ERROR isreported in any of the following cases:

1. v isill-formed, or is not the name of a workspace with access authorised for the
active user account.

2. Anyname in X is ill-formed.
3. An object named in X does not exist as an active object in workspace named in Y.
4. An object being copied has the same name as an active label.

AWwS FULL is reported if the active workspace becomes full during the copying
process.

Chapter 5

System Functions & Variables 291

Example

OvVR'FOO!
V R<«FO0O
(1] R<10
v
'"Foo' QOCY
OvR'FoO!
V R«<F0OO0 X
R«10xX

"BACKUP'

(1]
v

System variables are copied if explicitly included in the left argument, but not if the left

argument is omitted.

Example
Orx

(2 3p'0LX X')OCY'WS/CRASH'

Orx
+RESTART

A copied object may have the same name as an object being executed. If so, the name
is disassociated from the existing object, but the existing object remains defined in the

workspace until its execution is completed.

Example

)ST
Foo[1]1x

Qvr'FoOO'

V R<FO0O0

[1] R<10

'"FOO'OCY'WS/MYWORK'
Foo

)SI
Foo[11x

~0LcC

292 Dyalog APL/W Language Reference

10

Chapter 5 System Functions & Variables 293

Digits: R<0D
This is a simple character vector of the digits from 0 to 9.
Example
oo
0123456789
Division Method: ODIv

The value of ODIV determines how division by zero is to be treated. If ODIV=0,

division by 0 produces a DOMAIN ERROR except that the special case of 0+0 returns
1.

If ODIV =1, division by O returns 0.
O0DIV may be assigned the value 0 or 1. The value in a clear workspace is 0.

Op1v is an implicit argument of the monadic function Reciprocal (=) and the dyadic
function Divide ().

Examples

ODIV<0

102 + 2 01
0.5 1 2

+0 1
DOMAIN ERROR
+0 1

294 Dyalog APL/W Language Reference

Delay: {R}<0ODL Y

Y must be a simple non-negative numeric scalar or one element vector. A pause of
approximately Y seconds is caused.

The shy result R is an integer scalar value indicating the length of the pause in seconds.

The pause may be interrupted by a strong interrupt.

Diagnostic Message: R<[IDM

This niladic function returns the last reported APL error as a three-element vector,
giving error message, line in error and position of caret pointer.

Example

2+0
DOMAIN ERROR

2+0

A

0bpM
DOMAIN ERROR 230 A

Chapter 5 System Functions & Variables 295

Dequeue Events: {R}«[DQ Y

0DQ awaits and processes events. Y specifies the GUI objects(s) for which events are
to be processed. Objects are identified by their names, as character scalars/vectors, or
by namespace references. These may be objects of type Root, Form, Locator, Filebox,
MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Sub-
objects (children) of those named in Y are also included. However, any objects which
exist, but are not named in Y, are effectively disabled (do not respond to the user).

If yis ' . ', all objects currently owned and subsequently created by the current thread
are included in the 0DQ. Note that because the Root object is owned by thread 0, events
on Root are reported only to thread 0.

If Y is empty it specifies the object associated with the current namespace and is only
valid if the current space is one of the objects listed above.

Otherwise, Y contains the name(s) of or reference(s) to the objects for which events are
to be processed. Effectively, this is the list of objects with which the user may interact.
A DOMAIN ERROR isreported if an element of v refers to anything other than an
existing "top-level" object.
Associated with every object is a set of events. For every event there is defined an
"action" which specifies how that event is to be processed by 0pQ. The "action" may
be a number with the value o, 1 or ~1, or a character vector containing the name of a
"callback function", or a character vector containing the name of a callback function
coupled with an arbitrary array. Actions can be defined in a number of ways, but the
following examples will illustrate the different cases.

OBJ [OWS 'Event' 'Select' 0

OBJ (WS 'Event' 'Select' 1

0BJ OWS 'Event' 'Select' 'F00'

0BJ OWS 'Event' 'Select' 'F00' 10

0BJ OWS 'Event' 'Select' 'F008&'!

These are treated as follows :

296 Dyalog APL/W Language Reference

Action = 0 (the default)

0p@ performs "standard" processing appropriate to the object and type of
event. For example, the standard processing for a KeyPress event in an Edit
object is to action the keypress, i.e. to echo the character on the screen.

Action = "1

This disables the event. The "standard" processing appropriate to the object
and type of event is not performed, or in some cases is reversed. For
example, if the "action code" for a KeyPress event (22) is setto ~1, 0D@Q
simply ignores all keystrokes for the object in question.

Action = 1

0DQ terminates and returns information pertaining to the event (the event
message in R as a nested vector whose first two elements are the name of the
object (that generated the event) and the event code. R may contain additional
elements depending upon the type of event that occurred.

Action = fn {larg}

fn is a character vector containing the name of a callback function. This
function is automatically invoked by 0DQ whenever the event occurs, and
prior to the standard processing for the event. The callback is supplied the
event message (see above) as its right argument, and, if specified, the array
larg as its left argument. If the callback function fails to return a result, or
returns the scalar value 1, 0Dg then performs the standard processing
appropriate to the object and type of event. If the callback function returns a
scalar 0, the standard processing is not performed or in some cases is
reversed.

If the callback function returns its event message with some of the parameters
changed, these changes are incorporated into the standard processing. An
example would be the processing of a keystroke message where the callback
function substitutes upper case for lower case characters. The exact nature of
this processing is described in the reference section on each event type.

Action = seexpr

If Act ion is set to a character vector whose first element is the execute
symbol (¢) the remaining string will be executed automatically whenever the
event occurs. The default processing for the event is performed first and may
not be changed or inhibited in any way.

Action = fn& {larg}

Chapter 5 System Functions & Variables 297

fn is a character vector containing the name of a callback function. The
function is executed in a new thread. The default processing for the event is
performed first and may not be changed or inhibited in any way.

298

Dyalog APL/W Language Reference

0DQ terminates in one of four instances. Note that its result is shy.

Firstly, 0DQ terminates when an event occurs whose "action code" is 1. In this case,
its result is a nested vector containing the event message associated with the event.
The structure of an event message varies according to the event type (see Object
Reference). However, an event message has at least two elements of which the first is
a character vector containing the name of the object, and the second is a numeric code
specifying the event type.

0D also terminates if all of the objects named in Y have been deleted. In this case, the
result is an empty character vector. Objects are deleted either using JEX, or on exit
from a defined function or operator if the names are localised in the header, or on
closing a form using the system menu.

Thirdly, O0Dg terminates if the object named in its right argument is a special modal
object, such asa MsgBox, FileBox Or Locator, and the user has finished
interacting with the object (e.g. by pressing an "OK" button). The return value of 0DgQ
in this case depends on the action code of the event.

Finally, ODQ terminates with a VALUE ERROR if it attempts to execute a callback
function that is undefined.

Data Representation (Monadic): R<0DR Y

Monadic ODR returns the type of its argument Y. The result R is an integer scalar
containing one of the following values:

Value Data Type

11 1 bit Boolean
82 8 bits Character
83 8 bits Integer

163 16 bits Integer
323 32 bits Integer
326 32 bits Pointer

645 64 bits Floating

Note that types 83 and 163 are exclusive to Dyalog APL.

Chapter 5 System Functions & Variables 299

Data Representation (Dyadic): R«X ODR Y

Dyadic ODR converts the data type of its argument ¥ according to the type specification
X. See monadic ODR on the previous page for a list of data types.

Case 1: X is a single integer value. The bits in the right argument are interpreted as
elements of an array of type x. The shape of the resulting new array will typically be
changed along the last axis. For example, a character array seen as Boolean will have 8
times as many elements along the last axis.

Case 2: X is a 2-element integer value. The bits in the right argument are interpreted as
type X[1]. The system then attempts to convert the elements of the resulting array to
type x [2] without loss of precision. The result R is a two element nested array
comprised of:

[1] The converted elements or a fill element (0 or blank) where the conversion
failed
[2] A Boolean array of the same shape indicating which elements were

successfully converted.

Case 3: X is a 3-element integer value and X[2 3] is 163 82. The bits in the right
argument are interpreted as elements of an array of type X[1 1. The system then
converts them to the character representation of the corresponding 16 bit integers. This
case is provided primarily for compatibility with APL*PLUS. For new applications, the
use of the [conv] field with ONAPPEND and ONREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by
ONXLATE o. By default this is the mapping defined by the current output translate
table (usually WIN.DOT).

300

Dyalog APL/W Language Reference

Edit Object: {R}Y«{X}0ED Y

0D invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector with as many elements
as there are names in Y. Each element of X specifies the type of the corresponding
(new) object named in Y, where :

'ty function or operator

T - simple character vector
vector of character vectors
simple character matrix

tet
1 1

If an object named in Y already exists, the corresponding type specification in X is
ignored.

If OED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by O&D, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using) ED.

If 0D is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, and in Dyalog APL for DOS/386, the Edit windows are
automatically displayed in "full-screen" mode (ZOOMED). In all implementations, the
user is restricted to those windows named in Y. The user may not skip to the Session
even though the Session may be visible

O£D terminates and returns a result ONLY when the user explicitly closes all the
windows for the named objects. In this case the result contains the names of any
objects which have been changed, and has the same structure as Y.

Chapter 5 System Functions & Variables 301

Event Message: R«(EM Y

Y must be a simple non-negative integer scalar or vector of event codes. If Y isa
scalar, R is a simple character vector containing the associated event message. If v is a
vector, R is a vector of character vectors containing the corresponding event messages.
If v refers to an undefined error code "n", the event message returned is "ERROR
NUMBER n".

Example

OEM 11
DOMAIN FERROR

Event Number: R<[0EN

This simple integer scalar reports the identification number for the most recent event
which occurred, caused by an APL action or by an interrupt or by the SIGNAL
system function. Its value in a clear workspace is 0.

Exception: R<[(JEXCEPTION

This is a system object that identifies the most recent Exception thrown by a Microsoft
.Net object.

OexCcEPTION derives from the Microsoft .Net class System.Exception. Among its
properties are the following, all of which are strings:

Source The name of the .Net namespace in which the exception was
generated

StackTrace The calling stack

Message The error message

OUSING<«'System'

DT«DateTime.New 100000 0 O
EXCEPTION

DT«DateTime.New 100000 0 O

OEN
90

302

Dyalog APL/W Language Reference

OEXCEPTION.Message
Specified argument was out of the range of valid values.

Parameter name: Year, Month, and Day parameters describe
an unrepresentable DateTime.

JEXCEPTION.Source
mscorlib

UEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year, Int32 month,
Int32 day)

at System.DateTime..ctor(Int32 year, Int32 month,
Int32 day)

Expunge Object: {R}«[EX Y

Y must be a simple character scalar, vector or matrix. A scalar or vector is treated as a
single row matrix. Each row of Y is interpreted as an APL name. R is a simple logical
vector with one element per row of .

Each name in Y is disassociated from its value if the active referent for the name is a
defined function, operator, variable or namespace.

The value of an element of & is 1 if the corresponding name in Y is now available for
use. This does not necessarily mean that the existing value was erased for that name.
A value of 0 is returned for an ill-formed name or for a distinguished name in Y. The
result is suppressed if not used or assigned.

Examples

OEX'VAR'

+0EX"'FoO0' '0I0' 'X' '123"
1 0 1 0

If a named object is being executed the existing value will continue to be used until its
execution is completed. However, the name becomes available immediately for other
use.

Chapter 5 System Functions & Variables

303

Examples
VST
FoO[1]~
QvVR'FOO!'
Vv R<F00
(1] R<10
v
+0EX'F0O"
1
)ST
FOO[11~
vFool[O]

defn error

F00<«1 2 3
~0LC

10
FOO

1 2 3

If a named object is an external variable, the external array is disassociated from the
name:

gxr'r!
FILES/COSTS
Ox'F' o QOXT'F!

If the named object is a GUI object, the object and all its children are deleted and
removed from the screen. The expression OEX ' . ' deletes all objects owned by the
current thread except for the Root object itself. In addition, if this expression is
executed by thread 0, it resets all the properties of ' . ' to their default values.
Furthermore, any unprocessed events in the event queue are discarded.

If the named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the
AP is terminated.

If the named object is the last reference into a dynamic link library, the DLL is freed.

304

Dyalog APL/W Language Reference

Export Object: {RY<«{X)}OEXPORT Y

OEXPORT is used to set or query the export type of a defined function (or operator)
referenced by the 0P ATH mechanism.

Y is a character matrix or vector-of-vectors representing the names of functions and
operators whose export type is to be set or queried.

X is an integer scalar or vector (one per name in the namelist) indicating the export
type. X can currently be one of the values:

0 - not exported.
1 - exported (default).

A scalar or 1-element-vector type is replicated to conform with a multi-name list.

The result R is a vector that reports the export type of the functions and operators
named in Y. When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of
namespaces in the JPATH system variable, it examines the function’s export type:

0 This instance of the function is ignored and the search is resumed at the next
namespace in the JPATH list. Type-0 is typically used for functions residing
in a utility namespace which are not themselves utilities, for example the
private sub-function of a utility function.

1 This instance of the function is executed in the namespace in which is was
found and the search terminated. The effect is exactly as if the function had
been referenced by its full path name.

Warning: The left domain of OEXPORT may be extended in future to include extra
types 2, 3, ... (for example, to change the behaviour of the function). This means that,
while OEXPORT returns a boolean result in the first version, this may not be the case in
the future. If you need a boolean result, use 0= or an equivalent.

(020EXPORT Onl 3 4)#0nl 3 4 a list of exported
a functions and operators.

Chapter 5 System Functions & Variables 305

File Append Component: {R}«X OFAPPEND Y

Access code 8

Y must be a simple integer scalar or a 1 or 2 element vector containing the file tie
number followed by an optional passnumber. If the passnumber is omitted it is
assumed to be zero. X may be any array including, for example, the JoR of a
namespace.

The shy result R is the number of the component to which X is written, and is 1 greater
than the previously highest component number in the file, or 1 if the file is new.

Examples

(100071000) OFAPPEND 1

O«(2 3p16) 'Geoff' (OOR'FOO') UOFAPPEND 1

12
O«A B C UOFAPPEND1
13 14 15
Dump<A{
tie<a [OFCREATE 0 a create file.
(OFUNTIE tie){}w OFAPPEND tie m append and untie.
b
File System Available: R<[JFAVAIL

This niladic function returns the boolean value 1 unless the component file system is
unavailable for some reason, in which case it returns 0. If OFAV AT L does return 0,
most of the component file system functions will generate the error message:

FILE SYSTEM NOT AVAILABLE

See User Guide for further details.

306 Dyalog APL/W Language Reference

File Create: {R}Y«X OFCREATE Y

Y must be 0 or a simple integer scalar or 1 element vector containing an available file
tie number to be associated with the file for further file operations. It must not be the
tie number associated with another tied file. X must be either

a) a simple character scalar or vector which specifies the name of the file to be
created. See User Guide for file naming conventions under UNIX and DOS.

or
b) a vector of length 1 or 2 whose items are:
- a simple character scalar or vector as above.

- an integer scalar specifying the file size limit in bytes.
This element is ignored, but is included for compatibility with other APLs.

The newly created file is tied for exclusive use.

The shy result of OFCREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:

tie<1+[/0,0FNUMS A With next available number,
file OFCREATE tie @ ... create file.

to:

tie<file JFCREATE 0 o Create with first available..

Chapter 5 System Functions & Variables 307

Examples

OFSIZE 'SALES' UOFCREATE 0
1 1 76 4294967295

'../budget/SALES.85' [OFCREATE 2 a UNIX
'. .\BUDGET\SALES' OFCREATE 2 a DOS

"COSTS'" 200000 [FCREATE 4

File Drop Component: {R}<«0OFDROP Y

Access code 32

Y must be a simple integer vector of length 2 or 3 whose elements are:
[1] a file tie number

[2] anumber specifying the position and number of components to be dropped. A
positive value indicates that components are to be removed from the beginning of
the file; a negative value indicates that components are to be removed from the
end of the file

[3] an optional passnumber which if omitted is assumed to be zero

The shy result of a OFDROP is a vector of the numbers of the dropped components.
This is analogous to OF APPEND in that the result is potentially useful for updating
some sort of dictionary:

cnos,«vec OFAPPEND 'tie m Append index to dictionary

cnos~<«[JFDROP tie,-pvec a Remove index from dictionar

y
Note that the result vector, though potentially large, is generated only on request.

Examples
OFSIZE 1
1 21 5436 4294967295

OFDROP 1 3 o OFSIZE 1
4 21 5436 4294967295

308 Dyalog APL/W Language Reference

OFDROP 1 "2 o [FSIZE 1
4 19 5436 4294967295

Chapter 5 System Functions & Variables 309

File Erase: {R}<«X OFERASE Y

Access code 4

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. X must be a character scalar or vector containing the name of the file associated
with the tie number Y. This name must be identical with the name used to tie the file,
and the file must be exclusively tied. The file named in x is erased and untied. See
User Guide for file naming conventions under UNIX and DOS.

The shy result of OFERASE is the tie number of the erased file.

Examples

"SALES'UOFERASE 'SALES' OFTIE O

"./temp' OFCREATE 1

"temp' [OFERASE 1
FILE NAME ERROR

"temp'FERASE 1

A

'./TEMP' OFERASE 1
FILE NAME FRROR
'./TEMP'OFERASE 1

A

"./temp' OFERASE 1

File Hold: {R}Y<0OFHOLD Y

Access code 2048

This function holds component file(s) and/or external variable(s).

If applied to component files, then Y is an integer scalar, vector, or one-row matrix of
file tie numbers, or a two-row matrix whose first row contains file tie numbers and
whose second row contains passnumbers.

If applied to external variables, then Y is a non-simple scalar or vector of character
vectors, each of which is the name of an external variable. (NOT the file names
associated with those variables).

310 Dyalog APL/W Language Reference

If applied to component files and external variables, Y is a vector whose elements are
either integer scalars representing tie numbers, or character vectors containing names
of external variables.

The effect is as follows :

1. The user's preceding holds (if any) are released.

2. Execution is suspended until the designated files are free of holds by any other task.

3. When all the designated files are free, execution proceeds. Until the hold is
released, other tasks using OFH0 LD on any of the designated files will wait.

If ¥ is empty, the user's preceding hold (if any) is released, and execution continues.
A hold is released by any of the following :
1. Another OFHOLD

2. Untying or retying all the designated files. If some but not all are untied or retied,
they become free for another task but the hold persists for those that remain tied.

3. Termination of APL.

4. Any untrapped error or interrupt.

5. A return to immediate execution.

Note that a hold is not released by a request for input through O or 1.

Note also that point 5 above implies that 0770 LD is generally useful only when called
from a defined function, as holds set in immediate execution (desk calculator) mode are

released immediately.

The shy result of JFH0 LD is a vector of tie numbers of the files held.

Examples :

OFHOLD 1

OFHOLD #

OFHOLD <'XTVAR'

OFHOLD 1 2,[0.5]0 16385

OFHOLD 1 'XTVAR'

Chapter 5 System Functions & Variables 311

Component File Library: R«OFLIB Y

Y must be a simple character scalar or vector which specifies the name of the directory
whose APL component files are to be listed. If ¥ is empty, the current working
directory is assumed.

The result R is a character matrix containing the names of the component files in the
directory with one row per file. The number of columns is given by the longest file
name. Each file name is prefixed by ¥ followed by a directory delimiter character.
The ordering of the rows is not defined.

If there are no APL component files accessible to the user in the directory in question,
the result is an empty character matrix with 0 rows and 0 columns.

Note that if a file is exclusively tied (as opposed to share tied) then it is not reported by
OFLIB.

Examples

OFLiB '!'
SALESFILE
COSTsS

OrFrLie '.:
./SALESFILE
./COSTS

OFLIB '../budget'
../budget/SALES.85
../budget/COSTS.85

312 Dyalog APL/W Language Reference

Format (Monadic): R<(FMT Y

Y may be any array. R is a simple character matrix which appears the same as the
default display of y. If Y contains control characters from O7c, they will be resolved.

Examples

A<OFMT 'n' ,0OTC[1],'0"

pA

A<0VR 'F0O'

A
Vv R<F00
(1] R<10

pA
31
B<0FMT A

B

Vv R<FO00
(1] R<10

pB

Chapter 5 System Functions & Variables 313

Format (Dyadic): R«X 0OFMT Y

Y must be a simple array of rank not exceeding two, or a non-simple scalar or vector
whose items are simple arrays of rank not exceeding two. The simple arrays in ¥ must
be homogeneous, either character or numeric. X must be a simple character vector. R
is a simple character matrix.

X is a format specification that defines how columns of the simple arrays in Y are to
appear. A simple scalar in Y is treated as a one-element matrix. A simple vector in Y
is treated as a one-column matrix. Each column of the simple arrays in Y is formatted
in left-to-right order according to the format specification in x taken in left-to-right
order and used cyclically if necessary.

R has the same number of columns as the longest column (or implied column) in v, and
the number of rows is determined from the format specification.

The format specification consists of a series of control phrases, with adjacent phrases
separated by a single comma, selected from the following:

rAw Alphanumeric format
rEw.s Scaled format
rqFw.d Decimal format
rqGllpattern(l Pattern

rqIw Integer format

Tn Absolute tabulation
Xn Relative tabulation
0en Text insertion.

(Alternative surrounding pairs for Pattern or Text insertion are

<>, <>, 00o0r " "7)
where:
r is an optional repetition factor indicating that the
format phrase is to be applied to r columns of v.
q is an optional usage of qualifiers or affixtures from
those described below.
W is an integer value specifying the total field width

per column of v, including any affixtures.

314 Dyalog APL/W Language Reference

pattern

Qualifiers g are as follows:

B

Km

ov[eO

SOpM

is an integer value specifying the number of significant
digits in Scaled format; s must be less than w-1.

is an integer value specifying the number of places of
decimal in Decimal format; d must be less than w.

is an integer value specifying a tab position relative to
the notional left margin (for T-format) or relative to the
last formatted position (for X-format) at which to begin
the next format.

is any arbitrary text excluding the surrounding
character pair. Double quotes imply a single quote in
the result.

see following section G format

leaves the field blank if the result would otherwise be
Zero.

inserts commas between triads of digits starting from
the rightmost digit of the integer part of the result.

scales numeric values by 1 Em where m is an integer;
negation may be indicated by ~ or - preceding the
number.

left justifies the result in the field width.
replaces specific numeric value v with the text ¢.

substitutes standard characters. p is a string of pairs of
symbols enclosed between any of the Text Insertion
delimiters. The first of each pair is the standard symbol
and the second is the symbol to be substituted.
Standard symbols are:

* overflow fill character
decimal point

triad separator for ¢ qualifier
0 fill character for z qualifier
loss of precision character

Chapter 5 System Functions & Variables 315

9

Affixtures are as follows:

MOt[

NOeO

POLO

Ut

RN

fills unused leading positions in the result with
zeros (and commas if C is also specified).
digit selector

prefixes negative results with the text t instead of
the negative sign.

post-fixes negative results with the text ¢.

prefixes positive or zero results with the text ¢.
post-fixes positive or zero results with the text ¢.
presets the field with the text ¢ which is repeated as
necessary to fill the field. The text will be replaced
in parts of the field filled by the result, including the

effects of other qualifiers and affixtures except the
B qualifier.

The surrounding affixture delimiters may be replaced by the alternative pairs described

for Text Insertion.

Examples

A vector is treated as a column:

'I5' JFMT 10 20 30

10
20
30

The format specification is used cyclically to format the columns of the right argument:

'I3,F5.2' OFMT 2 u4p:18

1 2.00 3 4.00
5 6.00 7 8.00

316 Dyalog APL/W Language Reference

The columns of the separate arrays in the items of a non-simple right argument are
formatted in order. Rows in a formatted column beyond the length of the column are
left blank:

"2I4,F7.1" OFMT (w4)(2 2p O.1x14)
0 0.2
0 0.4

F w R e

Characters are right justified within the specified field width, unless the L qualifier is
specified:

"A2' OFMT 1 6p'SPACED'
S P ACED

If the result is too wide to fit within the specified width, the field is filled with
asterisks:

'F5.2' OFMT 0.1x5 1000 ~100

0.50
* %k Kk K

* %k k% k%

Relative tabulation (x-format) identifies the starting position for the next format phrase
relative to the finishing position for the previous format, or the notional left margin if
none. Negative values are permitted providing that the starting position is not brought
back beyond the left margin. Blanks are inserted in the result, if necessary:

'I2,X3,341" OFMT (13)(2 3p'TOPCAT'")
1 TOoP
CAT

Absolute tabulation (7-format) specifies the starting position for the next format
relative to the notional left margin. If position 0 is specified, the next format starts at
the next free position as viewed so far. Blanks are inserted into the result as required.
Over-written columns in the result contain the most recently formatted array columns
taken in left-to-right order:

X«'6I1,T75,A1,T1,3A1,T7,F5.1"

X OFMT (1 6p16)("*x")(1 3p'ABC')(22.2)
ABCY4x6 22.2

Chapter 5 System Functions & Variables 317

If the number of specified significant digits exceeds the internal precision, low order
digits are replaced by the symbol _:

'"F20.1"'" OFMT 1E18+3
3333333333333333__ .

The Text Insertion format phrase inserts the given text repeatedly in all rows of the
result:

MEN<3 5p'FRED BILL JAMES'

WOMEN<«2 5p'MARY JUNE '

'541,<|>" OFMT MEN WOMEN
FRED |MARY |
BILL |JUNE |
I

JAMES |

The last example also illustrates that a Text Insertion phrase is used even though the
data is exhausted. The following example illustrates some effects of the various
qualifiers:

X«'F5.1,BF6.1,X1,ZF5.1,X1,LF5.1,K3CS<.,,.>F10.1"

X OFMT &5 3p 1.5 0 25
1.5 1.5 701.5 1.5 71.500,0
. 000.0 0.0 0,0
25.0 25.0 025.0 25.0 25.000,0

Affixtures allow text to be included within a field. The field width is not extended by
the inclusion of affixtures. ~ and @ affixtures shift the result to the left by the number
of characters in the text specification. Affixtures may be used to enclose negative
results in parentheses in accordance with common accounting practice:

"M<(>N<)>Q< >F9.2' OFMT 150.3 ~50.25 0 1114.9
150.30
(50.25)
0.00
1114.90

One or more format phrases may be surrounded by parentheses and preceded by an
optional repetition factor. The format phrases within parentheses will be re-used the
given number of times before the next format phrase is used. A Text Insertion phrase
will not be re-used if the last data format phrase is preceded by a closing parenthesis:

'I2,2(</>,ZI2)' OFMT 1 3péd100]|3+0TS

318 Dyalog APL/W Language Reference

20/07/89

Chapter 5 System Functions & Variables 319

G Format

Only the B, ¥, S and o qualifiers are valid with the ¢ option

Mpattern(is an arbitrary string of characters, excluding the delimiter characters.
Characters '9"and 'z' (unless altered with the s qualifier) are special and are known as
digit selectors.

The result of a ¢ format will have length equal to the length of the pattern.

The data is rounded to the nearest integer (after possible scaling). Each digit of the
rounded data replaces one digit selector in the result. If there are fewer data digits than
digit selectors, the data digits are padded with leading zeros. If there are more data
digits than digit selectors, the result will be filled with asterisks.

A '9' digit selector causes a data digit to be copied to the result.

A 'Z' digit selector causes a non-zero data digit to be copied to the result. A zero data
digit is copied if and only if digits appear on either side of it. Otherwise a blank
appears. Similarly text between digit selectors appears only if digits appear on either
side of the text. Text appearing before the first digit selector or after the last will
always appear in the result.

Examples

'Gc99/99/99>'JFMT 0 100 100 18 7 89
08/07/89

'"GeZZ/ZZ/ZZ>'OFMT 80789 + 0 1
8/07/89
8/07/9

'"GeAndy ZZ Pauline ZZ>' [OFMT 2721.499 2699.5
Andy 27 Pauline 21
Andy 27

p0<«'K2GecDM Z.22Z2.7229,99>' (OFMT 1234567.89 1234 .56
DM 1.234.567,89
DM 1.234,56
2 15

An error will be reported if:

Numeric data is matched against an 4 control phrase.

Character data is matched against other than an 4 control phrase.
The format specification is ill-formed.

For an F control phrase, d>w-2

el N S

320 Dyalog APL/W Language Reference

5. For an E control phrase, s>w-2

Chapter 5 System Functions & Variables 321

O Format Qualifier

The O format qualifier replaces a specific numeric value with a text string and may be
used in conjunction with the E, F, | and G format phrases.

An O-qualifier consists of the letter "O" followed by the optional numeric value which
is to be substituted (if omitted, the default is 0) and then the text string within pairs of
symbols such as " <>". For example:

O - qualifier Description
O<nil> Replaces the value 0 with the text "nil"
Ou2<N/A> Replaces the value 42 with the text "N/A"
00.001<1/1000> Replaces the value 0.001 with the text "1/1000"

The replacement text is inserted into the field in place of the numeric value. The text is
normally right-aligned in the field, but will be left-aligned if the L qualifier is also
specified.

It is permitted to specify more than one O-qualifier within a single phrase.

The O-qualifier is OCT sensitive.

Examples

"O<NIL>F7.2'JFMT 12.3 0 42.5
12.30
NIL
42.50

'"O<NIL>LF7.2'0FMT 12.3 0 42.5

12.30
NIL
42.50

"O<NIL>042<N/A>I6'0FMT 12 0 42 13
12
NIL
N/A
13

'099<replace>F20.2'0fmt 99 100 101
replace
100.00
101.00

322 Dyalog APL/W Language Reference

Chapter 5 System Functions & Variables 323

File Names: R<[JFNAMES

The result is a character matrix containing the names of all tied files, with one file
name per row. The number of columns is that required by the longest file name.

A file name is returned precisely as it was specified when the file was tied. If no files
are tied, the result is a character matrix with 0 rows and 0 columns. The rows of the
result are in the order in which the files were tied.

Examples

"/usr/pete/SALESFILE' [FSTIE 16
'../budget/COSTFILE' [FSTIE 2
"PROFIT' [FCREATE 5

OFNAMES
/usr/pete/SALESFILE
../budget/COSTFILE
PROFIT

pOFNAMES
3 19

OFNUMS ,0FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

324

Dyalog APL/W Language Reference

File Numbers: R<[JFNUMS

The result is an integer vector of the tie numbers of all tied files. If no files are tied,
the result is empty. The elements of the result are in the order in which the files were
tied.

Examples
"/usr/pete/SALESFILE' [OFSTIE 16
'../budget/COSTFILE' QOFSTIE 2

"PROFIT' [OFCREATE 5

OFNUMS
16 2 5

OFNUMS ,0FNAMES
16 /usr/pete/SALESFILE
2 ../budget/COSTFILE
5 PROFIT

OFUNTIE OFNUMS
pOFNUMS

File Read Access: R«<(JFRDAC Y

Access code 4096

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. The result is the access matrix for the designated file.

See "File Access Control" in User Guide for further details.

Examples

OFRDAC 1
28 2105 16385
0 2073 16385
31 1 0

Chapter 5 System Functions & Variables 325

File Read Component Information: R<[(FRDCI Y

Access code 512

Y must be a simple integer vector of length 2 or 3 containing the file tie number,
component number and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is a 3 element numeric vector containing the following information:

a) the size of the component in bytes (i.e. how much workspace it would occupy).

b) the user number of the user who last updated the component.

c) the time of the last update in 60ths of a second since 1st January 1970.

Example

OFRDCI 1 13
2200 207 3.70209449L4E10

File Read Component: R<[(JFREAD Y

Access code 1

Y must be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero.

The result is the value of the array stored on the tied file at the given component
number.

Examples

0SALES<[OFREAD 1 241
3 2 12

GetFile<«{[io<«0
tie«w Qfstie 0
fm to<«2+0fsize tie
cnos<«fm+i1to-fm
cvec«{[fread tie w} cnos
cvec{a}dfuntie tie

Extract contents.

new tie number.

first and next component.

vector of component nos.

vector of components.
untie and return.

» » D D» ©®» D

326 Dyalog APL/W Language Reference

Chapter 5 System Functions & Variables 327

File Rename: {R}<«X OFRENAME Y

Access code 128

Y must be a simple 1 or 2 element integer vector containing a file tie number and an
optional passnumber. If the passnumber is omitted it is assumed to be zero.

X must be a simple character scalar or vector containing the new name of the file. This
name must be in accordance with the operating system's conventions, and may be
specified with a relative or absolute pathname.

The file being renamed must be tied exclusively.

The shy result of OFRENAME is the tie number of the file.

Examples

'"SALES' UOFTIE 1
"PROFIT' OFTIE 2

OFNAMES

SALES

PROFIT
"SALES.85' [OFRENAME 1
'../profits/PROFIT.85' UFRENAME 2
OFNAMES

SALES .85

../profits/PROFITS.85

Rename<«{
fm to<«w
OFUNTIE to OFRENAME fm OFTIE 0

328 Dyalog APL/W Language Reference

File Replace Component: {R}«X OFREPLACE Y

Access code 16

Y must be a simple 2 or 3 element integer vector containing the file tie number, the
component number, and an optional passnumber. If the passnumber is omitted it is
assumed to be zero. The component number specified must lie within the file's
component number limits.

X is any array (including, for example, the OoR of a namespace), and overwrites the
value of the specified component. The component information (see OFRDCI) is also
updated.

The shy result of OFREPLACE is the file index (component number of replaced
record).

Example
SALES<[FREAD 1 241
(SALESx1.1) OFREPLACE 1 241
Define a function to replace (index, value) pairs in a component file JMS.DCF:
Frep<«{
tie<«a OFTIE O

_«{w OFREPLACE tie a}/ w
OFUNTIE tie

'jms'Frep(0 'abc')(29 'xxx')(7 'yyy')

Chapter 5 System Functions & Variables 329

File Resize: {R}«{X}YUOFRESIZE Y

Access code 1024

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero.

X is included for compatibility with other APL systems.

A side effect of JFRESI ZE is to cause the file to be compacted. Any interrupt entered
at the keyboard during the compaction is ignored.

The shy result of FREST ZE is the tie number of the file.

Example

OFSIZE 1
1 21 65271 4294967295

200000 (OFRESIZE 1 o [(OFSIZE 1
1 21 41456 4294967295

o OFRESIZE 1 n Force file compaction.

File Size:

R«(FSIZE Y

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero. The result is a 4 element numeric vector containing the following:

Element Description
1 the number of first component,
2 1 + the number of the last component
(i.e. the result of the next JF APPEND),
3 the current size of the file in bytes,
4 the file size limit in bytes.
Example
OFSIZE 1

1 21 65271 4294967295

330 Dyalog APL/W Language Reference

File Set Access: {R}«X OFSTAC Y

Access code 8192

Y must be a simple integer scalar or 1 or 2 element vector containing the file tie number
followed by an optional passnumber. If the passnumber is omitted it is assumed to be
zero.

X must be a valid access matrix, i.e. a3 column integer matrix with any number of
rows.

See "File Access Control" in User Guide for further details.

The shy result of OF ST AC is the tie number of the file.

Examples

SALES UFCREATE 1
(3 3p28 2105 16385 0 2073 16385 31 ~1 0) [FSTAC 1
((OFRDAC 1)521 2105 16385) [OFSTAC 1

(1 3p0 ~1 0)IFSTAC 2

Chapter 5 System Functions & Variables 331

File Share Tie: {R}<«X OFSTIE Y

Y must be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a tied file.

X must be a simple character scalar or vector which specifies the name of the file to be
tied. The file must be named in accordance with the operating system's conventions,
and may be specified with a relative or absolute pathname.

The file must exist and be accessible by the user. If it is already tied by another task, it
must not be tied exclusively.

The shy result of OFSTIE is the tie number of the file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation, allocates
the first (closest to zero) available tie number and returns it as an explicit result. This
allows you to simplify code. For example:

from:

tie<«1+[/0,0FNUMS o With next available number,

file OFSTIE tie A ... share tie file.
to:

tie«file OFSTIE 0 o Tie with first available number.
Example

"SALES' UOFSTIE 1

'../budget/COSTS' OFSTIE 2

332 Dyalog APL/W Language Reference

Exclusive File Tie: {R}Y«X OFTIE Y

Access code 2

Y must be 0 or a simple 1 or 2 element integer vector containing an available file tie
number to be associated with the file for further file operations, and an optional
passnumber. If the passnumber is omitted it is assumed to be zero. The tie number
must not already be associated with a share tied or exclusively tied file.

X must be a simple character scalar or vector which specifies the name of the file to be
exclusively tied. The file must be named in accordance with the operating system's
conventions, and may be a relative or absolute pathname.

The file must exist and be accessible by the user. It may not already be tied by another
user.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create, share tie or exclusive tie operation, allocates
the first (closest to zero) available tie number, and returns it as an explicit result,. This
allows you to simplify code. For example:

from:

tie<1+[/0,0FNUMS o With next available number,
file OFTIE tie A ... tie file.

to:

tie«file OFTIE 0 a Tie with first available number.

The shy result of OF T IE is the tie number of the file.

Chapter 5 System Functions & Variables 333

Examples

'"SALES' OFTIE 1
'../budget/C0STS' OFTIE 2

'../budget/expenses' [OFTIE 0

File Untie: {R}Y<[OFUNTIE Y

Y must be a simple integer scalar or vector (including Zilde). Files whose tie numbers
occur in Y are untied. Other elements of ¥ have no effect.

If v is empty, no files are untied, but all internal file buffers are written to disk. Under
UNIX this is achieved with £sync; under DOS with the Commit File function (Int 21h
Function 68h); on Win32 systems it is achieved with FlushFileBuffers (). This
special facility allows the programmer to add extra security (at the expense of
performance) for application data files.

The shy result of DFUNTIE is a vector of tie numbers of the files actually untied.

Example

OFUNTIE OFNUMS o Unties all tied files

JFUNTIE & @ Flushes all buffers to disk

334 Dyalog APL/W Language Reference

Fix Definition: {R}<[OFX Y

Y is the representation form of a function or operator which may be:

1. its canonical representation form similar to that produced by OCR except that
redundant blanks are permitted other than within names and constants.

2. its nested representation form similar to that produced by ONR except that
redundant blanks are permitted other than within names and constants.

3. its object representation form produced by OOR.

4. its vector representation form similar to that produced by Ov R except that additional
blanks are permitted other than within names and constants.

R is either a simple character vector or an integer scalar. A result is not returned if a
result is not explicitly used or assigned.

A side effect of OFx is to create (fix) a function or operator in the workspace or current
namespace from the definition given by Y. 010 is an implicit argument of OF X.

If the function or operator is successfully fixed, r is its name. Otherwise R is the row
of the canonical representation form in which the first error preventing its definition is
detected. An integer R is dependenton OI0.

Functions and operators which are pendent, that is, in the State Indicator without a
suspension mark (), retain their original definition until they complete, or are cleared
from the State Indicator. All other occurrences of the function or operator assume the
new definition. The function or operator will fail to fix if it has the same name as an
existing variable, or a visible label.

Chapter 5 System Functions & Variables 335

Index Origin: 0I1o

010 determines the index of the first element of a non-empty vector.
010 may be assigned the value 0 or 1. The value in a clear workspace is 1.

0ro is an implicit argument of any function derived from the Axis operator ([k1), of
the monadic functions Fix (Orx), Grade Down (¥), Grade Up (4), Index Generator (1),
Roll (7), and of the dyadic functions Deal (?), Find (¢), Grade Down (v), Grade Up
(4), Index Of (1), Indexed Assignment, Indexing, Pick (=) and Transpose ().

Examples
010+«1
15
12345
0I0<0
15
012 3 u
+/[0]2 3p16
3 57
"ABC',[T.5]'="
ABC
Key Label: R«0KL Y

Y is a simple character vector or a vector of character vectors containing codes defined
for the Input Translate Table associated with your keyboard.

R is a simple character vector or a vector of character vectors containing the labels
associated with the codes. If ¥ specifies codes that are not defined, the corresponding
elements of R are empty.

Ok L provides the information required to build device-independent help messages into
applications, particularly full-screen applications using 0S¥ and OSR.

336 Dyalog APL/W Language Reference

Examples :
OKL 'RCT
Right

(KL 'ER' 'EP' 'QT' 'Fi' 'F13!
Enter Esc Shift-Esc F1 Shift-F1

Line Count: R<[LC

This is a simple vector of line numbers drawn from the state indicator (See Chapter 2).
The most recently activated line is shown first. If a value corresponds to a defined
function in the state indicator, it represents the current line number where the function
is either suspended or pendent.

The value of OLc changes immediately upon completion of the most recently activated
line, or upon completion of execution within « or 0. Ifa 0SToP control is set, OLC
identifies the line on which the stop control is effected. In the case where a stop
control is set on line 0 of a defined function, the first entry in OLC is 0 when the control
is effected.

The value of OLc in a clear workspace is the null vector.

Examples
)SI
TASK1[5]1x
%
BEGIN[3]
grc
5 3
~0LC
grc
pdLC

Chapter 5 System Functions & Variables 337

Load Workspace: OLOAD Y

Y must be a simple character scalar or vector containing the identification of a saved
workspace.

If v is ill-formed or does not identify a saved workspace or the user account does not
have access permission to the workspace, a DOMAIN ERROR is reported.

Otherwise, the active workspace is replaced by the workspace identified in Y. The
active workspace is lost. If the loaded workspace was saved by the) SAVE system
command, the latent expression (JLX) is immediately executed, unless APL was
invoked with the -x option. If the loaded workspace was saved by the 0SAVE system
function, execution resumes from the point of exit from the 0SAVE function, with the
result of the 054V E function being 0.

The workspace identification and time-stamp when saved is not displayed.

If the workspace contains any GUI objects whose v isible property is 1, these
objects will be displayed. If the workspace contains a non-empty 0.S¥ but does not
contain an SM GUI object, the form defined by 0O.sM will be displayed in a window on
the screen.

Lock Definition: {X}yOLOCK Y

Y must be a simple character scalar, or vector which is taken to be the name of a
defined function or operator in the active workspace.

The active referent to the name in the workspace is locked. Stop or trace vectors,
formerly set by the 0SToP and OTRACE functions, are cancelled.

The optional left argument X specifies to what extent the function code is hidden. x
may be 1, 2 or 3 (the default) with the following meaning:

1. The object may not be displayed and you may not obtain its character form using
OCR, OVR or ONR.

2. Execution cannot be suspended with the locked function or operator in the state
indicator. On suspension of execution the state indicator is cut back to the
statement containing the call to the locked function or operator.

3. Both 1 and 2 apply. You can neither display the locked object nor suspend
execution within it.

338 Dyalog APL/W Language Reference

Locks are additive, so that

1 OLOCK'F0O'
2 OLOCK'Fo0O'

is the same as:

3 OLOCK'Fo0O'

A DOMAIN ERROR isreported if:
1. yisill-formed.

2. The name in Y is not the name of a visible defined function or operator which is not
locked.

Examples

OVR'FOO!
Vv R<FO00
(1] R<10

OLOCK'FOO!
OvR'FOO!

OLOCK'FOoO'!
DOMAIN ERROR
OLOCK'FOO!

A

Chapter 5 System Functions & Variables 339

Latent Expression: OLX

This may be a character vector or scalar representing an APL expression. The
expression is executed automatically when the workspace is loaded. If APL is invoked
using the -x flag, this execution is suppressed.

The value of OLX in a clear workspace is ' '.
Example
OLX<«'''GOOD MORNING PETE''!

)SAVE GREETING
GREETING saved Tue Sep 8 10:49:29 1998

)LOAD GREETING
./GREETING saved Tue Sep 8 10:49:29 1998
GOOD MORNING PETE

Map File:

R«{X}[(MAP Y

This function associates a mapped file with an APL array in the workspace.

Two types of mapped files are supported; APL and raw. An APL mapped file contains
the binary representation of a Dyalog APL array, including its header. A file of this
type must be created using the supplied utility function aMPUT. When you map an
APL file, the rank, shape and data type of the array is obtained from the information on
the file.

A raw mapped file is an arbitrary collection of bytes. When you map a raw file, you
must specify the characteristics of the APL array to be associated with this data. In
particular, the data type and its shape.

The type of mapping is determined by the presence (raw) or absence (APL) of the left
argument to OMAP.

The right argument Y specifies the name of the file to be mapped and, optionally, the
access type and a start byte in the file. Y may be a simple character vector, or a 2 or 3-
element nested vector containing:
1. file name (character scalar/vector)
2. access code (character scalar/vector) : one of : 'R", 'W', 'r' or 'w'
3. start byte offset (integer scalar/vector). This must be a multiple of 4 (default is
0)

340

Dyalog APL/W Language Reference

If x is specified, it defines the type and shape to be associated with raw data on file. x
must be an integer scalar or vector. The first item of x specifies the data type and must
be one of: 11, 82, 83, 163, 323 or 645.

Following items determine the shape of the mapped array. A value of ~1 on any (but
normally the first) axis in the shape is replaced by the system to mean: read as many
complete records from the file as possible. Only one axis may be specified in this way.

If no left argument is given, file is assumed to contain a simple APL array, complete
with header information (type, rank, shape, etc).

Mapped files may be updated by changing the associated array using indexed
assignment: var[al<bh.

Note that a raw mapped file may be updated only if its file offset is 0.

Examples
Map raw file as a read-only vector of doubles:
vec<«6u45 ~1 [OMAP'c:\myfile'
Map raw file as a 20-column read-write matrix of 1-byte integers:
mat<«83 ~1 20 [OMAP'c:\myfile' 'W'
Replace some items in mapped file:
matl2 3;4 5]«2 2pik
Map bytes 100-180 in raw file as a 5x2 read-only matrix of doubles:
dat<645 5 2 [MAP'c:\myfile' 'R' 100
Put simple 4-byte integer array on disk ready for mapping:
(83 323 [0DR 2 3 4pi124)AMPUT'c:\myvar'
Then, map a read-write variable:

var<[MAP'c:\myvar' 'w'

Chapter 5 System Functions & Variables 34

Note that a mapped array need not be named. In the following example, a ‘raw’ file is
mapped, summed and released, all in a single expression:

+/163 ~1 [OMAP'c:\shorts.dat"’
42

Migration Level: OML

Om L determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Setting this variable to other than its default value of o changes the
interpretation of certain symbols and language constructs.

OMI<o0 Native Dyalog (Default)
OML«1 Z<«€R Monadic ' €' is interpreted as ‘enlist' rather than
'type’".
OML<2 Z<+R Monadic ' + ' is interpreted as ‘first' rather than 'mix'.
Z<>R Monadic '~ is interpreted as 'mix’ rather than 'first'.
Z<=R Monadic ' = returns the absolute value of the depth

of its argument, rather than a negative value if the
depths of its subarrays are unequal

OML<3 R<Xc[K]Y Dyadic ' < follows the APL2 (rather than the
original Dyalog APL) convention
grc The order of the elements of OTC is the same as in
APL2

Subsequent versions of Dyalog APL will provide further migration levels.

342 Dyalog APL/W Language Reference

Examples
X<2(3 4)
OML<0
eX

0 0 0
+X
X

2
=X

2
OML<1
eX

2 3 4
+X

0

3 4
X

2
=X

2
OML<2
eX

2 3 4
+X

2
o X

0

3 4

=X

Chapter 5 System Functions & Variables 343

Set Monitor: {R}Y<«X [OMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. X must be a simple non-negative integer scalar or vector.
R is a simple integer vector of non-negative elements.

X identifies the numbers of lines in the function or operator named by ¥ on which a
monitor is to be placed. Numbers outside the range of line numbers in the function or
operator (other than 0) are ignored. The number o indicates that a monitor is to be
placed on the function or operator as a whole. The value of X is independent of 010.

R is a vector of numbers on which a monitor has been placed in ascending order. The
result is suppressed unless it is explicitly used or assigned.

The effect of O¥ONITOR is to accumulate timing statistics for the lines for which the
monitor has been set. See Monitor Query for details.

Examples

+(0,110) [OMONITOR 'FOO'
012345

Existing monitors are cancelled before new ones are set:

+1 [OMONITOR 'F0O'
1

All monitors may be cancelled by supplying an empty vector:
& OMONITOR 'FOO'

Monitors may be set on a locked function or operator, but no information will be
reported. Monitors are saved with the workspace.

344 Dyalog APL/W Language Reference

Query Monitor:

R«[IJMONITOR Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. R is a simple non-negative integer matrix of 5 columns
with one row for each line in the function or operator ¥ which has the monitor set,

giving:

Column1:
Column 2:
Column 3:
Column 4 :
Column5:

Line number

Number of times the line was executed
CPU time in milliseconds

Elapsed time in milliseconds

Reserved

The value of o0 in column one indicates that the monitor is set on the function or

operator as a whole.

Example
v FOO
(1] A<?25 25p100
[2] B<HA
[3] C<EB

(4] R1<[0.5+A+.xB
[5] R2<«A=C
v

(0,15) OMONITOR

Foo

OMONITOR 'FOO'

0 1 1418 1000 O
11 83 0 0
2 1 4100 0 0
3 1 397 0 0
4 1 467 1000 O
51 100 0 0

a Set monitor
a Run function

A Monitor query

Chapter 5 System Functions & Variables 345

Name Association: {R}Y«{X}YONA Y

O~ A provides access from APL to compiled functions within a Dynamic Link Library
(DLL). ADLL is a collection of functions typically written in C (or C++) each of
which may take arguments and return a result.

Instructional examples using ONA can be found in supplied workspace: QUADNA . DW S.

The DLL may be part of the standard operating system software, purchased from a
third party supplier, or one that you have written yourself.

The right argument Y is a character vector that identifies the name and syntax of the
function to be associated. The left argument X is a character vector that contains the
name to be associated with the external function. If the O~ 4 is successful, a function
(name class 3) is established in the active workspace with name x. If X is omitted, the
name of the external function itself is used for the association.

The shy result R is a character vector containing the name of the external function that
was fixed.

For example, math .d11 might be a library of mathematical functions containing a
function divide. To associate the APL name d iv with this external function:

'div' ONA 'F8 math|divide I4 Iu'

where F8 and I'4, specify the types of the result and arguments expected by divide.
The association has the effect of establishing a new function: d i v in the workspace,
which when called, passes its arguments to divide and returns the result.

)fns
div
div 10 4

346

Dyalog APL/W Language Reference

Type Declaration

In a compiled language such as C, the types of arguments and results of functions must
be declared explicitly. Typically, these types will be published with the documentation
that accompanies the DLL. For example, function divide might be declared:
double divide(long int, long int);

which means that it expects two long (4-byte) integer arguments and returns a double
(8-byte) floating point result. Notice the correspondence between the C declaration and
the right argument of ON 4:

C: double divide (long int, long int);
APL: 'div' [NA 'F8 math|divide Iy Iy !

It is imperative that care be taken when coding type declarations. A DLL cannot check
types of data passed from APL. A wrong type declaration will lead to erroneous results
or may even cause the workspace to become corrupted and crash.

The full syntax for the right argument of ON 4 is:

[result] library|function [arg1] [arg2] ...

Note that functions associated with DLLs are never dyadic. All arguments are passed
as items of a (possibly nested) vector on the right of the function.

Locating the DLL

The DLL may be specified using a full pathname, file extension, and function type.
Pathname: If the full pathname is omitted, APL looks for the DLL in ‘standard’
Windows directories. Specifically, APL uses the LoadLibrary system function to
locate the library, the exact workings of which can be found in the appropriate
Windows documentation for the Software Development Kit.

Alternatively, a full pathname may be supplied in the usual way:

ONA'... c:\mydir\mydIl|foo ...'

Chapter 5 System Functions & Variables 347

Errors: If the specified DLL (or a dependent DLL) fails to load it will generate:
FILE ERROR 1 No such file or directory

If the DLL loads successfully, but the specified library function is not accessible, it will
generate:

VALUE ERROR

File Extension: If the file extension is omitted, .dll is assumed. Note that some DLLs
are in fact .exe files, and in this case the extension must be specified explicitly:

ONA'... mydll.exe|foo ...'

Function Type: On an Intel machine, code can run in 16 or 32 bit mode. Further, two
distinct conventions, namely ‘C’ and ‘Pascal’ are in use for passing of arguments and
receipt of results. If the type of the function you are calling differs from the default, for
your version of Dyalog APL (see below) you must specify the function type explicitly
immediately following the DLL name. Combinations are

.Cc32 32 bit, C calling convention Default for APL/W version 8.
.Cc16 16 bit, C calling convention
.P32 32 bit, Pascal calling convention

.P16 16 bit, Pascal calling convention Default for APL/W version 7.
Example

OnvA'... mydll.exe.Pi6|foo ...'na 16 bit Pascal
Call by Ordinal Number

A DLL may associate an ordinal number with any of its functions. This number may

then be used to call the function as an alternative to calling it by name. Using OV 4 to

call by ordinal number uses the same syntax but with the function name replaced with
its ordinal number. For example:

ONA'... mydlI|57 ...!'

Multi-Threading

Appending the ‘&’ character to the function name causes the external function to be run
in its own C thread. For example:

ONA'... mydll|foo& ...'

348 Dyalog APL/W Language Reference

This means that other APL threads can run concurrently with the one that is calling the
O~ 4 function.

Chapter 5 System Functions & Variables 349

Data Type Coding Scheme

The type coding scheme introduced above is of the form:

[direction] [special] type [width] [array]

The options are summarised in the following table and their functions detailed below.

Description

Symbol

Meaning

Direction

Pointer to array input to DLL function.
Pointer to array output from DLL function.
Pointer to input/output array.

Special

Null-terminated string.
Byte-counted string.

Type

int

unsigned int

char (untranslated)

char (translated to/from ANSI)
float

APL array

Width

F N RPN R QT HN|® O

@

1-byte
2-byte
4-byte
8-byte

Array

—
— 3
[

Array of length n elements
Array, length determined at call-time.

Structure

-~
-

Structure.

350

Dyalog APL/W Language Reference

Direction

C functions accept data arguments either by value or by address. This distinction is
indicated by the presence of a “*’ character in the argument declaration:

int numl; // value of numl passed.
int *num2; // Address of num2 passed.

An argument (or result) of an external function of type pointer, must be matched in the
O~ A call by a declaration starting with one of the characters: <, >, or =.

In C, when an address is passed, the corresponding value can be used as either an input
or an output variable. An output variable means that the C function overwrites values at
the supplied address. Because APL is a call-by-value language, and doesn’t have
pointer types, we accommodate this mechanism by distinguishing output variables, and
having them returned explicitly as part of the result of the call.

This means that where the C function indicates a pointer type, we must code this as
starting with one of the characters: <, > or =.

< indicates that the address of the argument will be used by C as an input variable and
values at the address will not be over-written.

> indicates that C will use the address as an output variable. In this case, APL must
allocate an output array over which C can write values. After the call, this array will
be included in the nested result of the call to the external function.

= indicates that C will use the address for both input and output. In this case, APL
duplicates the argument array into an output buffer whose address is passed to the
external function. As in the case of an output only array, the newly modified copy
will be included in the nested result of the call to the external function.

Examples

<I2 Pointer to 2-byte integer - input to external function

>C Pointer to character output from external function.

=T Pointer to translated character input to and output from function.

=A Pointer to APL array modified by function.

Chapter 5 System Functions & Variables 351

Special

In C it is common to represent character strings as null-terminated or byte counted
arrays. These special data types are indicated by inserting the symbol o (null-
terminated) or # (byte counted) between the direction indicator (<, >, =) and the type
(T or C) specification. For example, a pointer to a null-terminated input character
string is coded as <oT[], and an output one coded as >0T[.

Note that while appending the array specifier ‘[1’ is formally correct, because the
presence of the special qualifier (0 or #) implies an array, the ‘[1’ may be omitted:
<0T, >0T, =#C, etc.

Note also that the 0 and # specifiers may be used with data of all types and widths. For
example, <0I2 may be useful for dealing with Unicode.

Type

The data type of the argument is represented by one of the symbols:

I Integer. The value is interpreted as a 2’s complement signed integer.

U Unsigned integer. The value is interpreted as an unsigned integer.

c Untranslated character. The value is interpreted as a character and passed
untranslated. This means that 0AV positions map onto corresponding ANSI
positions. For example, with 010=0:
04v[i3s] = 's', mapsto ANSI[35] = "#'.

T Translated character. The value is interpreted as a character, and translated

using standard Dyalog 04V to ANSI translation. This means that JAV
characters map onto corresponding ANSI characters. For example, with

gro=o:
04v(i3s] = 's', mapsto ANSI[115] = ’s’.

F Floating point number. The value is interpreted as an IEEE floating point
number.

A APL array. A pointer to the whole array (including header information) is

passed. This type is used to communicate with DLL functions which have
been written specifically to work with Dyalog APL. See the User Guide
section on Writing Auxiliary Processors. Note that type A is always passed as
a pointer, so is of the form <4, =4 or > 4.

Note that the type declaration may be given in lower case: i, u, c, ¢, f, a.

352 Dyalog APL/W Language Reference

Width

The type specifier may be followed by the width of the value in bytes. For example:

Iy 4-byte signed integer.

U2 2-byte unsigned integer.

F8 8-byte floating point number.

Fu 4-byte floating point number.
Type Possible values for Width Default value for Width
I 1,24 2 for 16-bit DLLs

4 for 32-bit DLLs
U 1, 2, 4. 2 for 16-bit DLLs
4 for 32-bit DLLs

c 1 1
T 1 1
F 4, 8. 8
A Not applicable.

Examples

I2 16-bit integer
<Iu4 Pointer to input 4-byte integer
U Default width unsigned integer.
=Fu Pointer to input/output 4-byte floating point number.

Chapter 5 System Functions & Variables 353

Arrays

Arrays are specified by following the basic data type with [n] or [1, where n
indicates the number of elements in the array. In the C declaration, the number of
elements in an array may be specified explicitly at compile time, or determined
dynamically at runtime. In the latter case, the size of the array is often passed along
with the array, in a separate argument. In this case, n, the number of elements is
omitted from the specification. Note that C deals only in scalars and rank 1 (vector)
arrays.

int vec[10]; // explicit vector length.
unsigned size, list[]; // undetermined length.

would be coded as:

I[10] vector of 10 ints.
U ul] unsigned integer followed by an array of unsigned integers.

Confusion sometimes arises over a difference in the declaration syntax between C and
On4. In C, an argument declaration may be given to receive a pointer to either a single
scalar item, or to the first element of an array. This is because in C, the address of an
array is deemed to be the address of its first element.

void foo (char *string);

char ch = ‘a’, ptr = “abc”;
foo (&ch) ; // call with address of scalar.
foo (ptr); // call with address of array.

However, from APL’s point of view, these two cases are distinct and if the function is
to be called with the address of (pointer to) a scalar, it must be declared: ' <T .
Otherwise, to be called with the address of an array, it must be declared: '<7[]"'.
Note that it is perfectly acceptable in such circumstances to define more than one name
association to the same DLL function specifying different argument types:

'"FooScalar'ONA'mydll|foo <T! o FooScalar'a'
'"FooVector'ONA'mydll|foo <T[]'" ¢ FooVector'abc'

354

Dyalog APL/W Language Reference

Structures

Arbitrary data structures, which are akin to nested arrays, are specified using the
symbols { }. For example, the code {F8 I23} indicates a structure comprised of an 8-
byte float followed by a 2-byte int. Furthermore, the code <{#8 I23}[3] meansan
input pointer to an array of 3 such structures.
For example, this structure might be defined in C thus:
typedef struct
{

double f£;

short i;
} mystruct;

A function defined to receive a count followed by an input pointer to an array of such
structures:

void foo(unsigned count, mystruct *str);

An appropriate ON 4 declaration would be:
ONA'mydll.foo U <{F8 I2}[]"'

A call on the function with two arguments - a count followed by a vector of structures:
foo 4,c(1.% 3)(5.9 1)(6.5 2)(0 0)

Notice that for the above call, APL converts the two Boolean (0 0) elements to an 8-
byte float and a 2-byte int, respectively.

Chapter 5 System Functions & Variables 355

Specifying Pointers Explicitly

O~ A syntax enables APL to pass arguments to DLL functions by value or address as
appropriate. For example if a function requires an integer followed by a pointer to an
integer:

void fun(int wvalu, int *addr);

You might declare and call it:

ONA'mydII|fun I <I' o fun 42 42

The interpreter passes the value of the first argument and the address of the second
one.

Two common cases occur where it is necessary to pass a pointer explicitly. The first is
if the DLL function requires a null pointer, and the second is where you want to pass
on a pointer which itself is a result from a DLL function.

In both cases, the pointer argument should be coded as 4. This causes APL to pass the
pointer unchanged, by value, to the DLL function.

In the previous example, to pass a null pointer, (or one returned from another DLL
function), you must code a separate O~ 4 definition.

"fun_null'ONA'mydll|fun I I4' o fun_null 42 0

Now APL passes the value of the second argument (in this case 0 - the null pointer),
rather than its address.

356

Dyalog APL/W Language Reference

Using a Function

A DLL function may or may not return a result, and may take zero or more arguments.
This syntax is reflected in the coding of the right argument of O~ A. Notice that the
corresponding associated APL function is niladic or monadic (never dyadic), and that it
always returns a vector result - a null one if there is no output from the function. See
Result Vector section below. Examples of the various combinations are:

DLL function Non-result-returning:

Onv4 "mydll|fn1' a Niladic.
ONA "mydll|fn2 <0T' @ Monadic - 1-element argument
ONA "'mydll|fn3 =0T <0T' e Monadic - 2-element argument

DLL function Result-returning:

ONA '"I4 mydII|fnu'! a Niladic.
ONA '"I4w mydII|fn5 F8' @ Monadic - 1-element argument

ONA 'I4 mydII|fné >I4[] <0T'a Monadic - 2-element argument
When the external function is called, the number of elements in the argument must

match the number defined in the O~ 4 definition. Using the example functions defined
above:

fn1 a Niladic function.
fn2 <'Single String' a 1-element argument.
fn3 'This' 'That' A 2-element argument.

Note in the second example, that you must enclose the argument string to produce a
single item (nested) array in order to match the declaration. Dyalog converts the type of
a numeric argument if necessary, so for example in fn5 defined above, a Boolean value
would be converted to double floating point (F8) prior to being passed to the DLL
function.

Chapter 5 System Functions & Variables 357

Pointer Arguments

When passing pointer arguments there are three cases to consider.

< Input pointer: In this case you must supply the data array itself as argument to the
function. A pointer to its first element is then passed to the DLL function.

fn2 c<'hello!

> Output pointer: Here, you must supply the number of elements that the output
will need in order for APL to allocate memory to accommodate the resulting array.

fné 10 'world' a 1st arg needs space for 10 ints.

Note that if you were to reserve fewer elements than the DLL function actually
used, the DLL function would write beyond the end of the reserved array and may
cause the interpreter to crash with a System Error.

= Input/Output: As with the input-only case, a pointer to the first element of the
argument is passed to the DLL function. The DLL function then overwrites some or
all of the elements of the array, and the new value is passed back as part of the
result of the call. As with the output pointer case, if the input array were too short,
so that the DLL wrote beyond the end of the array, the interpreter would almost
certainly crash.

358

Dyalog APL/W Language Reference

Result Vector

In APL, a function cannot overwrite its arguments. This means that any output from a
DLL function must be returned as part of the explicit result, and this includes output
via ‘output’ or ‘input/output’ pointer arguments.

The general form of the result from calling a DLL function is a nested vector. The first
item of the result is the defined explicit result of the external function, and subsequent
items are implicit results from output, or input/output pointer arguments.

The length of the result vector is therefore: 1 (if the function was declared to return an
explicit result) + the number of output or input/output arguments.

O~ A Declaration Result Output Result
Arguments Length
mydIll|fni 0 0
mydIlIl|fn2 <0T 0 0 0
mydll|fn3 =0T <O0T 0 10 1
I4 mydll|fn4 1 1
I4 mydll|fn5 F8 1 0 1
I4 mydll|fné >Iu[] <o0T 1 10 2

As a convenience, if the result would otherwise be a 1-item vector, it is
disclosed. Using the third example above:

£ n3 has no explicit result; its first argument is input/output pointer; and its second
argument is input pointer. Therefore as the length of the result would be 1, it has been
disclosed.

Chapter 5 System Functions & Variables 359

ANSI versus Unicode Characters

There is movement within Microsoft to support 16-bit Unicode (or “wide”) characters.
To this end, some library functions that take character arguments, or return character
results have been replaced with two new functions: one Wide and one ANSI. For
example, a function such as MessageBox, will have been replaced with MessageBoxA
and MessageBoxW. The ‘A’ stands for ‘ANSI’ (1-byte) characters, and the ‘W’ for
‘wide’ (2-byte) characters. Dyalog APL currently supports only the 1-byte version.
Unfortunately, Windows documentation for many of these DLLs omits the suffix, so
that, for example, when you try to associate MessageBox, you geta VALUE ERROR.
In this case, try repeating the 0N 4 call with an ‘A’ appended to the function name.

Type Definitions (typedefs)

The C language encourages the assignment of defined names to primitive and complex
data types using its #define and typedef mechanisms. Using such abstractions
enables the C programmer to write code that will be portable across many operating
systems and hardware platforms.

Windows software uses many such names and Microsoft documentation will normally
refer to the type of function arguments using defined names such as HANDLE or
LPSTR rather than their equivalent C primitive types: int or char*.

It is beyond the scope of this manual to list all the Microsoft definitions and their C
primitive equivalents, and indeed, DLLs from sources other than Microsoft may well
employ their own distinct naming conventions.

In general, you should consult the documentation that accompanies the DLL in order to
convert typedefs to primitive C types and thence to (¥ A declarations. The
documentation may well refer you to the ‘include’ files which are part of the Software
Development Kit, and in which the types are defined.

The following table of some commonly encountered Windows typedefs and their On 4
equivalents might prove useful.

360

Dyalog APL/W Language Reference

Windows typedef O~ 4 equivalent
HWND I

HANDLE I
GLOBALHANDLE I
LOCALHANDLE I

DWORD Uy

WORD U2

BYTE U1

LPSTR =0T[] (notel)
LPCSTR <0T[] (note 2)
WPARAM U

LPARAM Uy
LRESULT Iy

BOOL I

UINT U

ULONG Uy

ATOM U2

HDC I

HBITMAP I

HBRUSH I

HFONT I

HICON I

HMENU I
HPALETTE I
HMETAFILE I

HMODULE I
HINSTANCE I
COLORREF {U1[41}
POINT {I I}
POINTS {I2 I2)
RECT {I I I I}
CHAR T or C
Notes

1. LPSTRIs a pointer to a null-terminated string. The definition does not indicate
whether this is input or output, so the safest coding would be =0T [1 (providing the
vector you supply for input is long enough to accommaodate the result). You may be
able to improve simplicity or performance if the documentation indicates that the
pointer is ‘input only’ (<0T []) or ‘output only’ (>0T []). See Direction above.

Chapter 5 System Functions & Variables 361

2. LPCSTR is a pointer to a constant null-terminated string and therefore coding
<0T[] is safe.

362

Dyalog APL/W Language Reference

Dyalog32.dll & Dyalog16.dll

Included with Dyalog APL is a utility DLL which is called dyalog32.dll in version 8
and dyalog16.dll in version 7.

The DLL contains two functions: MEMCPY and STRNCPY.
MEMCPY

MEMCPY is an extremely versatile function used for moving arbitrary data between
memory buffers.
Its C definition is:

void MEMCPY (// copy memory
void *to, // target address
void *fm, // source address
unsigned size // number of bytes to copy

)7

MEMCPY copies size bytes starting from source address £m, to destination address
to. If the source and destination areas overlap, the result is undefined.

MEMCPY’s versatility stems from being able to associate to it using many different type
declarations.

Example

Suppose a global buffer (at address: addr) contains (numb) double floating point
numbers. To copy these to an APL array, we could define the association:

'doubles' [ONA 'dyalog32|MEMCPY >F8[] Iu Uu'
doubles numb addr (numbx8)

Notice that:

As the first argument to doub Ies is an output argument, we must supply the number
of elements to reserve for the output data.

MEMCPY is defined to take the number of bytes to copy, so we must multiply the
number of elements by the element size in bytes.

Chapter 5 System Functions & Variables 363

Example

Suppose that a database application requires that we construct a record in global
memory prior to writing it to file. The record structure might look like this:

typedef struct {

int empno; // employee number.
float salary; // salary.
char name[20]; // name.

} person;

Then, having previously allocated memory (addr) to receive the record, we can
define:

'prec' ONA 'dyalog32|MEMCPY I4 <{I4 Fy T[20]) Uu"
prec addr(99 12345.60 'Charlie Brown ") (4+4+20
)

STRNCPY

STRNCPY is used to copy null-terminated strings between memory buffers.
Its C definition is:

void STRNCPY (// copy null-terminated string
char *to, // target address
char *fm, // source address
unsigned size // MAX number of chars to copy

)7

STRNCPY copies a maximum of size characters from the null-terminated source
string at address £m, to the destination address to. If the source and destination strings
overlap, the result is undefined.

If the source string is shorter than size, null characters are appended to the destination
string.

If the source string (including its terminating null) is longer than size, only size
characters are copied and the resulting destination string is not null-terminated

364 Dyalog APL/W Language Reference

Example

Suppose that a database application returns a pointer (addr) to a structure that contains
two pointers to (max 20-char) null-terminated strings.

typedef struct { // null-terminated strings:
char *first; // first name (max 19 chars + 1 null).
char *last; // last name. (max 19 chars + 1 null).
} name;

To copy the names from the structure:

'get'ONA'dyalog32|STRNCPY >0T[] I4w Uu4'
get 20 addr 20

Charlie
get 20 (addr+4) 20

Brown

To copy data from the workspace into an already allocated (new) structure:

'put'0ONA'dyalog32|STRNCPY Iu <0T[] U4’
put new 'Bo' 20
put (new+4) 'Peep' 20

Notice in this example that you must ensure that names no longer than 19 characters
are passed to put. More than 19 characters would not leave STRNCPY enough space
to include the trailing null, which would probably cause the application to fail.

Chapter 5 System Functions & Variables 365

Examples
The following examples all use functions from the Microsoft Windows ‘USER’. DLL.

The file name is different for different versions of Dyalog APL.:

Version 7: USER16.EXE
Version 8: USER32.DLL

On all three systems, the DLL is should be found in a ‘standard’ place, and so you
shouldn’t normally need to give the full path name of the library. However if trying
these examples results in the error message ‘FILE ERROR 1 No such file or directory’,
you must locate the DLL and supply the full path name (and possibly extension).

The first example will show all 3 versions of the 0¥ 4 call, but to avoid confusion,
subsequent ones will assume you are using Windows 95/98. If you are using one of the
other operating systems, you must make the necessary adjustments to the call.

Note that in the following examples, DLL functions ending in ‘A’ are specific to
Windows 95/98/NT. If you are using Windows 3.x, you should remove the ‘A’ from
the function name.

366 Dyalog APL/W Language Reference

Example 1

The Windows function "GetCaretBlinkTime" retrieves the caret blink rate. It
takes no arguments and returns an unsigned int and is declared as follows:

UINT GetCaretBlinkTime (void) ;

The following statements would provide access to this routine through an APL function
of the same name. Assuming you are using Windows 95/98.

[ONA 'U User32|GetCaretBlinkTime'
GetCaretBlinkTime
530

Using windows 3.x:
[ONA 'U Useril6.exe|GetCaretBlinkTime'

Using Windows NT, note that as the file name is User32.DLL, there is no need to
specify the file extension.:

[ONA 'U User32|GetCaretBlinkTime'

The following statement (in Windows 95/98) would achieve the same thing, but using
an APL function called BLINK.

'"BLINK' [ONA 'U User32|GetCaretBlinkTime'
BLINK
530

Example 2

The Windows function "SetCaretBlinkTime" sets the caret blink rate. It takes a
single unsigned int argument, does not return a result and is declared as follows:

volid SetCaretBlinkTime (UINT) ;

The following statements would provide access to this routine through an APL function
of the same name :

[ONA 'User32|SetCaretBlinkTime U'
SetCaretBlinkTime 1000

Chapter 5 System Functions & Variables 367

Example 3

The Windows function "MessageBoxA" displays a standard dialog box on the screen
and awaits a response from the user. It takes 4 arguments. The first is the window
handle for the window that owns the message box. This is declared as an unsigned int.
The second and third arguments are both pointers to null-terminated strings containing
the message to be displayed in the Message Box and the caption to be used in the
window title bar. The 4th argument is an unsigned int that specifies the Message Box
type. The result is an int which indicates which of the buttons in the message box the
user has pressed. The function is declared as follows:

int MessageBoxA (HWND, LPCSTR, LPCSTR, UINT);
The following statements provide access to this routine through an APL function of the
same name. Note that the 2nd and 3rd arguments are both coded as input pointers to
translated null-terminated character arrays. This forces the message and caption to go
through the standard Windows translation, so that the correct ASCII characters are
shown on the screen.

(ONA 'I User32|MessageBoxA U <0T <0T U'

The following statement displays a Message Box with a stop sign icon together with 2
push buttons labelled OK and Cancel (this is specified by the value 19).

MessageBoxA 0 'Message' 'Title' 19

Note that a simpler, portable (and safer) method for displaying a Message Box is to use
Dyalog APL’s primitive MsgBox object.

368

Dyalog APL/W Language Reference

Example 4

The Windows function "FindwWindowA" obtains the window handle of a window
which has a given character string in its title bar. The function takes two arguments.
The first is a pointer to a null-terminated character string that specifies the window's
class name. However, if you are not interested in the class name, this argument should
be a NULL pointer. The second is a pointer to a character string that specifies the title
that identifies the window in question. This is an example of a case described above
where two instances of the function must be defined to cater for the two different types
of argument. However, in practice this function is most often used without specifying
the class name. The function is declared as follows:

HWND FindWindowA (LPCSTR, LPCSTR);

The following statement associates the APL function Fiv with the second variant of the
FindWindow call, where the class name is specified as a NULL pointer. To indicate
that APL is to pass the value of the NULL pointer, rather than its address, we need to
code this argument as Tu.

'"FW' ONA 'U User32|FindWindowd Iu4 <0T'
To obtain the handle of the window entitled "CLEAR WS - Dyalog APL/W":

O<HNDL<«FW 0 'CLEAR WS - Dyalog APL/W'
59245156

Example 5

The Windows function "GetWindowTextA" retrieves the caption displayed in a
window's title bar. It takes 3 arguments. The first is an unsigned int containing the
window handle. The second is a pointer to a buffer to receive the caption as a null-
terminated character string. This is an example of an output array. The third argument
is an int which specifies the maximum number of characters to be copied into the
output buffer. The function returns an int containing the actual number of characters
copied into the buffer and is declared as follows:

int GetWindowTextA (HWND, LPSTR, int);

Chapter 5 System Functions & Variables 369

The following associates the "GetWindowText" DLL function with an APL function
of the same name. Note that the second argument is coded as "> 0 T" indicating that it
is a pointer to a character output array.

(ONA 'I User32|GetWindowTextA U >0T I'
Now change the Session caption using)WSID :

JWSID MYWS
was CLEAR WS

Then retrieve the new caption (max length 255) using window handle Z¥DL from the
previous example:

DISPLAY GetWindowTextA HNDL 255 255

There are three points to note. Firstly, the number 255 is supplied as the second
argument. This instructs APL to allocate a buffer large enough for a 255-element
character vector into which the DLL routine will write. Secondly, the result of the APL
function is a nested vector of 2 elements. The first element is the result of the DLL
function. The second element is the output character array. Finally, notice that
although we reserved space for 255 elements, the result reflects the length of the actual

text (19).

An alternative way of coding and using this function is to treat the second argument as
an input/output array.

e.g.
[ONA 'I User32|GetWindowTextA U =0T I'

DISPLAY GetWindowTextA HNDL (255p' ') 255

In this case, the second argument is coded as =0T, so when the function is called an
array of the appropriate size must be supplied. This method uses more space in the

370 Dyalog APL/W Language Reference

workspace, although for small arrays (as in this case) the real impact of doing so is
negligible.

Chapter 5 System Functions & Variables 3N

Example 6

The function "GetCharWidthA" returns the width of each character in a given range
Its first argument is a device context (handle). Its second and third arguments specify
font positions (start and end). The third argument is the resulting integer vector that
contains the character widths (this is an example of an output array). The function
returns a boolean value to indicate success or failure. The function is defined as
follows. Note that this function is provided in the library: GDI132.DLL.

BOOL GetCharWidthA (HDC, UINT, UINT, int FAR¥*);

The following statements provide access to this routine through an APL function of the
same name :

[ONA 'U4 GDI32|GetCharWidthAd I U U >I[]'
'P'OWC'Printer!

DISPLAY GetCharwWidthA ('P' WG 'Handle') 65 67 3

Note: 'P'OWG'Hand le"' returns a 32-bit handle which, if the top bit is set, will
appear in APL as a negative integer. Attempting to supply such a negative number as
an argument to a DLL function when the argument is declared unsigned will result in a
DOMAIN ERROR.Window handles should therefore be declared as T rather than v.

372

Dyalog APL/W Language Reference

Example 7

The following example from the supplied workspace: QUADN A . Dw S illustrates several
techniques which are important in advanced O~ A programming. Function
D11Version returns the major and minor version number for a given DLL.

In advanced DLL programming, it is often necessary to administer memory outside
APL’s workspace. In general, the procedure for such use is:

Allocate global memory.

Lock the memory.

Copy any DLL input information from workspace into memory.
Call the DLL function.

Copy any DLL output information from memory to workspace.
Unlock the memory.

Free the memory.

NougkrwprE

Notice that steps 1 and 7, and steps 2 and 6 complement each other. That is, if you
allocate global system memory, you must free it after you have finished using it. If you
continue to use global memory without freeing it, your system will gradually run out of
resources. Similarly, if you lock memory (which you must do before using it), then you
should unlock it before freeing it. Although on some versions of Windows, freeing the
memory will include unlocking it, in the interests of good style, maintaining the
symmetry is probably a good thing.

Chapter 5 System Functions & Variables 373

V version«DIllVersion file;Alloc;Free;Lock;Unlock;Size
sInfo;Value;Copys;sizeshndl;addr;buff;ok

[1]

(2] '"4lloc'ONA'U4 kernel32|GlobalAlloc U4 Uu'
[3] 'Free'ONA'U4 kernel32|GlobalFree UY'

(4] "Lock'ONA'U4 kernel32|GlobalLock Uu'

[5] 'Unlock'ONA'U4 kernel32|GlobalUnlock Uu'
[6]

[7] 'Size'NA'U4 version|GetFileVersionInfoSized <0T >U4'
[8] '"Info'ONA'U4 version|GetFileVersionInfoA<OT U4 U4 Uu'
(9] 'Value'ONA'U4 version|VerQueryValued U4 <0T >U4 >Uu'
[10]

[11] 'Copy'NA'dyalog32|MEMCPY >U4[] U4 U4’

[12]

[13] :If xsize<>Size file 0 a Size of info
(14] :AndIf xhndl<Alloc 0 size @ Alloc memory
[15] :If xaddr<Lock hndl @ Lock memory
[16] :If xInfo file 0 size addr a Version info
[17] ok buff size<Value addr'\' 0 0 n Version value
[18] :If ok
[19] buff<Copy(size+4)buff size a Copy info
[20] version«(2/2x16)T>2+vbuff @ Split version
[21] :EndIf
[22] :EndIf
[23] ok<Unlock hndl @ Unlock memory
[24] :EndIf
[25] ok<«Free hndl a Free memory
[26] :EndIf

v

Lines [2-11] associate APL function names with the DLL functions that will be used.
Lines [2-5] associate functions to administer global memory.

Lines [7-9] associate functions to extract version information from a DLL.

Line[11] associates copy with ¥MEMCPY function from dyalog32.dll.

Lines [13-26] call the DLL functions.

Line [13] requests the size of buffer required to receive version information for the
DLL. A size of 0 will be returned if the DLL does not contain version information.

Notice that care is taken to balance memory allocation and release:

On line [14], the :If clause is taken only if the global memory allocation is successful,
in which case (and only then) a corresponding Free is called on line [25].

374 Dyalog APL/W Language Reference

Unlock on line[23] is called if and only if the call to Lock on line [15] succeeds.

A result is returned from the function only if all the calls are successful Otherwise, the
calling environment will sustain a VALUE ERROR.

Chapter 5 System Functions & Variables

375

More Examples

ONA' U4
ONvA'I
Ovaru
ONvA'I
ONA' U4
Owvarr
ONA' T4
OvA'I
Onvaru
ONvA'U
Ova!

Owvarr
ONvA'I
Ova!

Onar

ONvA'I
Ova!

Onvarou
ONA' U4
ONvA'I
Onvarou
ONA' U4
ONvA'I
Onarr
ONA' U4
ONvA'I
Onvaru
ONvA'U
ONvA'I
ONA'Tu
ONA' T4
ONvA'I
Onvarr
ONA'U2
ONA'I2
Onvaru
ONva'U
ONva'U
Onar

ONva'U
ONA' U4
Onvarou
ONA' U4
ONA' U4
Onvarou
ONvA'I
Ova:

Ona'I2
ONA'O4
ONA' T4
Onvarr
ONA U4
OvA'I
Onar

OvA'I

ADVAPI32
ADV API32
ADVAPI3?2
ADV API32
ADV API32
ADVAPI3?2
ADV API32
DOS_U32
D0OS_U32
DOS_U32
DOS_U32
D0OS_U32
DOS_U32
dyalog32
dyalog32
gdi32
GDI32
gdi32
GDI32
gdi32
gdi32
GLU32
kernel32
kernels2
kernel32
kernel32
kernels2
kernel32
kernel32
kernels2
kernel32
kernel32
kernel32
kernel32
KERNEL32
KERNEL32
kernel32
kernel32
Kernel32
KERNEL32
OpenGL32
OpenGL32
OpenGL32
OpenGL32
USER32
user3?2
user3?2
USER32
user32
Users32
users32
user32
user32
USER32
user32

|RegCloseKey
|RegCreateKeyExA
|RegEnumValueA
|RegOpenKeyA
|RegOpenKeyExA
|RegQueryValueExA
|RegSetValueExA
|Copy

|Dir

|DirMore
|DirClose’

| Rename

|Erase

| STRNCPY

|MEMCPY

| AddFontResourced
|BitBIt

|GetPixel
|GetStockObject

uu!

U <0T I <0T I I I >U >U"
U U >0T =U U >U >0T =U"'
U <or >U'

U4 <0T U4 U4 =Uu'

U <0T U4 >U4 >0T =Iuy'

U <0T U4 U4 <O0T Uu'!

<0T <o0T!

<0T U >0T'

U >0T"'

<0T <oT'

<0T"!

>0T T4 Uu!'
>{U1[4]1}y[16] Iu Uy
<07

U U UuUuUUuUUuU
U4 U4 Uuy'!

Uy

| RemoveFontResourced <O0T'

|SetPixel
|gluPerspective
| _Iclose
_Icreat
_Ilseek

_lopen

_lread

| _Iwrite
|CopyFiled

U4 U4 U4 Uu!'
Fg8 F8 F8 F8'
Ul

<0T I

I U4 I

<0T I'

U >v1l] U

U <u1l] U
<0T <0T I'

|GetEnvironmentStrings'

|GetLastError'

|GetPrivateProfileIntd <0T <O0T I <O0T'
|GetProfileStringA <0T <O0T <0T >0T I'
|GetSystemDirectoryA >0T U2'

|GetTempPath4 U4 >0T!
|GetWindowsDirectoryA >0T U'
|GlobalAlloc U Uuy!
|GlobalFree u'

|GlobalMemoryStatus ={U4 U4 U4 U4 U4 U4 U4 Uu)'
|WritePrivateProfileStringA <0T <O0T <0T <OT'

|giClearColor
|glClearDepth
|glEnable
|gilMatrixMode
|ClientToScreen
|FindWindowA4

| ShowW indow
|GetAsyncKeyState
|GetDC

Fu F4 Fu Fu!
Fy!

Uy

Uy

U =uu4l[2]"'

I4 <O0T!'

I I

Il

Uy

|GetDialogBaselUnits'

|GetFocus'
|GetSysColor
|GetSystemMetrics
|InvalidateRgn
|MessageBoxA

Il

Il

It U U4

I <0T <0T I

376 Dyalog APL/W Language Reference

ONA'Uw
ONA'Uu4
ONA'I2
ONvA'I
OnvA'U

user32
USER32
user32
user32
WINMM

|ReleaseDC
| SendMessaged
|SetFocus
|[WinHelpA
|sndPlaySoundA

U4 Uy

T4 U4 Uy <I[]!
Il

I <0T I Iu'
<0T U!

Chapter 5 System Functions & Variables 377

Native File Append: {R}<«X ONAPPEND Y

This function appends the ravel of its left argument X to the end of the designated
native file. X must be a simple homogeneous APL array. Y is a 1- or 2-element integer
vector. Y[1] isa negative integer that specifies the tie number of a native file. The
optional second element v [2] specifies the data type to which the array X is to be
converted before it is written to the file.

The shy file index result returned is the position within the file of the end of the record,
which is also the start of the following one.

Name Classification: R<(NC Y

Y must be a simple character scalar, vector or matrix. A scalar or vector is treated as a
one-row matrix. Each (implied) row of Y is taken to be an APL name. R is asimple
integer vector of shape 147241 1,pY.

Each element of R is the name class of the active referent of the object named in the
corresponding row of Y. A name class may be:

- invalid name

unused name

label

variable

function

operator

GUI object/namespace

W F WN PP O R

Example
A«<15

ONC 2 3p'4 FOO!
2 3

Symbols which represent primitive functions or operators, or system constants,
variables, namespaces and functions, are classified as invalid names.

Examples
ONC 3 1p'Z4x!
1 1 1

anc 3 3p'0OCRODLOTS'
1 1 1

378 Dyalog APL/W Language Reference

The name class of an external variable is 2 as soon as it is associated by 0xT even
though it may not have a value.

Example
aNc'v!

"EXT/ARRAY' 0OXT 'V

gncrv:
2

v
VALUE ERROR

4

A

The name class of the left argument in an ambivalent function, may be 0 or 2
dependent on whether the function is called monadically or dyadically.

Example

V R<{A)} PLUS B
[1] +L1p=0z[NC'A' o A<O
[2] L1:R<A+B

v

PLUS 2

2 PLUS 2

Chapter 5 System Functions & Variables 379

Native File Create: {R}Y<«X [ONCREATE Y

This function creates a new file. Under DOS/Windows the file is opened in
compatibility mode. The name of the new file is specified by the left argument x
which must be a simple character vector or scalar containing a valid pathname for the
file. Y is 0 or a negative integer value that specifies an (unused) tie number by which
the file may subsequently be referred.

The shy result of ONCREATE is the tie number of the new file.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:
tie« 1+L/0,0NNUMS o With next available number,
file ONCREATE tie a ... create file.
to:
tie«file ONCREATE 0 o Create with first available no
Native File Erase: {R}Y«X [ONERASE Y

This function erases (deletes) a native file. Y is a negative integer tie number
associated with a tied native file. X is a simple character vector or scalar containing the
name of the same file and must be identical to the name used when it was opened by
ONCREATE or ONTIE.

The shy result of ONERASE is the tie number that the erased file had.

Example

file [Onerase file [Ontie 0

380

Dyalog APL/W Language Reference

Name List: R«{X}ONL Y

Y must be a simple integer scalar or vector containingonly 1, 2, 3,4 0r 9. X is
optional. If present, it must be a simple character scalar or vector. R is asimple
character matrix of names of active objects whose name class is included in v (see the
system function O~¢) in standard sorted order.

If X is supplied, R contains only those names which begin with any character of x.
Standard sorted order is the collation order of 04V.

Examples

ONL 2 3

FAST
FIND
Foo

"AV' ONL 2 3

Native File Lock: {R}«X ONLOCK Y

This function assists the controlled update of shared native files by locking a range of
bytes.

Locking enables controlled update of native files by co-operating users. A process
requesting a lock on a region of a file will be blocked until that region becomes
available. A write-lock is exclusive, whereas a read-lock is shared. In other words, any
byte in a file may be in one of only three states:

e Unlocked
o Write-locked by exactly one process.
o Read-locked by any number of processes.

Y must be a simple integer scalar or vector containing 1, 2 or 3 items namely:
1. Tie number
2. Offset (from 0) of first byte of region. Defaults to 0
3. Number of bytes to lock. Defaults to maximum possible file size

Chapter 5 System Functions & Variables 381

X is optional. If present, it must be a simple integer scalar or vector containing 1 or 2
items, namely:
1. Type: 0: Unlock, 1:Read lock, 2:Write lock.
2. Timeout: Number of seconds to wait for lock until TIMEOUT error. Defaults
to indefinite wait.

The shy result ® is Y. To unlock the file, this value should subsequently be supplied in
the right argument to oONLOCK.

Examples:
2 ONLOCK "1 o write-lock whole file
0 ONLOCK "1 o unlock whole file.
1 ONLOCK "1 a read (share) lock whole file.
2 ONLOCK 'ONNUMS a write-lock all files.
0 ONLOCK 'ONNUMS a unlock all files.
1 ONLOCK "1 12 1 n read-lock byte 12.
1 ONLOCK "1 0 10 o read-lock first 10 bytes.
2 ONLOCK "1 20 a write-lock from byte 20 onwards.
2 ONLOCK "1 10 2 a write-lock 2 bytes from byte 10
0 ONLOCK "1 12 1 a remove lock from byte 12.

To lock the region immediately beyond the end of the file prior extending it:

region<«2 [ONLOCK ~1, ONSIZE "1

a write-lock from EOF.
ONAPPEND "1 a append bytes to file
ONAPPEND "1 a append bytes to file

0 ONLOCK "1,region a release lock.

The left argument may have a second optional item that specifies a timeout value. If a
lock has not been acquired within this number of seconds, the acquisition is abandoned
and a TIMEOUT error reported.

2 10 0Onlock "1 A wait up to 10 seconds for lock.
Notes:

There is no per-byte cost associated with region locking. It takes the same time to
lock/unlock a region, irrespective of that region’s size.

Different file servers implement locks in slightly different ways. For example on some
systems, locks are advisory. This means that a write lock on a region precludes other
locks intersecting that region, but doesn't stop reads or writes across the region. On the
other hand, mandatory locks block both other locks and read/write operations.

O~ zock will just pass the server's functionality along to the APL programmer without
trying to standardise it across different systems.

382 Dyalog APL/W Language Reference

Chapter 5 System Functions & Variables 383

All locks on a file will be removed by ONUNTIE.

Blocked locking requests can be freed by a strong interrupt. Under Windows, this
operation is performed from the Dyalog APL pop-up menu in the system tray.

Errors

In this release, an attempt to unlock a region that contains bytes that have not been
locked results ina DOMAIN error.

A LIMIT ERROR results if the operating system lock daemon has insufficient
resources to honour the locking request.

Some systems support only write locks. In this case an attempt to set a read lock will
generate a DOMAIN ERROR, and it may be appropriate for the APL programmer to
trap the error and apply a write lock.

No attempt will be made to detect deadlock. Some servers do this and if such a
condition is detected, a DEADLOCK error (1008) will be reported.

Native File Names: R<[ONNAMES

This niladic function reports the names of all currently open native files. R isa
character matrix. Each row contains the name of a tied native file padded if necessary
with blanks. The names are identical to those that were given when opening the files
with ONCREATE or ONTIE. The rows of the result are in the order in which the files
were tied.

Native File Numbers: R<[ONNUMS

This niladic function reports the tie numbers associated with all currently open native
files. R isan integer vector of negative tie numbers. The elements of the result are in
the order in which the files were tied.

384

Dyalog APL/W Language Reference

Enqueue Event: {R}«{X}0ONQ Y

This system function generates an event or invokes a method.

While APL is executing, events occur "naturally” as a result of user action or of
communication with other applications. These events are added to the event queue as
and when they occur, and are subsequently removed and processed one by one by 0DQ.
O~ provides an "artificial" means to generate an event and is analogous to
OSIGNAL.

If the left argument X is omitted or is 0, ONQ adds the event specified by Y to the
bottom of the event queue. The event will subsequently be processed by 0DQ when it
reaches the top of the queue.

If X is 1, the event is actioned immediately by O~ ¢ itself and is processed in exactly
the same way as it would be processed by 0D@. For example, if the event has a
callback function attached, O~ @ will invoke it directly. See ODg for further details.

Note that it is not possible for one thread to use 1 ONQ to send an event to another
thread.

If x is 2 and the name supplied is the name of an event, ONQ performs the default
processing for the event immediately, but does not invoke a callback function if there
is one attached.

If x is 2 and the name supplied is the name of a (Dyalog APL) method, ONQ invokes
the method. Its (shy) result is the result produced by the method.

If X is 3, ONQ invokes a method in an OLE Control. The (shy) result of ONQ is the
result produced by the method.

If X is 4, ONQ signals an event from an ActiveXControl object to its host application.
The (shy) result of O~Q is the result returned by the host application and depends upon
the syntax of the event. This case is only applicable to ActiveXControl objects.

Y is a nested vector containing an event message. The first two elements of v are :

Y[1] : Object name - a character vector

Y(2] : Event Type - a numeric scalar or character vector which specifies an
event or method.

Chapter 5 System Functions & Variables 385

Y[1] must contain the hame of an existing object. If not, ONQ terminates with a
VALUE ERROR. If Y[2] specifies a standard event type, subsequent elements must
conform to the structure defined for that event type. If not, ONQ terminates with a
SYNTAX ERROR. If Y[2] specifies a non-standard event type, Y [31 onwards (if
present) may contain arbitrary information. Although any event type not listed herein
may be used, numbers in the range 0-1000 are reserved for future extensions.

If ONQ is used monadically, or with a left argument of 0, its (shy) result is always an
empty character vector. If a left argument of 1 is specified, O¥Q returns ¥ unchanged

or a modified Y if the callback function returns its modified argument as a result.
If the left argument is 2, ONQ returns either the value 1 or a value that is appropriate.

Examples

@ Send a keystroke ("A") to an Edit Field
ONQ 'TEST.ED' 'KeyPress' 'A'

@ Iconify all top-level Forms
{0NQ w 'StateChange' 1} 'Form'OWN'.'

a Set the focus to a particular field
ONQ 'TEST.ED3' uo0

a Throw a new page on a printer

1 0ONQ 'PR1' 'NewPage'

a Terminate [DQ under program control

'"TEST'OWC 'Form' ... ('Event' 1001 1)

0pQ 'TEST!'

ONQ 'TEST' 1001 a From a callback

a Call GetItemState method for a TreeView 'F.TV'
+2 ONQ'F.TV' 'GetItemState' 6

96

+2 0ONQ'.' 'GetEnvironment' 'Dyalog'
c:\Z\2\dyalogs2

386

Dyalog APL/W Language Reference

Nested Representation: R<[NR Y

Y must be a simple character scalar or vector which represents the name of a function
or a defined operator.

If Y is a name of a defined function or defined operator, R is a vector of text vectors.
The first element of R contains the text of the function or operator header. Subsequent
elements contain lines of the function or operator. Elements of R contain no
unnecessary blanks, except for leading indentation of control structures and the blanks
which precede comments.

If Y is the name of a variable, a locked function or operator, an external function or a
namespace, or is undefined, r is an empty vector.

Example

VR<MEAN X a Average
[1] Re(+/X)+pX

v

+F<[NR"MEAN"'

R<MEAN X pAverage R«(+/X)+pX
pF
2
DISPLAY F
e e e
e . - o
| R«MEAN X a Average| | Re(+/X)+pX| |

The definition of ONR has been extended to names assigned to functions by
specification (<), and to local names of functions used as operands to defined
operators. In these cases, the result of ONR is identical to that of OCR except that the
representation of defined functions and operators is as described above.

Chapter 5 System Functions & Variables 387

Example

AVG<MEANo ,

+F<[NR'AVG'
R«MEAN X an Average R«(+/X)+pX o,

pF

DISPLAY F

| R<MEAN X a Average | R«(+/X)+pX| | - -

|
g S —m——————— | o |
|
|
|

Native File Read: R<[ONREAD Y

This monadic function reads data from a native file. Y is a 3- or 4-element integer
vector whose elements are as follows:

[1] negative tie number,
[2] conversion code (see below),
[3] count,

[4] start byte, counting from 0.

Y [2] specifies conversion to an APL internal form as follows

Value Number of bytes read Result Type Result shape
11 count 1 bit boolean 8 x count
82 count 8 hits character count
83 count 8 bits integer count
163 2 x count 16 bits integer count
323 4 x count 32 bits integer count
645 8 x count 64bits floating count
Example

DATA<[ONREAD ~1 82 (ONSIZE "1) O

388 Dyalog APL/W Language Reference

Chapter 5 System Functions & Variables 389

Native File Rename: {R}<«X [ONRENAME Y

ONRENAME is used to rename a native file.

Y is a negative integer tie number associated with a tied native file. X is a simple
character vector or scalar containing a valid (and unused) file name.

The shy result of ONREN AME is the tie number of the renamed file.

Native File Replace: {R}<«X [ONREPLACE Y

ONREPLACE is used to write data to a native file, replacing data which is already there.
X must be a simple homogeneous APL array containing the data to be written.

Y is a 2- or 3-element integer vector whose elements are as follows:

[1] negative tie number,
[2] start byte, counting from 0, at which the data is to be written,
[3] conversion code (optional).

See ONREAD for a list of valid conversion codes.

The shy result is the position within the file of the end of the record, or, equivalently,
the start of the following one. Used, for example, in:

a Replace sequentially from Iindx.
{o ONREPLACE tie w}/vec,indx

Native File Resize: {R}Y<«X [(ONRESIZE Y

This function changes the size of a native file.

Y is a negative integer tie number associated with a tied native file.

X is asingle integer value that specifies the new size of the file in bytes. If X is smaller
than the current file size, the file is truncated. If x is larger than the current file size,

the file is extended and the value of additional bytes is undefined.

The shy result of ONVRESI ZE is the tie number of the resized file.

390

Dyalog APL/W Language Reference

Create Namespace: {R}Y<{X}ONS Y

If specified, X must be a simple character scalar or vector identifying the name of a
namespace.

Y is either a character array which represents a list of names of objects to be copied into
the namespace, or is an array produced by the JOR of an existing namespace. In the
first case, ¥ must be a simple character scalar, vector, matrix or a nested vector of
character vectors identifying zero or more workspace objects to be copied into the
namespace X. The identifiers in X and ¥ may be simple names or compound names
separated by ' . ' and including the names of the special namespaces '#', ' ##' and

T

The namespace x is created if it doesn't already exist. If the name is already in use for
an object other than a namespace, APL issues a DOMAIN ERROR.

If X is omitted, an unnamed namespace is created.
The objects identified in the list Y are copied into the namespace X.

If x is specified, the result R is the full name (starting #. or 0SE .) of the namespace X.
If X is omitted, the result r is a namespace reference, or ref, to an unnamed namespace.

Examples

+'X'0ONS! a Create namespace X.
#.X

+'X'ONS'VEC'" '"UTIL.DISP'n Copy VEC and DISP to X.
#.X

)CS X a Change to namespace X.
#.X

+'Y'ONS'#.MAT' '##.VEC' o Create #.X.Y © into it
#.X.Y

+'# . UTIL'ONS'Y .MAT! o Copy MAT from Y to #.UTIL.
#.UTIL

+'#'0ONS'Y! a Copy namespace Y to root.
#

+!''ONS"# . MAT'! a Copy MAT to current space.
#.X

+'rgNste @ Display current namespace.
#.X

+'Z'0ONS OOR'Y! a Create namespace from [OR.

Chapter 5 System Functions & Variables 391

NONAME<[ONS ! a Create unnamed namespace
NONAME
#.[Namespace]

DATA<[NS "4pc'! a Create 4-element vector of
@ distinct unnamed namespace

DATA
#.[Namespace] #.[Namespace] #.[Namespace]l #.[Namespace

]

Namespace Indicator: R<[NSI

R is a nested vector of character vectors containing the names of the spaces from which
functions in the state indicator were called (pONSI<~>p0OSI).

Note that ON.ST contains the names of spaces from which functions were called not
those in which they are currently running.

Example

)OBJECTS
XX Yy

QvR 'YY.F0O'
v FOO
[1] OSE.G0OO
v
OvVR'OSE.G0OO!
v GOO
(1] 0SI,[1.5]0ONSI

)CS XX
#.YY.FOO

GO0 #.YY
FoOo #.XX

Native File Size: R<[(ONSIZE Y

This reports the size of a native file.

392 Dyalog APL/W Language Reference

Y is a negative integer tie number associated with a tied native file. The result R is the
size of the file in bytes.

Chapter 5 System Functions & Variables 393

Native File Tie: {R}Y«X ONTIE Y

ONTIE opens a native file.

X is a simple character vector or scalar containing a valid pathname for an existing
native file.

Y isal-or 2-element vector. Y[11 is a negative integer value that specifies an
(unused) tie number by which the file may subsequently be referred. v [2] is optional
and specifies the mode in which the file is to be opened. This is an integer value
calculated as the sum of 2 codes. The first code refers to the type of access needed
from users who have already tied the native file. The second code refers to the type of
access you wish to grant to users who subsequently try to open the file while you have
it open.

Needed from existing users Granted to subsequent users
0 read access 0 compatibility mode
1 write access 16 no access (exclusive)
2 read and write access 32 read access

48 write access

64 read and write access

On Unix systems, the first code (16 | mode) is passed to the open (2) call as the
access parameter. See include file fcnt1 . h for details.

Automatic Tie Number Allocation

A tie number of 0 as argument to a create or tie operation, allocates, and returns as an
explicit result, the first (closest to zero) available tie number. This allows you to
simplify code. For example:

from:
tie« 1+|l/0,0NNUMS A With next available number,
file ONTIE tie A ... tie file.
to:
tie«<file ONTIE O a Tie with first available no.
Example
ntie<<{ a tie file and return tie no.
oa<«2+6U4 a default all access.

w Ontie 0 o A return new tie no.

394 Dyalog APL/W Language Reference

Chapter 5 System Functions & Variables 395

Null ltem:

R«0ONULL

This is a reference to a null item, such as may be returned across the COM interface to
represent a null value. An example might be the value of an empty cell in a
spreadsheet.

ONU LL may be used in any context that accepts a namespace reference, in particular:

As the argument to a defined function

As an item of an array.

As the argument to those primitive functions that take character data
arguments, for example: =, =, =,2 , p, >, <,

Example

'"EX'OWC'OLECIient' 'Excel.Application'
WB<«EX .Workbooks.Open 'simple.xIs'

(WB.Sheets.Item 1).UsedRange.Value2

(Nulll [Nulll [Nulll] ([Null]l ([Null)
[(Null] Year [Nulll ([Nulll [Null]
[Null] 1999 2000 2001 2002
(Nulll [Nulll [Nulll ([Nulll ([Null]

Sales

100 76 120 150

(Nulll ([Nulll ([Nulll ([Nulll [Nulll

Costs

80 60 100 110

[(Nulll ([Nulll ([Nulll ([Null]l [Nulll]
Margin 20 16 20 4o

To determine which of the cells are filled , you can compare the array with ONU L L.

P O RFr OPFPr O O O O

O R OR OREO

P OkFr OPFPr OFr OO

ONULL# (WB.Sheets.Item 1).UsedRange.Value2
0

PR OPFPr OFPr O Fr OO
P O P O K O BFr O

396

Dyalog APL/W Language Reference

Native File Untie: {R}«[ONUNTIE Y

This closes one or more native files. Y is a scalar or vector of negative integer tie
numbers. The files associated with elements of v are closed. Native file untie with a
zero length argument (ONUNTIE) flushes all file buffers to disk - see OFUNTIE for
more explanation.

The shy result of ONUNT IE is a vector of tie numbers of the files actually untied.

Native File Translate: {RY«{XYONXLATE Y

This associates a character translation vector with a native file or, if ¥ is 0, with the use
by ODR.

A translate vector is a 256-element vector of integers from 0-255. Each element maps
the corresponding OAV position onto an ANSI character code.

For example, to map 0AV [17+0107] onto ANSI 'a' (code 97), element 17 of the
translate vector is set to 97.

Y is either a negative integer tie number associated with a tied native file or 0. If Y is
negative, monadic ONXLATE returns the current translation vector associated with the
corresponding native file. If specified, the left argument X is a 256-element vector of
integers that specifies a new translate vector. In this case, the old translate vector is
returned as a shy result. If v is 0, it refers to the translate vector used by ODR to
convert to and from character data.

The system treats a translate vector with value (1256) -0I0 as meaning no
translation and thus provides raw input/output bypassing the whole translation process.

The default translation vector established at ONTIE or ONCREATE time, maps OAV
characters to their corresponding ANSI positions and is derived from the mapping
defined in the current output translation table (normally WIN.DOT)

Between them, ANSI and RAW translations should cater for most uses.

Sign Off APL.: O0FF

This niladic system function terminates the APL session, returning to the shell
command level . The active workspace does not replace the last continuation
workspace.

Chapter 5 System Functions & Variables 397

Object Representation: R«[OR Y

0or converts a function, operator or namespace to a special form, described as its
object representation, that may be assigned to a variable and/or stored on a component
file.

Taking the O0R of a function or operator is an extremely fast operation as it simply
changes the type information in the object’s header, leaving its internal structure
unaltered. Converting the object representation back to an executable function or
operator using OF X is also very fast. OOR is therefore the recommended form for
storing functions and operators on component files and is significantly faster than using
OCR,OVR or ONR.

0Jor may also be used to convert a namespace (either a plain namespace or a GUI
object) into a form that can be stored in a variable or on a component file. The
namespace may be reconstructed using O~ S or Ow ¢ with its original name or with a
new one. [JOR may therefore be used to clone a namespace or GUI object.

Y must be a simple character scalar or vector which contains the name of an APL
object.

If v is the name of a variable, the result R is its value. In this case, R<JOR Y is
identical to R<eY.

Otherwise, R is a special form of the name Y, re-classified as a variable. The rank of r
is 0 (R is scalar), and the depth of r is 1. These unique characteristics distinguish the
result of JOR from any other object. The type of R (eR) is itself. Note that although R
is scalar, it may not be index assigned to an element of an array unless it is enclosed.

If v is the name of a function or operator, R is in the domain of the monadic functions
Depth (=), Disclose (=), Enclose (<), Rotate(¢), Transpose(y), Index ing([1), Format
(%), Identity (+), Shape (p), Type (¢) and Unique (v), of the dyadic functions
Assignment (<), Without (~), Index Of (1), Intersection (n), Match (=), Membership
(¢), Not Match (=) and Union (v), and of the monadic system functions Canonical
Representation (OCR), Cross-Reference (OREF S), Fix (OFX), Format (OFMT), Nested
Representation (ONR) and Vector Representation (OV R).

Nested arrays which include the object representations of functions and operators are in
the domain of many mixed functions which do not use the values of items of the arrays.

Note that a JOR object can be transmitted through an 'APL-style’ TCP socket. This
technique may be used to transfer objects including namespaces between APL sessions.

398

Dyalog APL/W Language Reference

The object representation forms of namespaces produced by 0o R may not be used as
arguments to any primitive functions. The only operations permitted for such objects
(or arrays containing such objects) are 0zX, OF APPEND, OFREPLACE, ONS, and OWC.

Example

F<0OR OFX'R<«F00' '"R<+10'

oF

ppF
0

=F
1

F=eF
1

The display of the 0o r form of a function or operator is a listing of the function or
operator. If the Jor form of a function or operator has been enclosed, then the result
will display as the operator name preceded by the symbol v. It is permitted to apply
OOR to a locked function or operator. In this instance the result will display as for the
enclosed form.

Examples

F
vV R<FO00
(1] R<10

cF
VFOO
QOLoCcKk'FoO!

OOR'FOO!
VFO0O

A<15

A[3]«cF

12 VFOO 4 5

Chapter 5 System Functions & Variables 399

For the Oor forms of two functions or operators to be considered identical, their
unlocked display forms must be the same, they must either both be locked or unlocked,
and any monitors, trace and stop vectors must be the same.

Example
F<0OR OFX 'R<A PLUS B' 'R<A+B'

F=(OR 'PLUS'

1 0STOP 'PLUS'

F=(OR 'PLUS'

Namespace Examples

The following example sets up a namespace called vT I LS, copies into it the contents
of the uT 1L workspace, then writes it to a component file:

JCLEAR
clear ws
JNS UTILS
#.UTILS
)CS UTILS
#.UTILS
JCOPY UTIL
C:\WDYALOG\WS\UTIL saved Fri Mar 17 12:48:06 1995
)CS
#
"ORTEST' OFCREATE 1
(OOR'UTILS')UFAPPEND 1

The namespace can be restored with O~ S, using either the original name or a new one:

JCLEAR
clear ws

'"UTILS' ONS [OFREAD 1 1
#.UTILS

JCLEAR
clear ws

'"NEWUTILS' (ONS UOFREAD 1 1
. NEWUTILS

400

Dyalog APL/W Language Reference

This example illustrates how JOR can be used to clone a GUI object; in this case a
Group containing some Button objects. Note that Owc will accept only a 0O R object
as its argument (or preceded by the “Type” keyword). You may not specify any other
properties in the same Ow ¢ statement, but you must instead use 0w S to reset them

afterwards.

'"F'OWC'Form'

'F.G1' OWC 'Group' '&0One' (10 10)(80 30)
'F.G1.B2'WC'Button' '&Blue' (40 10)('Style'
'F.G1.B3'OWC'Button' '&Green' (60 10)('Style'
'F.G1.B1'OWC'Button' '&Red' (20 10)('Style'
'F.G2'" OwC OOR 'F.G1'!

'F.G2' OWS ('Caption' 'Two')('Posn' 10 60)

Note too that Owc and ON.S may be used interchangeably to rebuild pure namespaces
or GUI namespaces from a O R object. You may therefore use O~ .S to rebuild a Form

or use Owc to rebuild a pure namespace that has no GUI components.

Search Path:

The OPATH variable can be used to identify a namespace in which commonly used
utility functions reside. Functions or operators (NOT variables) which are copied into
this namespace and exported (see OEXPORT) can then be used directly from anywhere

in the workspace without giving their full path names.

Example

To make the DISPLAY function available directly from within any namespace.

a Create and reference utility namespace.
UOPATH«'Use.util'Uns'"'

a Copy DISPLAY function from UTIL into it.
'"DISPLAY'Use.util.Ocy'UTIL'

a (Remember to save the session to file).

In detail, OPATH works as follows:

OPATH

OPATH is a simple character vector representing a blank-separated list of namespaces.
It is approximately analogous to the PATH variable in MS-DOS or UNIX

Chapter 5 System Functions & Variables

401

When a reference to a name cannot be found in the current namespace, the system
searches for it from left to right in the list of namespaces indicated by OPATH. Ineach
namespace, if the name references a defined function (or operator) and the export type
of that function is non-zero (see DEXPORT), then it is used to satisfy the reference. If
the search exhausts all the namespaces in OPATH without finding a qualifying
reference, the system issues a VALUE ERROR in the normal manner.

The special character + stands for the list of namespace ancestors:

HHORE AR HH BB HY
In other words, the search is conducted upwards through enclosing namespaces,
emulating the static scope rule inherent in modern block-structured languages.

Note that the PATH mechanism is used ONLY if the function reference cannot be
satisfied in the current namespace. This is analogous to the case when the MS_DOS or
UNIX PATH variable begins witha ' . '.

Examples

OPATH

Search in

1. 'Ose.util!

3. 'util + Ose.util!

Current space, then
Ose.util, then
VALUE ERROR

Current space
Parent space: ##
Parent's parent space: ##.##

Root: # (or Use if current space
was Iinside [se)
VALUE ERROR

Current space
util (relative to current space)
Parent space: ##

Root: # or [lse
Ose.util
VALUE ERROR

Note that DPATH is a session variable. This means that it is workspace-wide and
survives) LoAD and) CLEAR. It can of course, be localised by a defined function or

operator.

402 Dyalog APL/W Language Reference

Program Function Key: R«{X}OPFKEY Y

OPFKEY is a system function that sets or queries the programmable function keys.
OPFKEY associates a sequence of keystrokes with a function key. When the user
subsequently presses the key, it is as if he had typed the associated keystrokes one by
one.

Y is an integer scalar in the range 0-255 specifying a programmable function key. If X
is omitted the result R is the current setting of the key. If the key has not been defined
previously, the result is an empty character vector.

If X is specified it is a simple or nested character vector defining the new setting of the
key. The value of X is returned in the result Rr.

The elements of X are either character scalars or 2-element character vectors which
specify Input Translate Table codes.

Programmable function keys are recognised in any of the three types of window
(SESSION, EDIT and TRACE) provided by the Dyalog APL development
environment. (SR operates with the 'raw' function keys and ignores programmed
settings.

Note that key definitions can reference other function keys.

The size of the buffer associated with DPFKEY is specified by the pfkey_size
parameter.

Examples

(")FNS',c'ER'") OPFKEY 1
)JFNS ER

DISPLAY [(PFKEY 1

('")VARS',c'ER') UPFKEY 2
)JVARS ER

'"F1' 'F2' OPFKEY 3 a Does)FNS and)VARS
F1 F2

Chapter 5 System Functions & Variables 403

Print Precision: Opp

Opp is the number of significant digits in the display of numeric output.

OPP may be assigned any integer value in the range 1 to 16. The value in a clear
workspace is 10.

Opp is used to format numbers displayed directly. It is an implicit argument of
monadic function Format (%), OCR, ONR, OV R, ODM, OED, monadic OFMT and display
of numbers via 0 and [output. JPP is ignored for the display of integers.

Examples

OPP<«10

+3 6
0.3333333333 0.1666666667

0PP<3

+3 6
0.333 0.167

Print Width: Oprw

gdpw is the maximum number of output characters per line before folding the display.
OPw may be assigned any integer value in the range 30 to 32767.

If an attempt is made to display a line wider than JPw, then the display will be folded
at or before the 0rw width and the folded portions indented 6 spaces. The display of a
simple numeric array may be folded at a width less than OPw so that individual
numbers are not split.

Opw only affects output, either direct or through O output. It does not affect the result
of the function Format (%), of the system function OFMT , or output through the system
functions 04RBoOUT and OARBIN, or output through 1.

Note that if the auto_pw parameter is set to 1, OPW is reset dynamically whenever the
Session window is resized. In these circumstances, a value assigned to 0Pw will only
be effective until the Session Window is next resized.

404 Dyalog APL/W Language Reference

Examples
OPW<30
J«3p+3

0.3333333333 0.3333333333
0.3333333333

Cross References: R<[REFS Y

Y must be a simple character scalar or vector, identifying the name of a function or
operator, or the object representation form of a function or operator (see JOR). Risa
simple character matrix, with one name per row, of identified names in the function or
operator in Y excluding distinguished names of system constants, variables or
functions.

Example

OVR'OPTIONS'
v OPTIONS;OPTS;INP
[1] o REQUESTS AND EXECUTES AN OPTION

[2] OPTS <'INPUT' 'REPORT' 'END'

[3] IN:INP<ASK'OPTION:'

(4] +EXp=<(<INP)eOPTS

(5] "INVALID OPTION. SELECT FROM',0PTS o —IN
(6] EX:>EX+0OPTS1<cINP

(7] INPUT o -IN

(8] REPORT o —IN

[9] END:

v

OREFS'OPTIONS'
ASK
END
EX
IN
INP
INPUT
OPTIONS
OPTS
REPORT

If ¥ is locked or is an External Function, R contains its name only. For example:

Chapter 5 System Functions & Variables 405

OLOCK 'OPTIONS' o [REFS 'OPTIONS'
OPTIONS

If ¥ is the name of a primitive, external or derived function, R is an empty matrix with
shape 0 0.

406 Dyalog APL/W Language Reference

Random Link: ORL

ORI is used or set to establish a base for generating random numbers.

ORI may be assigned any integer value in the range 1 to 2147483646. The value in a
clear workspace is 16807.

Repeatable results can be obtained from Roll or Deal if ORL is set to a particular value
first.

ORL is used and set implicitly by the functions Roll and Deal (7).

Examples

URL
16807

79 9 9

79

ORL
984943658

ORL«16807
29 9 9

Response Time Limit: ORTL

A non-zero value in JRT L places a time limit, in seconds, for input requested via 1,
OARBIN,and OSR. ORTL may be assigned any integer in the range 0 to 32767. The
value is a clear workspace is 0.

Example

ORTL<5 o [<«'FUEL QUANTITY?' o R<(l
FUEL QUANTITY?
TIMEOUT

ORTL«5 o [«'FUEL QUANTITY?' o R<[l

Chapter 5 System Functions & Variables 407

Save Workspace: {RY«{X}YOSAVE Y

Y must be a simple character scalar or vector, identifying a workspace name. R isa
simple logical scalar. The active workspace is saved with the given name in Y. In the
active workspace, the value 1 is returned. The result is suppressed if not used or
assigned.

The optional left argument X is either O or 1. If X is omitted or 1, the saved version of
the workspace has execution suspended at the point of exit from the 0S4V E function.
If the saved workspace is subsequently loaded by 0z 0AD, execution is resumed, and
the value 0 is returned if the result is used or assigned, or otherwise the result is
suppressed. In this case, the latent expression value (OLX) is ignored.

If X is 0, the workspace is saved without any State Indicator in effect. The effect is the
same as if you first executed) RESET and then) SAVE. In this case, when the
workspace is subsequently loaded, the value of the latent expression (OLX) is honoured
if applicable.

A DOMAIN ERROR isreported if the name in Y is not a valid workspace name, or the
reference is to an unauthorised directory.

Note that the values of all system variables (including O.s¥) and all GUI objects are
saved.

Example

(o'"SAVED'" 'ACTIVE' [OIO+0SAVE'TEMP']),' WS'
ACTIVE WS

OLOAD 'TEMP'
SAVED WS

Screen Dimensions: R<[SD

0sD is a 2-element integer vector containing the number of rows and columns on the
screen, or in the USER window.

Under DOS, 0sD always contains (25 80). For asynchronous terminals under UNIX,
the screen size is taken from the terminal database terminfo or termcap.

In window implementations of Dyalog APL, 0.SD reports the current size (in
characters) of the USER window or the current size of the SM object, whichever is
appropriate.

408 Dyalog APL/W Language Reference

Session Namespace: OSE
OSE is a system namespace. Its GUI components (MenuBar, ToolBar, and so forth)
define the appearance and behaviour of the APL Session window and may be
customised to suit individual requirements.
OSE is maintained separately from the active workspace and is not affected by) Lo4D
or)CLEAR. ltis therefore useful for containing utility functions. The contents of OSE
may be saved in and loaded from a .DSE file.
See User Guide for further details.

Execute (UNIX) Command: {R}<0SH Y

OsH executes a UNIX shell command or a DOS command. 0SH is a synonym of
Odcup. Either function may be used in either environment (UNIX or DOS) with
exactly the same effect. 0SH is probably more natural for the UNIX user. This section
describes the behaviour of 0s# and Oc¥D under UNIX. See gcMD for a discussion of
the behaviour of these system functions under DOS.

Y must be a simple character scalar or vector representing a UNIX shell command. R
is a nested vector of character vectors.

Y may be any acceptable UNIX command. It could cause another process to be
entered, such as sed or vi. If the command does not return a result, R is <' ' but the
result is suppressed if not explicitly used or assigned. If the command has a hon-zero
exit code, then APL will signal a DoMATIN ERROR. If the command returns a result
and has a zero exit code, then each element of r will be a line from the standard output
(stdout) of the command. Output from standard error (stderr) is not captured unless
redirected to stdout.

Examples

OSH'Is'
FILES WS temp

OSH 'rm WS/TEST'

0SH 'grep bin /etc/passwd ; exit 0
bin:!:2:2::/bin:

OSH 'apl MYWS <inputfile >outil 2>out2 &'

See User Guide for further information.

Chapter 5 System Functions & Variables 409

Start (UNIX) Auxiliary Processor: X OSH Y

Used dyadically, OSH starts an Auxiliary Processor. The effect, as far as the APL user
is concerned, is identical under both DOS and UNIX although there are differences in
the method of implementation. OSH is a synonym of OcMD. Either function may be
used in either environment (UNIX or DOS) with exactly the same effect. OSH is
probably more natural for the UNIX user. This section describes the behaviour of 0sH
and OcMD under UNIX. See OcMD for a discussion of the behaviour of these system
functions under DOS.

X must be a simple character vector. ¥ may be a simple character scalar or vector, or a
nested character vector.

0sH loads the Auxiliary Processor from the file named by X using a search-path
defined by the environment variable WSPATH.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same way
as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are piped
to the AP for processing. If the function returns a result, APL halts while the AP is
processing and waits for the result. If not it continues processing in parallel.
The syntax of dyadic 0SH is similar to the UNIX execl(2) system call, where
't askname' is the name of the auxiliary processor to be executed and argo through
argn are the parameters of the calling line to be passed to the task, viz.

'taskname' [0SH 'argo' 'argi' ... 'argn'

See User Guide for further information.

Examples

'xutils' OSH 'xutils' 'ss' 'dbr'

'/bin/sh' (OSH 'sh' '-c' 'adb test'

410

Dyalog APL/W Language Reference

Shadow Name: OSHADOW Y

Y must be a simple character scalar, vector or matrix identifying one or more APL
names. For a vector Y, names are separated by one or more blanks. For a matrix v,
each row is taken to be a single name.

Each valid name in Y is shadowed in the most recently invoked defined function or
operator, as though it were included in the list of local names in the function or
operator header. The class of the name becomes 0 (undefined). The name ceases to be
shadowed when execution of the shadowing function or operator is completed.
Shadow has no effect when the state indicator is empty.

If a name is ill-formed, or if it is the name of a system constant or system function,
DOMAIN ERROR is reported.

If the name of a top-level GUI object is shadowed, it is made inactive.

Example

OVR'RUN'
v NAME RUN FN
(1] o RUNS FUNCTION NAMED <NAME> DEFINED
(2] o FROM REPRESENTATION FORM <FN»>
(3] OSHADOW NAME
(4] «(FX FN

0 0OSTOP 'RUN'

'"FOO' RUN '"R<FOO' 'R<«10'
10

RUN[O]

)SINL
RUN[O]1x Foo FN NAME

~0LC

FOO
VALUE ERROR
Foo

A

Chapter 5 System Functions & Variables 411

State Indicator: R<[SI

R is a nested vector of vectors giving the names of the functions or operators in the
execution stack.

Example

)SI
PLUS[2]*

MATDIV[4]
FoO[1]~
%

asI
PLUS MATDIV FOO

(p0LC)=p0STI
1

If execution stops in a callback function, 0p@ will appear on the stack, and may occur
more than once

)SI
ERRFN[7]1x
uoe
CALC
0o
MAIN

To edit the function on the top of the stack:
0zp -0SI
The name of the function which called this one:
>1+0SI
To check if the function an is pendent:
((eaN)e1+v0SI)/'Warning : ',AN,' is pendent'

See also X SI.

412

Dyalog APL/W Language Reference

Signal Event: {X}OSIGNAL Y

Y must be a single positive integer scalar or a null vector. x is optional. If present, x
must be a simple character scalar or vector, or an object reference. If Y is null, nothing
is signalled.

Y is taken to be an event number in the range 1-999. X is an optional text message. If
omitted, the standard event message shown for the corresponding event number in
Figure 7(i) or 7(ii) is assumed. If there is no standard message, a message of the form
ERROR NUMBER n iscomposed, where n is the event number in Y.

The effect of the system function is to interrupt execution. The state indicator is cut
back to exit from the function or operator containing the line that invoked OSIGNAL or
the Execute (&) expression that invoked OSIGNAL, and an error is then generated.

An error interrupt may be trapped if the system variable OTRAP is set to intercept the
event. Otherwise, the standard system action is taken (which may involve cutting back
the state indicator further if there are locked functions or operators in the state
indicator). The standard event message is replaced by the text given in x, if present.

Example
OVR'DIVIDE'
V R<A DIVIDE B;0TRAP

(1] OTRAP<11 'E' '-ERR'

[2] R<A+B ¢ >0

(3] ERR:'DIVISION ERROR' OSIGNAL 11
v

2 4 6 DIVIDE O
DIVISION ERROR
2 4 6 DIVIDE O

A

If you are using the Microsoft .Net Framework, you may use 0SIGNAL to throw an
exception by specifying a value of 90 in v. In this case, if you specify the optional left
argument X , it must be a reference to a .Net object that is or derives from the Microsoft
.Net class System.Exception. The following example illustrates a constructor function
CTOR that expects to be called with a value for 010 (0 or 1)

v CTOR IO;EX

[1] :If I0eO 1

[2] 0Io<Io

[3] :Else

(4] EX<ArgumentException.New'IO must be 0 or 1'

(5] EX OSIGNAL 90

Chapter 5 System Functions & Variables 413

[6] :EndIf

414

Dyalog APL/W Language Reference

Size of Object: R«0SIZE Y

Y must be a simple character scalar, vector or matrix. A scalar or vector is treated as a
single row matrix. Each row is taken to be an APL name. R is a simple integer vector
of non-negative elements and of shape 147241 1,p7Y.

If the name in a row of Y identifies an object with an active referent, the workspace
required in bytes by that object is returned in the corresponding element of R.
Otherwise, 0 is returned in that element of R.

The result returned for an external variable is the space required to store the external
array. The result for a system constant, variable or function is 0. The result returned
for a GUI object gives the amount of workspace needed to store it, but excludes the
space required for its children.

Note: Wherever possible, Dyalog APL 'shares' the whole or part of a workspace object
rather than generates a separate copy.

Examples
gvR 'F0O!
vV R<F00
(1] R<10
v
A<110

"EXT/ARRAY' [OXT'E' o E<120

OSIZE +'A' '"FOO' 'E' 'UND'
28 76 120 0

Chapter 5 System Functions & Variables 415

Screen Map: OsM

OsM is a system variable that defines a character-based user interface (as opposed to a
graphical user interface). In versions of Dyalog APL for DOS/386 and in those that
support asynchronous terminals, 0S¥ defines a form that is displayed on the USER
SCREEN. The implementation of 0S¥ in "window" environments is compatible with
these versions. In Dyalog APL/X, 0S¥ occupies its own separate window on the
display, but is otherwise equivalent. In versions of Dyalog APL with GUI support,
Osu either occupies its own separate window (as in Dyalog APL/X) or, if it exists, uses
the window assigned to the SM object. This allows 0S¥ to be used in a GUI
application in conjunction with other GUI components.

In general 0S¥ is a nested matrix containing between 3 and 13 columns. Each row of
Osu represents a field; each column a field attribute.

0sM is discussed in detail in the User Guide

The columns have the following meanings :

Column | Description Default
1 Field Contents N/A
2 Field Position - Top Row N/A
3 Field Position - Left Column N/A
4 Window Size - Rows 0
5 Window Size - Columns 0
6 Field Type 0
7 Behaviour 0
8 Video Attributes 0
9 Active Video Attributes "1
10 Home Element - Row 1
11 Home Element - Column 1
12 Scrolling Group - Vertical 0
13 Scrolling Group - Horizontal 0

With the exception of columns 1 and 8, all elements in 0SM are integer scalar values.

416 Dyalog APL/W Language Reference

Elements in column 1 (Field Contents) may be :

a) A numeric scalar

b) A numeric vector

c) A 1-column numeric matrix

d) A character scalar

e) A character vector

1j)] A character matrix (rank 2)

9) A nested matrix defining a sub-form whose structure and contents must

conform to that defined for 0S¥ as a whole. This definition is recursive. Note
however that a sub-form must be a matrix - a vector is not allowed.

Elements in column 8 (Video Attributes) may be :
a) An integer scalar that specifies the appearance of the entire field.

b) An integer array of the same shape as the field contents. Each element
specifies the appearance of the corresponding element in the field contents.

Screen Management (DOS & Async Terminals)

Dyalog APL for DOS/386 and UNIX systems (Async terminals) manages two screens;
the SESSION screen and the USER screen. If the SESSION screen is current, an
assignment to 0SM causes the display to switch to the USER screen and show the form
defined by Osu.

If the USER screen is current, any change in the value of 0S¥ is immediately reflected
by a corresponding change in the appearance of the display. However, an assignment
to 0S¥ that leaves its value unchanged has no effect.

Chapter 5 System Functions & Variables 417

Dyalog APL automatically switches to the SESSION screen for default output, if it
enters immediate input mode (6-space prompt), or through use of 0 or [1. This means
that typing

0SM <« expression

in the APL session will cause the screen to switch first to the USER screen, display the
form defined by 0S¥, and then switch back to the SESSION screen to issue the 6-space
prompt. This normally happens so quickly that all the user sees is a flash on the screen.
To retain the USER screen in view it is necessary to issue a call to OSR or for APL to
continue processing

e.g.

0SM <« expression o [OSR 1
or
0SM <« expression o [ODL 5

Screen Management (Window Versions)

In Dyalog APL/X, and optionally in Dyalog APL/W, 0S¥ is displayed in a separate
USER WINDOW on the screen. In an end-user application this may be the only
Dyalog APL window. However, during development, there will be a SESSION
window, and perhaps EDIT and TRACE windows too.

The USER Window will only accept input during execution of OSR. It is otherwise
"output-only". Furthermore, during the execution of OSR it is the only active window,
and the SESSION, EDIT and TRACE Windows will not respond to user input.

Screen Management (GUI Versions)

In versions of Dyalog APL that provide GUI support, there is a special SM object that
defines the position and size of the window to be associated with O0suM. This allows
character-mode applications developed for previous versions of Dyalog APL to be
migrated to and integrated with GUI environments without the need for a total re-write.

418 Dyalog APL/W Language Reference

Effect of Localisation

Like all system variables (with the exception of DTRAP) OSM is subject to "pass-
through localisation”. This means that a localised 0.S¥ assumes its value from the
calling environment. The localisation of 0S¥ does not, of itself therefore, affect the
appearance of the display. However, reassignment of a localised 0S¥ causes the new
form to overlay rather than replace whatever forms are defined further down the stack.
The localisation of 0S¥ thus provides a simple method of defining pop-up forms, help
messages, etc.

The user may edit the form defined by 0S¥ using the system function OSR. Under the
control of OSR the user may change the following elements in 0.S¥ which may
afterwards be referenced to obtain the new values.

Column1: Field Contents
Column 10 : Home Element - Row (by scrolling vertically)
Column 11: Home Element - Column (by scrolling horizontally)

See User Guide for a full description of the behaviour and usage of 0S¥ and OSR.

Screen Read: R<«{X}0SR Y

OSR is a system function that allows the user to edit or otherwise interact with the form
defined by Osnm.

In Dyalog APL for DOS or in versions that support asynchronous terminals, if the
current screen is the SESSION screen, 0SR immediately switches to the USER
SCREEN and displays the form defined by Osnm.

In Dyalog APL/X, OSR causes the input cursor to be positioned in the USER window.
During execution of OSR, only the USER Window defined by 0S¥ will accept input
and respond to the keyboard or mouse. The SESSION and any EDIT and TRACE
Windows that may appear on the display are dormant.

In versions of Dyalog APL with GUI support, a single SM object may be defined. This
object defines the size and position of the 0.5M window, and allows 0S¥ to be used in
conjunctions with other GUI components. In these versions, OSR acts as a superset of
0DQ (see ODQ) but additionally controls the character-based user interface defined by
Osum.

Chapter 5 System Functions & Variables 419

Y is an integer vector that specifies the fields which the user may visit. In versions with
GUI support, ¥ may additionally contain the names of GUI objects with which the user
may also interact.

If specified, x may be an enclosed vector of character vectors defining EXIT_KEYS or
a 2-element nested vector defining EXIT_KEYS andthe INITIAL_CONTEXT.

The result R isthe EXIT_ CONTEXT
Thus the 3 uses of OSR are :
EXIT_CONTEXT <« OSR FIELDS
EXIT CONTEXT <« (<EXIT KEYS)OSR FIELDS

EXIT_CONTEXT <« (EXIT_KEYS)(INITIAL CONTEXT)UOSR FIELD
S

FIELDS

If an element of Y is an integer scalar, it specifies a field as the index of a row in OsuM
(if OsM is a vector it is regarded as having 1 row).

If an element of Y is an integer vector, it specifies a sub-field. The first element in ¥
specifies the top-level field as above. The next element is used to index a row in the
form defined by >0sM[Y[11]; 1] and so forth.

If an element of Y is a character scalar or vector, it specifies the name of a top-level
GUI object with which the user may also interact. Such an object must be a "top-level"

object, i.e. the Root object (' . ') ora Form or pop-up Menu. This feature is
implemented ONLY in versions of Dyalog APL with GUI support.

EXIT_KEYS

Each element of EXIT_KEYS is a 2-character code from the Input Translate Table for
the keyboard. If the user presses one of these keys, 0.SR will terminate and return a
result.

If EXIT_KEYS is not specified, it defaults to :

IERI IEPI IQTI

which (normally) specifies <Enter>, <Esc> and <Shift+Esc>.

420 Dyalog APL/W Language Reference

INITIAL_CONTEXT

This is a vector of between 3 and 6 elements with the following meanings and defaults:

Element | Description Default
1 Initial Field N/A
2 Initial Cursor Position - Row N/A
3 Initial Cursor Position - Col N/A
4 Initial Keystroke T
5 (ignored) N/A
6 Changed Field Flags 0

Structure of INITIAL_CONTEXT

INITIAL_CONTEXTI[1] specifies the field in which the cursor is to be placed. It is
an integer scalar or vector, and must be a member of y. It must not specify a field

INITIAL_CONTEXT([2 3] areinteger scalars which specify the initial cursor
position within the field in terms of row and column numbers.

INITIAL_CONTEXT([u4] is either empty, or a 2-element character vector specifying
the initial keystroke as a code from the Input Translate Table for the keyboard.

INITIAL CONTEXT(s5]isignored. Itisincluded sothatthe EXIT_CONTEXT
result of one call to OSR can be used asthe INITIAL_CONTEXT to a subsequent call.

INITIAL_CONTEXT[6] isaboolean scalar or vector the same length as v. It
specifies which of the fields in ¥ has been modified by the user.

Chapter 5 System Functions & Variables 421

EXIT_CONTEXT

Theresult EXIT_CONTEXT is a 6 or 9-element vector whose first 6 elements have the
same structure asthe INITTAL_CONTEXT. Elements 7-9 only apply to those versions
of Dyalog APL that provide mouse support.

Element | Description

Final Field

Final Cursor Position - Row
Final Cursor Position - Col
Terminating Keystroke
Event Code

Changed Field Flags
Pointer Field

Pointer Position - Row
Pointer Position - Col

O o ~NOoOOUTh WN -

Structure of the Result of 0SR

EXIT CONTEXT[1] contains the field in which the cursor was when JSR terminated
due to the user pressing an exit key or due to an event occurring. It is an integer scalar
or vector, and a member of y.

EXIT_CONTEXT([2 3] are integer scalars which specify the row and column position
of the cursor within the field ExIT_CONTEXT[1] when (SR terminated.

EXIT_CONTEXT([u4] isa 2-element character vector specifying the last keystroke
pressed by the user before 0SR terminated. Unless (SR terminated due to an event,
EXIT_CcoNTEXT (4] will contain one of the exit keys defined by x. The keystroke is
defined in terms of an Input Translate Table code.

EXIT_CONTEXT[5] contains the sum of the event codes that caused JSR to

EXIT_CONTEXT[s] will have the value 66.

EXIT_CONTEXT(6] isaboolean scalar or vector the same length as v. It specifies
which of the fields in ¥ has been modified by the user during this 0SR, ORed with
INITIAL CONTEXT[6]. Thusifthe EXIT CcoNTEXT of one call to SR is fed
back asthe INITIAL CONTEXT of the next, EXIT_CONTEXT[6] records the fields
changed since the start of the process.

422 Dyalog APL/W Language Reference

EXIT_CONTEXT (Window Versions)

OSR returns a 9-element result ONLY if it is terminated by the user pressing a mouse
button. In this case :

EXIT_CONTEXT[7] contains the field over which the mouse pointer was positioned
when the user pressed a button. It is an integer scalar or vector, and a member of v.

EXIT_CONTEXT[8 9] are integer scalars which specify the row and column position
of the mouse pointer within the field Ex17_coNTEXT(7] when OSR terminated.

See User Guide for a full description of the behaviour and usage of OSR and OSM.

State Indicator Stack: R<[STACK
R is a two-column matrix, with one row per entry in the State Indicator.
Column1: dor form of user defined functions or operators on the State

Indicator. Null for entries that are not user defined functions or
operators.
Column 2 : Indication of the type of the item on the stack.
space user defined function or operator
® execute level
0 evaluated input
* desk calculator level
0pgQ in callback function

other primitive operator

Chapter 5

System Functions & Variables

423

Example

)SI
PLUS[2]*

MATDIV[u4]
FOO[11~
%
OSTACK
*
VPLUS
VMATDIV

VF0O0

oOSTACK

(p0LC)=p0STACK
0

Pendent defined functions and operators may be edited in Dyalog APL with no
resulting SI damage. However, only the visible definition is changed; the pendent
version on the stack is retained until its execution is complete. When the function or

operator is displayed, only the visible version is seen. Hence 0STACK is a tool which

allows the user to display the form of the actual function or operator being executed.

Example

To display the version of MATDIV currently pendent on the stack:

SOSTACK[431]
V R«A MATDIV B

(1] a Divide matrix A by matrix B
[2] C<AHB

[3] a Check accuracy

(4] D« 0.5+4 PLUS.TIMES B

424 Dyalog APL/W Language Reference

State of Object: R«[JSTATE Y

Y must be a simple character scalar or vector which is taken to be the name of an APL
object. The result returned is a nested vector of 4 elements as described below.
O0sTATE supplies information about shadowed or localised objects that is otherwise
unobtainable.
1>R Boolean vector, element set to 1 if and only if this level shadows Y.
Note: (p1oR)=p0LC

2>R Numeric vector giving the stack state of this name as it entered this

level

0 not on stack

1 suspended

2 pendent (may also be suspended)

3 active (may also be pendent or suspended)

Note: (p2>R)=p0LC

3>R Numeric vector giving the name classification of Y as it entered this
level.

Note: (p3>R)=+/1>R
4>R Vector giving the contents of v before it was shadowed at this level.

Note: (p4>R)=+/0#3>R

Chapter 5 System Functions & Variables 425

Example
OFMT-[QOR"'FN1' 'FN2' 'FN3'
V FN1;A;B;C vV FN2;4;C V FN3;A
(1] A<1 [1] A<'"HELLO" [1] A<100
[2] B<2 [2] B<«'EVERYONE' [2] °
[3] C<3 [3] C<«'"HOW ARE YOU?'! v
(4] FN2 (4] FN3
v v
)ST
FN3[2]~
FN2[4]
FN1[4]
OSTATE 'A!'

111 000 220 HELLO 1

R<0STATE 'OTRAP'

Set Stop:

{RY«X [STOP Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. X must be a simple non-negative integer scalar or vector.
R is a simple integer vector of non-negative elements. X identifies the numbers of lines
in the function or operator named by Y on which a stop control is to be placed.
Numbers outside the range of line numbers in the function or operator (other than 0)
are ignored. The number O indicates that a stop control is to be placed immediately
prior to exit from the function or operator. If X is empty, all existing stop controls are
cancelled. The value of X is independent of 0I0.

R is a vector of the line numbers on which a stop control has been placed in ascending
order. The result is suppressed unless it is explicitly used or assigned.

Examples

+(0,110) OSTOP 'FOO!
0 1

Existing stop controls in the function or operator named by Y are cancelled before new
stop controls are set:

+1 0OSTOP 'F0O'

426 Dyalog APL/W Language Reference

All stop controls may be cancelled by giving x an empty vector:
p'' OSTOP 'F0O'
pe OSTOP 'FOO!
0
Attempts to set stop controls in a locked function or operator are ignored.
OLOCK'FOO"
+0 1 OSTOP'F00'
The effect of 0ST0P when a function or operator is invoked is to suspend execution at
the beginning of any line in the function or operator on which a stop control is placed
immediately before that line is executed, and immediately before exiting from the
function or operator if a stop control of 0 is set. Execution may be resumed by a
branch expression. A stop control interrupt (1001) may also be trapped - see the

OTRAP system variable.

Example

OFX'R«F0OO' '"R«10'

0 1 OSTOP'FOO!

FOO
Fool[1]

R
VALUE ERROR

R

A

-1
Foolo]

R
10

~JLC

10

Chapter 5 System Functions & Variables 427

Query Stop: R<[(STOP Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. R is a simple non-negative integer vector of the line
numbers of the function or operator named by ¥ on which stop controls are set, shown
in ascending order. The value 0 in R indicates that a stop control is set immediately
prior to exit from the function or operator.

Example

O0STOP'FOO!

Set Access Control: R<X [0OSVC Y

This system function sets access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be
separated from the name by at least one space.

X may be a 4-element boolean vector which specifies the access control to be applied to
all of the shared variables named in Y. Alternatively, x may be a 4-column boolean
matrix whose rows specify the access control for the corresponding name in Y. X may
also be a scalar or a 1-element vector. If so, it treated as if it were a 4-element vector
with the same value in each element.

Each shared variable has a current access control vector which is a 4-element boolean
vector. A 1 in each of the four positions has the following impact :

[1] You cannot set a new value for the shared variable until after an intervening
use or set by your partner.

[2] Your partner cannot set a new value for the shared variable until after an
intervening use or set by you.

[3] You cannot use the value of the shared variable until after an intervening set
by your partner.

(4] Your partner cannot use the value of the shared variable until after an
intervening set by you.

428

Dyalog APL/W Language Reference

The effect of SV C is to reset the access control vectors for each of the shared
variables named in ¥ by OR-ing the values most recently specified by your partner with
the values in x. This means that you cannot reset elements of the control vector which
your partner has set to 1.

Note that the initial value of your partner's access control vector is normally 0 0 0 0.
However, if it is a non-APL client application that has established a hot DDE link, its
access control vector is defined to be 1 0 0 1. This inhibits either partner from setting
the value of the shared variable twice, without an intervening use (or set) by the other.
This prevents loss of data which is deemed to be desirable from the nature of the link.
(An application that requests a hot link is assumed to require every value of the shared
variable, and not to miss any). Note that APL's way of inhibiting another application
from setting the value twice (without an intervening use) is to delay the
acknowledgement of the DDE message containing the second value until the variable
has been used by the APL workspace. An application that waits for an
acknowledgement will therefore hang until this happens. An application that does not
wait will carry on obliviously.

The result R is a boolean vector or matrix, corresponding to the structure of x, which
contains the new access control settings. If ¥ refers to a name which is not a shared
variable, or if the surrogate name is mis-spelt, the corresponding value in R is 4po0.

Examples
10 0 1 0SvCc 'X!'
100 1

1 0SvVC 'X EXTNAME'
1111

(2 4p1 0 0 2 0 1 1 0) [OSVC +'ONE' 'TWO'
1111
0110

Chapter 5 System Functions & Variables 429

Query Access Control: R<0OSVC Y

This system function queries the access control on one or more shared variables.

Y is a character scalar, vector, or matrix containing names of shared variables. Each
name may optionally be paired with its surrogate. If so, the surrogate must be
separated from the name by at least one space.

If ¥ specifies a single name, the result R is a boolean vector containing the current
effective access control vector. If v is a matrix of names, R is a boolean matrix whose
rows contain the current effective access control vectors for the corresponding row in
Y.

For further information, see the preceding section on setting the access control vector.

Example
gsve 'x¢
0 0 0 O
Shared Variable Offer: R«<X 0OSVO Y

This system function offers to share one or more variables with another APL
workspace or with another application. Shared variables are implemented using
Dynamic Data Exchange (DDE) and may be used to communicate with any other
application that supports this protocol. See Interface Guide for further details.

Y is a character scalar, vector or matrix. If it is a vector it contains a name and
optionally an external name or surrogate. The first name is the name used internally in
the current workspace. The external name is the name used to make the connection
with the partner and, if specified, must be separated from the internal name by one or
more blanks. If the partner is another application, the external name corresponds to the
DDE item specified by that application. If the external name is omitted, the internal
name is used instead. The internal name must be a valid APL name and be either
undefined or be the name of a variable. There are no such restrictions on the content of
the external name.

Instead of an external name, Y may contain the special symbol ' ¢ ' separated from the
(internal) name by a blank. This is used to implement a mechanism for sending
DDE_EXECUTE messages, and is described at the end of this section.

If v is a scalar, it specifies a single 1-character name. If ¥ is a matrix, each row of ¥
specifies a name and an optional external name as for the vector case.

430 Dyalog APL/W Language Reference

The left argument X is a character vector or matrix. If it is a vector, it contains a string
that defines the protocol, the application to which the shared variable is to be
connected, and the topic of the conversation. These three components are separated by
the characters ' : * and ' | ' respectively. The protocol is currently always ' DDE ', but
future implementations of Dyalog APL may support additional communications
protocols if applicable. If ¥ specifies more than one name, X may be a vector or a
matrix with one row per row in .

If the shared variable offer is a general one (server), X, or the corresponding row of x,
should contain ' DDE: '.

The result R is a numeric scalar or vector with one element for each name in ¥ and
indicates the "degree of coupling”. A value of 2 indicates that the variable is fully
coupled (via a warm or hot DDE link) with a shared variable in another APL
workspace, or with a DDE item in another application. A value of 1 indicates that
there is no connection, or that the second application rejected a warm link. In this case,
a transfer of data may have taken place (via a cold link) but the connection is no longer
open. Effectively, APL treats an application that insists on a cold link as if it
immediately retracts the sharing after setting or using the value, whichever is
appropriate.

Examples

'"DDE:' [0SVO 'X!
1

'"DDE:' [SVO 'X SALES_92'
1

'"DDE:' [0SVO +'X SALES_92' 'COSTS_92"
11

'"DDE:DYALOG | SERV_WS' 0OSVO 'X!
2

"DDE:EXCEL|SHEET1' [SVO 'DATA R1C1:R10C12'
2

A special syntax is used to provide a mechanism for sending DDE_EXECUTE messages
to another application. This case is identified by specifying the ' ¢ ' symbol in place of
the external name. The subsequent assignment of a character vector to a variable
shared with the external name of ' ¢ ' causes the value of the variable to be transmitted
in the form of a DDE_EXECUTE message. The value of the variable is then reset to 1
or 0 corresponding to a positive or negative acknowledgement from the partner. In
most (if not all) applications, commands transmitted in DDE_EXECUTE messages must

Chapter 5 System Functions & Variables 431

be enclosed in square brackets [1. For details, see the relevant documentation for the
external application.

432 Dyalog APL/W Language Reference

Examples :
"DDE:EXCEL|SYSTEM' [OSVO 'X !
2
X<'"[OPEN("c:\mydir\mysheet.xls")]'
X
1
X<'[SELECT("R1C1:R5C10")]!
X
1
Query Degree of Coupling: R<0SVO Y
This system function returns the current degree of coupling for one or more shared
variables.

Y is a character scalar, vector or matrix. If it isa vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks.

If v is a scalar, it specifies a single 1-character name. If ¥ is a matrix, each row of ¥
specifies a name and an optional external name as for the vector case.

If ¥ specifies a single name, the result R is a 1-element vector whose value 0, 1 or 2
indicates its current degree of coupling. If ¥ specifies more than one name, R is a
vector whose elements indicate the current degree of coupling of the variable specified
by the corresponding row in Y. A value of 2 indicates that the variable is fully coupled
(via a warm or hot DDE link) with a shared variable in another APL workspace, or
with a DDE item in another application. A value of 1 indicates that you have offered
the variable but there is no such connection, or that the second application rejected a
warm link. In this case, a transfer of data may have taken place (via a cold link) but the
connection is no longer open. A value of 0 indicates that the name is not a shared
variable.

Examples

gsvo 'x!

0svo +'X SALES' 'Y' '"JUNK'

Chapter 5 System Functions & Variables 433

Shared Variable Query: R<[SVQ Y

This system function is implemented for compatibility with other versions of APL but
currently performs no useful function. Its purpose is to obtain a list of outstanding
shared variable offers made to you, to which you have not yet responded.

Using DDE as the communication protocol, it is not possible to implement 0SvQ
effectively.

Shared Variable Retract Offer: R<[OSVR Y

This system function terminates communication via one or more shared variables, or
aborts shared variable offers that have not yet been accepted.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. If Y is a scalar, it specifies a single 1-character name. If v is a matrix, each
row of v specifies a name and an optional external name as for the vector case.

If ¥ specifies a single name, the result R is a 4-element vector indicating the state of the
variable prior to retraction. If ¥ specifies more than one name, R is a matrix whose
rows indicate the previous state of the variable specified by the corresponding row in y.

See 0sv s for further information on the possible states of a shared variable.

Shared Variable State: R<[SVS Y

This system function returns the current state of one or more shared variables.

Y is a character scalar, vector or matrix. If it is a vector it contains a shared variable
name and optionally its external name or surrogate separated from it by one of more
blanks. If ¥ is a scalar, it specifies a single 1-character name. If v is a matrix, each
row of v specifies a name and an optional external name as for the vector case.

If v specifies a single name, the result R is a 4-element vector indicating its current
state. If v specifies more than one name, R is a matrix whose rows indicate the current
state of the variable specified by the corresponding row in .

434 Dyalog APL/W Language Reference

There are four possible shared variable states :

0 0 1 1: meansthatyou and your partner are both aware of the current value, and
neither has since reset it. This is also the initial value of the state when
the link is first established.

1 0 1 0: meansthatyou have reset the shared variable and your partner has not
yet used it. This state can only occur if both partners are APL
workspaces.

0 1 0 1: meansthatyour partner has reset the shared variable but that you have
not yet used it.

0 0 0 0: thename isnot that of a shared variable.

Examples

gsvs 'x!
0101

0SvsS +'X SALES' 'Y' 'JUNK'

o B O
o O O
o B =
o O B

Terminal Control: (OML) R<[TC

This is a simple three element vector. I1f OML < 3 thisis ordered as follows:

grcl1] - Backspace
grcl2] - Linefeed
Orcl3] - Newline
Note that 0TC=04v[0I10+:13] forOML< 3.
IfOML > 3 the order of the elements of OTC is instead compatible with IBM's APL2:
Orcl1] - Backspace
Orcl2] - Newline
Orcl3] - Linefeed

Elements of OT¢ beyond 3 are not defined but are reserved.

Chapter 5 System Functions & Variables 435

436 Dyalog APL/W Language Reference

Thread Child Numbers: R<[JTCNUMS Y

Y must be a simple array of integers representing thread numbers.

The result r is a simple integer vector of the child threads of each thread of y.

Examples

OTrcNUMS ©

OTCNUMS 2 3
4L 5 6 7 8 9

Current Thread Identity: R<0TID
R is a simple integer scalar whose value is the number of the current thread.
Examples
grip A Base thread number
0

¢&'0TID' a Thread number of async e.

Chapter 5 System Functions & Variables 437

Kill Thread:

{RY<«{X}YOTKILL Y

Y must be a simple array of integers representing thread numbers to be terminated. x is
a boolean single, defaulting to 1, which indicates that all descendant threads should

also be terminated.

The shy result R is a vector of the numbers of all threads that have been terminated.

The base thread 0 is always excluded from the cull.

Examples
OTKILL o a
OTKILL OTID a
o OTkILL OTID A

OTkIrLL OTCNUMS OTID a

Kill background threads.
Kill self and descendants.
Kill self only.

Kill descendants.

Thread Numbers:

R«<(TNUMS

OrnuMs reports the numbers of all current threads.

R is a simple integer vector of the base thread and all its living descendants.

Example

OTNUMS
0245637389

438

Dyalog APL/W Language Reference

Set Trace:

{R}«X OTRACE Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. X must be a simple non-negative integer scalar or vector.
R is a simple integer vector of non-negative elements.

X identifies the numbers of lines in the function or operator named by ¥ on which a
trace control is to be placed. Numbers outside the range of line numbers in the function
or operator (other than 0) are ignored. The number O indicates that a trace control is to
be placed immediately prior to exit from the function or operator. The value of X is
independent of 010.

Example

+(0,110) OTRACE'FOO'
01

Existing trace controls in the function or operator named by Y are cancelled before new
trace controls are set:

+ 1 OTRACE'FO0O'
1

All trace controls may be cancelled by giving x an empty vector:

p& UOTRACE 'F0O'!
0

Attempts to set trace controls in a locked function or operator are ignored.

Orock 'Foo'
+1 [TRACE 'FO0O'

The effect of trace controls when a function or operator is invoked is to display the
result of each complete expression for lines with trace controls as they are executed,
and the result of the function if trace control 0 is set. If a line contains expressions
separated by o, the result of each complete expression is displayed for that line after
execution.

The result of a complete expression is displayed even where the result would normally
be suppressed. In particular:

1. the result of a branch statement is displayed,;
2. the result (“pass-through” value) of assignment is displayed;
3. the result of a function whose result would normally be suppressed is displayed;

Chapter 5 System Functions & Variables 439

For each traced line, the output from OTRACE is displayed as a two element vector, the
first element of which contains the function or operator name and line number, and the

second element of which takes one of two forms.

1. The result of the line, displayed as in standard output.

2. - followed by a line humber.

Example

OVR 'DSL!

V R<DSL SKIP;A;B;C;D
(1] A<2x3+4
[2] B<(2 3p'ABCDEF')A
[3] +NEXTx1SKIP
(4] "SKIPPED LINE'

[5] NEXT:C<'one' o D<«'two'
[61] END:R<C D

v
(0,16) OTRACE 'DSL'

DSL 1
DSL[1]1 1u
DSL[2] ABC 14

DEF

DSL[3] =5
DSL[5] one
DSL[5] two
DSL[6] one two
DSL[0] one two
one two

Query Trace:

R«[TRACE Y

Y must be a simple character scalar or vector which is taken to be the name of a visible
defined function or operator. R is a simple non-negative integer vector of the line
numbers of the function or operator named by ¥ on which trace controls are set, shown
in ascending order. The value 0 in R indicates that a trace control is set to display the

result of the function or operator immediately prior to exit.

Example

OTRACE'DSL'

01 2 3

4 5 6

440

Dyalog APL/W Language Reference

Trap Event: OTRAP

This is a non-simple vector. An item of OTRAP specifies an action to be taken when
one of a set of events occurs. An item of OTRAP is a 2 or 3 element vector whose
items are simple scalars or vectors in the following order:

1. an integer vector whose value is one or more event codes selected from the list in
the Figure on the following two pages.

2. acharacter scalar whose value is an action code selected from the letters ¢, E, ¥ or
S.

3. ifelement 2 is the letter ¢ or E, this item is a character vector forming a valid APL
expression or series of expressions separated by ¢. Otherwise, this element is
omitted.

An EVENT may be an APL execution error, an interrupt by the user or the system, a
control interrupt caused by the 0ST0P system function, or an event generated by the
OSIGNAL system function.

When an event occurs, the system searches for a trap definition for that event. The
most local OT R4 P value is searched first, followed by successive shadowed values of
OTRAP, and finally the global OTRAP value. Separate actions defined in a single
OTRAP value are searched from left to right. If a trap definition for the event is found,
the defined action is taken. Otherwise, the normal system action is followed.

The ACTION code identifies the nature of the action to be taken when an associated
event occurs. Permitted codes are interpreted as follows:

¢ Cutback The state indicator is 'cut back' to the environment in which the
OTRAP is locally defined (or to immediate execution level). The
APL expression in element 3 of the same OTRAP item is then
executed.

E Execute The APL expression in element 3 of the same OTRAP item is
executed in the environment in which the event occurred.

N Next The event is excluded from the current 0TRAP definition. The search
will continue through further localised definitions of OTRAP.

S Stop Stops the search and causes the normal APL action to be taken in the
environment in which the event occurred.

Chapter 5 System Functions & Variables

aM

Code Event
0 Any event in range 1-999
1 WS FULL
2 SYNTAX ERROR
3 INDEX ERROR
4 RANK ERROR
5 LENGTH ERROR
6 VALUE ERROR
7 FORMAT ERROR
10 LIMIT ERROR
11 DOMAIN ERROR
12 HOLD ERROR
16 NONCE ERROR
18 FILE TIE ERROR
19 FILE ACCESS ERROR
20 FILE INDEX ERROR
21 FILE FULL
22 FILE NAME ERROR
23 FILE DAMAGED
24 FILE TIED
25 FILE TIED REMOTELY
26 FILE SYSTEM ERROR
28 FILE SYSTEM NOT AVAILABLE
30 FILE SYSTEM TIES USED UP
31 FILE TIE QUOTA USED UP
32 FILE NAME QUOTA USED UP
34 FILE SYSTEM NO SPACE
35 FILE ACCESS ERROR - CONVERTING FILE
38 FILE COMPONENT DAMAGED

Figure 5(i): OTRAP Event Codes

See Chapter 7 for further details.

442 Dyalog APL/W Language Reference

Code Event

52 FIELD CONTENTS RANK ERROR

53 FIELD CONTENTS TOO MANY COLUMNS
54 FIELD POSITION ERROR

55 FIELD SIZE ERROR

56 FIELD CONTENTS/TYPE MISMATCH

57 FIELD TYPE/BEHAVIOUR UNRECOGNISED
58 FIELD ATTRIBUTES RANK ERROR

59 FIELD ATTRIBUTES LENGTH ERROR

60 FULL-SCREEN ERROR

61 KEY CODE UNRECOGNISED

62 KEY CODE RANK ERROR

63 KEY CODE TYPE ERROR

70 FORMAT FILE ACCESS ERROR

71 FORMAT FILE ERROR

72 NO PIPES

76 PROCESSOR TABLE FULL

84 TRAP ERROR

90 EXCEPTION

200-499 | Reserved for distributed auxiliary processors
500-999 User-defined events

1000 Any event in range 1001-1006

1001 Stop vector

1002 Weak interrupt

1003 INTERRUPT

1005 EOF INTERRUPT

1006 TIMEOUT

1007 RESIZE (Dyalog APL/X, Dyalog APL/W)
1008 DEADLOCK

Figure 5(i): OTRAP Event Codes (Continued)

See : Trap as an alternative 'control structured' error trapping mechanism.

Chapter 5 System Functions & Variables 443

Examples

OTRAP«c(3 4 5) '"E' 'ERROR' o p[TRAP

OTRAP
3 4 5 F ERROR

Items may be specified as scalars. If there is only a single trap definition, it need not be
enclosed. However, the value of 0T RAP will be rigorously correct:

OTRAP«11 'E' '->LAB'

OTRAP
11 E -ERR

oOTRAP
1

The value of OTRAP in a clear workspace is an empty vector whose prototype is
op(e ''). Aconvenient way of cancelling a OTRAP definition is:

OTRAP<0pOTRAP

Event codes 0 and 1000 allow all events in the respective ranges 1-999 and 1000-1006
to be trapped. Specific event codes may be excluded by the ¥ action (which must
precede the general event action):

OTRAP«(1 'N')(O0 '"E' '"->GENERR')

The 'stop’ action is a useful mechanism for cancelling trap definitions during
development of applications.

The 'cut-back’ action is useful for returning control to a known point in the application
system when errors occur. The following example shows a function that selects and
executes an option with a general trap to return control to the function when an
untrapped event occurs:

444 Dyalog APL/W Language Reference
Vv SELECT;OPT;(0TRAP
(1] A Option selection and execution
[2] n A general cut-back trap
[3] OTRAP<(0 1000)'C' '-ERR'
(4] INP:[1<'OPTION : ' o OPT<(OPT=' ')/O0PT<9+[l
[5] +EXp<(cOPT)eOPTIONS o 'INVALID OPTION' o —INP
(6] EX:90PT o -INP
(7] ERR:ERRORAACTION o —~INP
(8] END:
v
User-defined events may be signalled through the 0SIGNAL system function. A user-
defined event (in the range 500-999) may be trapped explicitly, or implicitly by the
event code 0.
Example
OTRAP<500 'E' '''USER EVENT 500 - TRAPPED'''
OSIGNAL 500
USER EVENT 500 - TRAPPED
Time Stamp: R<OTS

This is a seven element vector which identifies the clock time set on the particular
installation as follows:

Orsf1] - Year
grsf2] - Month
grsfsl - Day
grstuy]l - Hour
grsis] - Minute
grslie]l - Second
grsi7] - Millisecond

Example

ars
1989 7 11 10 42 59 123

Note that on some systems, where time is maintained only to the nearest second, a zero
is returned for the seventh (millisecond) field.

Chapter 5 System Functions & Variables 445

Wait for Threads to Terminate: R<[JTSYNC Y

Y must be a simple array of thread numbers.
If Y is a simple scalar, R is an array, the result (if any) of the thread.

If Y is a simple non-scalar, r has the same shape as v, and result is an array of enclosed
thread results.

The interpreter detects a potential deadlock if a number of threads wait for each other
in a cyclic dependency. In this case, the thread that attempts to cause the deadlock
issues error number 1008: DEADLOCK.

Examples
dup<{w w} a Duplicate
O<«dup&ss a Show thread number
11
88 88
OTSYNC dup&s8s a Wait for result
88 88
OTSYNC,dup&8s
88 88

OrsSyNC dup&1 2 3
123 123

O7SYNC dup&’1 2 3
11 22 33

grsync 0OTID a Wait for self
DEADLOCK
drsync 0OTID

A

OEN
1008

446

Dyalog APL/W Language Reference

Using (Microsoft .Net Search Path): OUSING

OusInG specifies a list of Microsoft .Net Namespaces that are to be searched for a
reference to a .Net class.

OUuSING is a vector of character vectors, each element of which specifies the name of a
.Net Namespace followed optionally by a comma (,) and the Assembly in which it is to
be found.

If the Assembly is defined in the global assembly cache, you need only specify its
name. If not, you must specify a full or relative pathname.

If the Microsoft .Net Framework is installed, the System namespace in
mscorlib.dl1l isautomatically loaded when Dyalog APL starts. To access this
namespace, it is not necessary to specify the name of the Assembly.

OusSING has namespace scope. If the local value of JUSING is anything other than
empty, and you reference a name that would otherwise generate a VALUE ERROR,
APL searches the list of .Net Namespaces and Assemblies specified by QusIng for a
class of that name. If it is found, an entry for the class is added to the symbol table in
the current space and the class is used as specified. Note that subsequent references to
that class in the current space will be identified immediately.

If QUSING is empty (its default value ina CLEAR WS) no such search is performed.

Note that when you assign a value to QU SING, you may specify a simple character
vector or a vector of character vectors.

Examples:

OUSING<«'System'
DISPLAY [OUSING

OUSING,<c'System.Windows.Forms,System.Windows.Forms.d1l1l'
OUSING,«c'System.Drawing,System.Drawing.dl1l'

An Assembly may contain top-level classes which are not packaged into .Net
Namespaces. In this case, you omit the Namespace name. For example:

Chapter 5 System Functions & Variables 447

QUSING<«,<',.\LoanService.dll'

448

Dyalog APL/W Language Reference

Verify & Fix Input: R«{X}OVFI Y

Y must be a simple character scalar or vector. X is optional. If present, X must be a
simple character scalar or vector. R is a nested vector of length two whose first item is
a simple logical vector and whose second item is a simple numeric vector of the same
length as the first item of Rr.

Y is the character representation of a series of numeric constants. If x is omitted,
adjacent numeric strings are separated by one or more blanks. Leading and trailing
blanks and separating blanks in excess of one are redundant and ignored. If X is
present, X specifies one or more alternative separating characters. Blanks in leading
and trailing positions in ¥ and between numeric strings separated also by the
character(s) in x are redundant and ignored. Leading, trailing and adjacent occurrences
of the character(s) in X are not redundant. The character O is implied in ¥ before a
leading character, after a trailing character, and between each adjacent pair of
characters specified by x.

The length of the items of R is the same as the number of identifiable strings (or
implied strings) in ¥ separated by blank or the value of X. An element of the first item
of R is 1 where the corresponding string in Y is a valid numeric representation, or 0
otherwise. An element of the second item of r is the numeric value of the
corresponding string in Y if it is a valid numeric representation, or O otherwise.

Examples

OVFI '12.1 1E1 141 10!
1101 12.1 10 0 ~10

>(//0OVFI'12.1 1E1 141 ~10')
12.1 10 ~10

','OVFIY3.9,2.4,,76, "
11111 3.9 2.4 0 76 0

"o!'QVFI'L o 2 3 o 4 !
1 0 1 1 0 4
ee=(JVFI'!

Chapter 5 System Functions & Variables 449

Vector Representation: R<[(VR Y

Y must be a simple character scalar or vector which represents the name of a function
or defined operator.

If Y is the name of a defined function or defined operator, R is a simple character vector
containing a character representation of the function or operator with each line except
the last terminated by the newline character (OTc [31]). Its display form is as follows:

1. the header line starts at column 8 with the v symbol in column 6,
2. the line number for each line of the function starts in column 1,

3. the statement contained in each line starts at column 8 except for labelled lines or
lines beginning with a which start at column 7,

4. the header line and statements contain no redundant blanks beyond column 7 except

that the o separator is surrounded by single blanks, control structure indentation is
preserved and comments retain embedded blanks as originally defined,

5. the last line shows only the v character in column 6.

If v is the name of a variable, a locked function or operator, an external function, or is
undefined, R is an empty vector.

Example

pV<0OVR'PLUS'
128

14
V R<{A}YPLUS B
(1] a MONADIC OR DYADIC +

[2] +DYADICp=2=0NC'A' ¢ R<B o -END
[3] DYADIC:R«A+B ¢ —->END
(u] END:

v

450

Dyalog APL/W Language Reference

The definition of OV R has been extended to names assigned to functions by
specification (<), and to local names of functions used as operands to defined
operators. In these cases, the result of OV R is identical to that of OCR except that the
representation of defined functions and operators is as described above.

Example

AVG<MEANo ,

+F<[QVR'AVG'

V R<MEAN X a Arithmetic mean
[1] R<(+/X)+pX

V o,

oF
3

DISPLAY F
e -
I i e . |
| V R<MEAN X a Arithmetic mean| o , |
[101] R<(+/X)+pX [- -
[v | |
I 1 o o o o o o e 1 |
Ie ___ 1

Workspace Available: R<[OWA

This is a simple integer scalar. It identifies the total available space in the active
workspace area given as the number of bytes it could hold.

A side effect of using Ow 4 is an internal reorganisation of the workspace; a process
know as COMPACTION when all objects are shuffled to one end. After a compaction
there is only one free block rather than many small ones.

Example

Ow4A
261412

Chapter 5 System Functions & Variables 451

Windows Create Object: {R}«{X}YOWC Y

This system function creates a GUI object. Y is either a vector which specifies
properties that determine the new object's appearance and behaviour, or the 0OR of a
GUI object that exists or previously existed. X is a character vector which specifies the
name of the new object, and its position in the object hierarchy.

If x is omitted, Owc attaches a GUI component to the current namespace, retaining any
functions, variables and other namespaces that it may contain. Monadic OwC is
discussed in detail at the end of this section.

If ¥ is a nested vector each element specifies a property. The Ty pe property (which
specifies the class of the object) must be specified. Most other properties take default
values and need not be explicitly stated. Properties (including Ty pe) may be declared
either positionally or with a keyword followed by a value. Note that Ty pe must always
be the first property specified. Properties are specified positionally by placing their
values in Y in the order prescribed for an object of that type.

If Y is a result of JOR, the new object is a complete copy of the one from which the
0Oor was made, including any child objects, namespaces, functions and variables that it
contained at that time.

The shy result R is the full name (starting #. or [0SE.) of the namespace X.

An object's name is specified by giving its full pathname in the object hierarchy. At the
top of the hierarchy is the Root object whose name is".". Below "." there may be
one or more "top-level™ objects. The names of these objects follow the standard rules
for other APL objects as described in Chapter 1.

Names for sub-objects follow the same rules except that the character " ." is used as a
delimiter to indicate parent/child relationships.

The following are examples of legal and illegal names :

Legal lllegal

FORM1 FORM 1
form 23 form#1
Formi.Gp1 1_Form

F1.g2.b3Y4 Form+1

452

Dyalog APL/W Language Reference

If x refers to the name of an APL variable, label, function, or operator, a

DOMAIN ERRORisreported. If X refers to the name of an existing GUI object or
namespace, the existing one is replaced by the new one. The effect is the same as if it
were deleted first.

If ¥ refers to a non-existent property, or to a property that is not defined for the type of
object X, a DOMAIN ERROR isreported. A DOMAIN ERROR isalso reported if a
value is given that is inconsistent with the corresponding property. This can occur for
example, if v specifies values positionally and in the wrong order.

A "top-level" object created by OwC whose name is localised in a function/operator
header, is deleted on exit from the function/operator. All objects, including sub-
objects, can be deleted using OEX.

GUI objects are named relative to the current namespace, so the following examples
are equivalent:

'"F1.B1' OWC 'Button'

is equivalent to :

)CS F1

#.F1
'"B1' [OWC 'Button'
)CS

#

is equivalent to :

'"B1' F1.0WC 'Button'

Chapter 5 System Functions & Variables 453

Examples

a Create a default Form called F1

'F1' OWC 'Form'

a Create a Form with specified properties (by position)
a Caption = "My Application" (Title)
A Posn = 10 30 (10% down, 30% across)
A Size = 80 60 (80% high, 60% wide)
'"F1' OWC 'Form' 'My Application' (10 30)(80 60)
a Create a Form with specified properties (by keyword)
Q Caption = "My Application" (Title)
) Posn = 10 30 (10% down, 30% across)
A Size = 80 60 (80% high, 60% wide)

PROPS<«c'Type' 'Form'
PROPS,«c'Caption' 'My Application'
PROPS,«c'Posn' 10 30
PROPS,«c'Size' 80 60

'"F1' OWC PROPS

a Create a default Button (a pushbutton) in the Form F1
'"F1.BTN' OWC 'Button'

Create a pushbutton labelled "Ok"

10% down and 10% across from the start of the FORM

with callback function FOO associated with EVENT 30
(this event occurs when the user presses the button)

» ®» ©® D

'"F1.BTN'OWC'Button' '&0k' (10 10)('Event' 30 'F00')

Monadic Owc is used to attach a GUI component to an existing object. The existing
object must be a pure namespace or a GUI object. The operation may be performed by
changing space to the object or by running Ow¢ inside the object using the dot syntax.
For example, the following statements are equivalent.

)CS F

OwC 'Form' e Attach a Form to this namespace

454 Dyalog APL/W Language Reference

)CS

F.OWC'Form' o Attach a Form to namespace F

Chapter 5 System Functions & Variables 455

Windows Get Property: R«{X}OWG Y

This system function returns property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. Y is
a character vector or a vector of character vectors containing the name(s) of the
properties whose values are required. The result R contains the current values of the
specified properties. If ¥ specifies a single property name, a single property value is
returned. If v specifies more than one property, R is a vector with one element per
namein Y.

If X refers to a non-existent GUI name, a VALUE ERROR is reported. If ¥ refersto a
non-existent property, or to a property that is not defined for the type of object x, a
DOMAIN ERROR is reported.

GUI objects are named relative to the current namespace. A null value of x (referring
to the namespace in which the function is being evaluated) may be omitted. The
following examples are equivalent:

'"F1.B1' OWG 'Caption'
'B1' F1.0WG 'Caption'
"' F1.B1.0WG 'Caption'
F1.B1.0WG 'Caption'

Examples

'"F1' OWC 'Form' 'TEST'

'F1' OWG 'Caption'

TEST
'F1' OWG 'MaxButton'
1
'F1' OWG 'Size'
50 50
DISPLAY 'F1' WG 'Caption' 'MaxButton' 'Size'
el __
G o=

| TEST| 1 |50 50| |
|

456

Dyalog APL/W Language Reference

Windows Child Names: R<«{X}YOWN Y

This system function reports the names of the objects whose parentis Y. Thisisa
character scalar or vector containing the name of an existing GUI object.

The optional left argument X is a character vector which specifies the Ty pe of object
to be reported.

The result R is a vector of character vectors containing the names of the direct children
of Y which are of Ty pe X, or all of them if X is not specified. The names of objects
further down the tree are not returned, but can be obtained by recursive use of Own.

If Y refers to a non-existent GUI name, a VALUE ERROR is reported.
Note that Ow N reports only those child objects visible from the current thread.

GUI objects are named relative to the current namespace. The following examples are
equivalent:

OWN 'F1.B1'!
F1.0WN 'B1’
F1.B1.0wWwN '!

Examples
OwN' .t
FORM1 MENU1

OWN'FORM1'
CANCEL GROUP1 MENUBAR 0K

"Button'OWN'FORM1'
CANCEL 0K

Chapter 5 System Functions & Variables 457

Windows Set Property: {X)}ws v

This system function resets property values for a GUI object.

X is a namespace reference or a character vector containing the name of the object. v
defines the property or properties to be changed and the new value or values. If a
single property is to be changed, ¥ is a vector whose first element Y[1] is a character
vector containing the property name. If Y is of length 2, Y[2] contains the
corresponding property value. However, if the property value is itself a numeric or
nested vector, its elements may be may be specifiedin Y[2 3 & ...]instead ofasa
single nested element in Y[2. If ¥ specifies more than one property, they may be
declared either positionally or with a keyword followed by a value. Properties are
specified positionally by placing their values in Y in the order prescribed for an object
of that type. Note that the first property in ¥ must always be specified with a keyword
because the Ty pe property (which is expected first) may not be changed using Ow S.

If X refers to a non-existent GUI name, a VALUE ERROR isreported. If v refersto a
non-existent property, or to a property that is not defined for the type of object x, or to
a property whose value may not be changed by Ow S, a DOMAIN ERROR is reported.

GUI objects are named relative to the current namespace. A null value of x (referring
to the namespace in which the function is being evaluated) may be omitted. The
following examples are equivalent:

'"F1.B1' OWS 'Caption' '&0k'

'"Bi' F1.0WS 'Caption' '&0k'

"' F1.B1.0WS 'Caption' '&0k'

F1.B1.0WwS 'Caption' '&0Kk'

Examples

'"F1' OWC 'Form' a A default Form

'F1' OWS 'Active' 0

'F1' OWS 'Caption' 'My Application'

'F1' OWS 'Posn' 0 0

'"F1' OWS ('Active' 1)('Event' 'Configure' 'F00')

'"F1' OWS 'Junk' 10
DOMAIN ERROR

'"F1' OWS 'MaxButton' 0
DOMAIN ERROR

458

Dyalog APL/W Language Reference

Workspace Identification: OWSID

This is a simple character vector. It contains the identification name of the active
workspace. If a new name is assigned, that name becomes the identification name of
the active workspace, provided that it is a correctly formed name.

See page 1 for workspace naming conventions.

It is useful, though not essential, to associate workspaces with a specific directory in
order to distinguish workspaces from other files.

The value of Ow.SID in a clear workspace is 'CLEAR WS'.

Example

OwsID
CLEAR WS

OWSID«'WS/MYWORK' (UNIX)

OWSID<'B:\WS\MYWORK' (DOS)

Window Expose: Owx

OwX is a Boolean system variable that determines whether or not the names of
properties, methods and events provided by a Dyalog APL GUI object are exposed.

If Owx is 1, the names of properties, methods and events are exposed as reserved
names in GUI namespaces and can be accessed directly by name. This means that the
same names may not be used for global variables in GUI namespaces.

The value of Owx in a clear workspace is defined by the default_wx parameter (see
User Guide) which itself defaults to 1.

OwX has namespace scope and may be localised in a function header. This allows you
to create a utility namespace or utility function in which the exposure of GUI objects is
known and determined, regardless of its global value in the workspace.

Chapter 5 System Functions & Variables 459

Extended State Indicator: R<[XSI

R is a nested vector of character vectors giving the full path names of the functions or
operators in the execution stack. Note that if a function has changed space, its original
(home) space is reported, rather than its current one.

Example

In the following, function foo in namespace x has called goo in hamespace y.
Function goo has then changed space (Oc.S) to namespace z where it has been
suspended:

)s1
[z] y.gool2]x
x.fool1]

0xST reports the full path name of each function:

Oxs i
#.y.goo #.x.foo

This can be used for example, to edit all functions in the stack, irrespective of the
current namespace by typing: Oed Oxsi

See also 0S1I.

460

Dyalog APL/W Language Reference

Set External Variable: X 0XT Y

Y must be a simple character scalar or vector which is taken to be a variable name. x
must be a simple character scalar or vector which is taken to be a file reference. The
name given by Y is identified as an EXTERNAL VARIABLE associated with an
EXTERNAL ARRAY whose value may be stored in file identified by x. See User
Guide for file naming conventions under DOS and UNIX.

If v is the name of a defined function or operator, a label or a namespace in the active
workspace, a DOMAIN ERROR is reported.

Example
"EXT\ARRAY' OXT 'V!

If the file reference does not exist, the external variable has no value until a value is
assigned:

4
VALUE ERROR
4

A

A value assigned to an external variable is stored in file space, not within the
workspace:

Ow4A
2261186

V«<1100000

w4
2261186

There are no specific restrictions placed on the use of external variables. They must
conform to the normal requirements when used as arguments of functions or as
operands of operators. The essential difference between a variable and an external
variable is that an external variable requires only temporary workspace for an operation
to accommodate (usually) a part of its value.

Chapter 5 System Functions & Variables 461

Examples
+/V

15
V[3]«c'4BC!
14

Assignment allows the structure or the value of an external variable to be changed
without fully defining the external array in the workspace.

Examples

V,«c2 L4p18

oV
6

viel
1 2 3 4
5 6 7 8

Vi1 2 4 5 6]1x<10

4
10 20 ABC 40 50 10 20 30 40
50 60 70 80

An external array is (usually) preserved in file space when the name of the external
variable is disassociated from the file. It may be re-associated with any valid variable
name.

Example
QEX'v!
"EXT\ARRAY'OXT'F'

F
10 20 ABC 40 50 10 20 30 40
50 60 70 80

462 Dyalog APL/W Language Reference

In Unix versions, if X is an empty vector, the external array is associated with a
temporary file which is erased when the array is disassociated.

Chapter 5 System Functions & Variables 463

Example
"'0XT'TEMP'
TEMP<110
+/TEMPxTEMP
385
OEX'TEMP"

An external array may be erased using the native file function: ONVERASE.

In a multi-user environment (UNIX or a DOS LAN) a new file associated with an
external array is created with access permission for owner read/write. An existing file
is opened for exclusive use (by the owner) if the permissions remain at this level. If the
access permissions allow any other users to read and write to the file, the file is opened
for shared use. In Unix versions, access permissions may be modified using the
appropriate Operating System command, or in Windows using the supplied function

XV AR from the UTIL workspace.

Query External Variable: R<0XT Y

Y must be a simple character scalar or vector which is taken to be a variable name. R is
a simple character vector containing the file reference of the external array associated
with the variable named by v, or the null vector if there is no associated external array.

Example

gxrtv
EXT\ARRAY

p0XT'G!

465

CHAPTER 6

System Commands

System commands are not executable APL expressions. They provide services or
information associated with the workspace and the external environment.

Command Description

YCLEAR Clear the workspace

YCMD Y Execute a (DOS) Command
YCONTINUE Save a Continue workspace and terminate APL
YCOPY {Y)} Copy objects from another workspace
)CS {Y) Change current namespace

YDROP {Y} Drop named workspace

YED Y Edit object(s)

YERASE Y Erase object(s)

YEVENTS List events of GUI namespace or object
YFNS (Y} List user defined Functions

YHOLDS Display Held tokens

YLIB {Y} List workspaces in a directory

YLOAD (Y} Load a workspace

NS {Y} Create a global Namespace

YMETHODS List methods in GUI namespace or object
YOBJECTS {3} | Listglobal namespaces

YOBS {Y} List global namespaces (alternative form)
)OFF Terminate the APL session

YOPS {Y3} List user defined Operators

YPCOPY {Y} Perform Protected Copy of objects
YPROPS List properties of GUI namespace or object
YRESET Reset the state indicator

YSAVE {Y} Save the workspace

YSH {Y) Execute a (UNIX) Shell command

)SI State Indicator

)SINL State Indicator with local Name Lists
YTID {Y} Switch current Thread Identity

YVARS {Y} List user defined global Variables

YWSID {Y} Workspace Identification

YXLOAD Y Load a workspace; do not execute 0L X

{ 1} indicates that the parameter(s) denoted by Y are optional.

Figure 6(i) : System Commands

466

Dyalog APL/W Language Reference

Command Presentation

System commands may be entered from immediate execution mode or in response to
the prompt O: within evaluated input. All system commands begin with the symbol),
known as a right parenthesis. All system commands may be entered in upper or lower
case. Each command is described in alphabetical order in this chapter.

Clear Workspace:)CLEAR

This command clears the active workspace and gives the report "c Iear ws". The
active workspace is lost. The name of a clear workspace is CLEAR WS. System
variables are initialised with their default values as described in Chapter 5.

In GUI implementations of Dyalog APL,) CLE AR expunges all GUI objects, discards
any unprocessed events in the event queue and resets the properties of the Root object
'. ' to their default values.

Example

JCLEAR
clear ws

Execute (DOS) Command:)CMD cmd

This command allows DOS or UNIX shell commands to be given from APL.)CMD is
a synonym of) SH. Either command may be given in either environment (DOS or
UNIX) with exactly the same effect.) cMD is probably more natural for the DOS user.
This section describes the behaviour of)c¥D and) SE under DOS/Windows. See

) SH for a discussion of the behaviour of these commands under UNIX.

The system functions JcMD and OSH provide similar facilities but may be executed
from within APL code.

The implementation of) cuD differs between Dyalog APL Version 7 and Version 8.
Specifically, Version 8 takes advantage of Windows 95 and Windows NT facilities that
are not available in Windows 3.x. The two different implementations are described
below.

Chapter 6 System Commands 467

Version 7 Implementation

Under DOS/Windows,) cCMD creates a temporary .PIF file called QCMD1234.PIF in
the root directory of your default drive (usually C:). This file is initially a copy of
WDYALOG\QUADCMD.PIF which is then dynamically changed to run your DOS
shell together with the particular command that you have asked to be run; i.e. the right
argument you supplied to)cuD. The DOS shell to be run is obtained from your
COMSPEC environment variable. If this is not defined, it defaults to
C:\COMMAND.COM.

The temporary .PIF file is then executed in a new (but invisible) window. The result of
the command (if any) is captured by redirecting output to a temporary file and then
reading and deleting the file on completion of the command. The result is then
displayed in the APL session. The temporary file is created in the directory specified
by your TMP environment variable, or in the root directory of the current drive if TMP
is undefined. The file is called POPEN.TMP prefixed by your Task ID and the value
of the aplnid entry in APL.INI.

Note that under MS-Windows, you may not execute) C¥D without a command. If you
wish to, you can easily open a new DOS window outside APL.

Example

)CMD DIR

Volume in drive C has no label
Directory of C:\PETE\WS

<DIR> 5-07-94 3.02p
.. <DIR> 5-07-94 3.02p
SALES DWS 110092 5-07-94 3.29p
EXPENSES DWS 154207 5-07-94 3.29p

If cmd issues prompts and expects user input, it is ESSENTIAL to explicitly redirect
output to the console. If this is done, APL detects the presence of a ">" in the
command line and runs COMMAND.COM in a visible window and does not direct
output to the temporary file. If you fail to do this your system will appear to hang
because there is no mechanism for you to receive or respond to the prompt.

Example

YCMD DATE>CON
(DOS window appears)
Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95
(DOS window disappears)

468

Dyalog APL/W Language Reference

Errors

cannot create temp file
APL was unable to create a temporary .PIF file or could not find a shell to run.

could not execute command

APL has successfully started the .PIF file but has timed out waiting for the DOS
window to be created. The time-out is defined by the gcmd_timeout= parameter in
APL.INI (default 5000 msecs).

not enough memory
not enough memory or corrupt shell
invalid shell

Version 8 Implementation

Under Version 8, the argument of)cMD is simply passed to the appropriate command
processor for execution and its output is received using an unnamed pipe.

By default,) cMD will execute the string ('command.com /c',Y) under
Windows 95 and the string ('cmd.exe /c',Y) under Windows NT; where Y is
the argument given to) c¥D. However, the implementation permits the use of
alternative command processors as follows.

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD_PREFIX and CMD_POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the name
defined by the environment variable COMSPEC followed by “ /c”. If COMSPEC is
not defined, it defaults to COMMAND.COM or CMD.EXE as appropriate. If
CMD_POSTFIX is not defined, it defaults to an empty vector.

Chapter 6 System Commands 469

Save Continuation: YCONTINUE

This command saves the active workspace under the name CONTINUE and ends the
Dyalog APL session.

When you subsequently start another Dyalog APL session, the CONTINUE workspace
is loaded automatically. When a coNTINUE workspace is loaded, the latent
expression (if any) is NOT executed.

Note that the values of all system variables (including 0.s¥) and GUI objects are also
saved in CONTINUE.

Copy Workspace:)COPY {ws {nms}}

This command brings all or selected global objects nms from a stored workspace with
the given name. A stored workspace is one which has previously been saved with the
system command) SAVE or the system function OSAVE. See page 1 for the rules for
specifying a workspace name.

)COPY does NOT copy OSM.

If the list of names is excluded, all defined objects (including namespaces and GUI
objects) are copied. Copied objects are defined at the global level in the active
workspace. Existing global objects in the active workspace with the same name as a
copied object are replaced. If the copied object replaces either a function in the state
indicator, or an object that is an operand of an operator in the state indicator, or a
function whose left argument is being executed, the original object remains defined
until its execution is completed or it is no longer referenced by an operator in the state
indicator. If the workspace name is not valid or does not exist or if access to the
workspace is not authorised, the system reports "ws not found".

You may copy an object from a namespace by specifying its full pathname. The object
will be copied to the current namespace in the active workspace, losing its original
parent and gaining a new one in the process. You may only copy a GUI object into a
namespace that is a suitable parent for that object. For example, you could only copy a
Group object from a saved workspace if the current namespace in the active workspace
is itself a Form, SubForm or Group.

If the workspace name identifies a file that is not a workspace, the system reports
"bad ws".

If "ws" is omitted, the file open dialog box is displayed and all objects copied from the
selected workspace.

470

Dyalog APL/W Language Reference

If the workspace name identifies a valid, readable workspace, the system reports the
workspace name, "saved" and the date and time when the workspace was last saved.

If the list of names is included, the names of system variables may also be included and
copied into the active workspace. The global referents will be copied.

If an object is not found in the stored workspace, the system reports "not found"
followed by the name of the object.

Examples

JCOPY WS/UTILITY
WS/UTILITY saved Mon Nov 1 13:11:19 1992

)COPY TEMP [LX F00 X A.B.C
./TEMP saved Mon Nov 1 14:20:47 1992
not found X

Implementation Note

)COPY is implemented in a way that is designed to provide optimum performance
under most circumstances. The) COPY process) LOADs the target workspace into
memory. Some or all of the contents of the target workspace are then copied from the
secondary task into the primary task.

During the copy, all processing of the two symbol tables, stacks, and internal pointers
occurs in memory without further (random) disk accesses. In general this design
makes) CoPY (which is traditionally a slow operation) extremely fast. If however the
target workspace is very large it can cause problems with excessive paging. If the
source workspace is too large to be loaded into the second APL task, the system reports
"ws too large™.

Chapter 6 System Commands 471

Change Space:)CS {nm}

) €S changes the current space to the global hamespace nm.
If no name is given, the system changes to the top level (Root) namespace.

If name is not the name of a global namespace, the system reports the error message
Namespace does not exist.

name may be either a simple hame or a compound name separated by '.", including
one of the special names '#' (Root) or ' ##' (Parent).

Examples

)CS
#

)CS X
#.X

)CS Y.Z
#.X.Y.Z

)CS ##
#.X.Y

)CS #.UTIL

#.UTIL

472

Dyalog APL/W Language Reference

Drop Workspace:)DROP {ws}

This command removes the specified workspace from disk storage. See page 1 for
information regarding the rules for specifying a workspace name.

If "ws" is omitted, a file open dialog box is displayed to elicit the workspace name.

Example

)DROP WS/TEMP
Thu Sep 17 10:32:18 1998

Edit Object: JED nms

) ED invokes the Dyalog APL editor and opens an Edit window for each of the objects
specified in nms.

If a name specifies a new symbol it is taken to be a function/operator. However, if a
name is localised in a suspended function/operator but is otherwise undefined, it is
assumed to be a vector of character vectors.

The type of a new object may be specified explicitly by preceding its name with an
appropriate symbol as follows :

v

n_n
€

function/operator

vector of character vectors
character matrix

character vector

non
-

The first object named becomes the top window on the stack. See User Guide for
details.

) ED ignores names which specify GUI objects.

Examples

JED MYFUNCTION

JED VFOO -MAT eVECVEC

Chapter 6 System Commands 473

Erase Object:)ERASE nms

This command erases named global defined objects (functions, operators, variables,
namespaces and GUI objects) from the active workspace or current namespace.

If a named object is a function or operator in the state indicator, or the object is an
operand of an operator in the state indicator, or the object is a function whose left
argument is being executed, the object remains defined until its execution is completed
or it is no longer referenced by an operator in the state indicator. However, the name is
available immediately for other uses.

If a named object is a GUI object, the object and all its children are deleted and
removed from the screen.

If an object is not erased for any reason, the system reports not found followed by
the name of the object.

Erasing objects such as external functions may have other implications: see the entry
for expunge object (OE X) for details.

Example

YERASE F00 A [IO
not found [IO

474

Dyalog APL/W Language Reference

List Events: YEVENTS

The)EVENTS system command lists the Events that may be generated by the object
associated with the current space.

For example:
(dcs '"BB'OWC'BrowseBox'

YEVENTS
Close Create FileBoxCancel FileBox0OK

YEVENTS produces no output when executed in a pure (non-GUI) namespace, for
example:

gecs 'x' Ons
JEVENTS

List Global Defined Functions: YFNS {nm}

This command displays the names of global defined functions in the active workspace
or current namespace. Names are displayed in 04V collation order. If a name is
included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples

JENS

ASK DISPLAY GET PUT ZILCH
JENS G

GET PUT ZILCH

Chapter 6 System Commands 475

Display Held Tokens: YHOLDS

System command) HoLDS displays a list of tokens which have been acquired or
requested by the : Ho 1d control structure.

Each line of the display is of the form:
token: acq req reqg ...

Where acq is the number of the thread that has acquired the token, and regq is the
number of a thread which is requesting it. For a token to appear in the display, a thread
(and only one thread) must have acquired it, whereas any number of threads can be
requesting it.

Example
Thread 300’s attempt to acquire token ' blue' results in a deadlock:
300:DFEADLOCK

Sema4[1] :Hold 'blue'

A

YHOLDS
blue: 100
green: 200 100
red: 300 200 100

e Blue has been acquired by thread 100.
e Green hasbeen acquired by 200 and requested by 100.
e Red has been acquired by 300 and requested by 200 and 100.

The following cycle of dependencies has caused the deadlock:

Thread 300 attempts to acquire b lue, 300 > blue
which is owned by 100, 4 ¥
which is waiting for red, red « 100

which is owned by 300.

476

Dyalog APL/W Language Reference

List Workspace Library:

)LIB {dir}

This command lists the names of Dyalog APL workspaces contained in the given
directory.

Example
)LIB WS
MYWORK TEMP

If a directory is not given, the workspaces on the user's APL workspace path
(wspATH)are listed. In this case, the listing is divided into sections identifying the
directories concerned. The current directory is identified as " .".

Example
)LIB
PDTEMP WORK GRAPHICS

C:\DYALOG\WS
DISPLAY GROUPS

Chapter 6 System Commands 477

Load Workspace: YLOAD {ws}

This command causes the named stored workspace to be loaded. The current active
workspace is lost.

If "ws" is a full or relative pathname, only the specified directory is examined. If not,
the APL workspace path (WSPATH as specified in APL. INT) is traversed in search of
the named workspace. A stored workspace is one which has previously been saved
with the system command) SAVE or the system function OSAVE. If “ws” is omitted,
the File Open dialog box is displayed.

If the workspace name is not valid or does not exist or if access to the workspace is not
authorised, the system reports "ws not found". If the workspace name identifies a
file or directory that is not a workspace, the system reports workspace name

"is not a ws". Ifsuccessfully loaded, the system reports workspace name
"saved", followed by the date and time when the workspace was last saved. If the
workspace is too large to be loaded into the APL session, the system reports

"ws too large". After loading the workspace, the latent expression (JLX) is
executed unless APL was invoked with the -x option.

If the workspace contains any GUI objects whose v i s i bIe property is 1, these
objects will be displayed. If the workspace contains a non-empty 0SM but does not
contain an SM GUI object, the form defined by 0S¥ will be displayed in a window on
the screen.

Holding the Ctrl key down while enteringa) ZoAD command or selecting a
workspace from the session file menu now causes the incoming latent expression to be
traced.

Holding the Shift key down while selecting a workspace from the session file menu
will prevent execution of the latent expression.

Example

)LOAD SMDEMO
/usr/dyalog/WS/SMDEMO saved Wed Sep 6 21:46:27 1989
Type HOWDEMO for help

478 Dyalog APL/W Language Reference

List Methods: YMETHODS

The yMETHODS system command lists the Methods that apply to the object associated
with the current space.

For example:

gcs 'F'OWC'Form'

YMETHODS
Animate ChooseFont Detach GetFocus GetTextSiz
e
Wait

YMETHODS produces no output when executed in a pure (hon-GUI) namespace, for
example:

gdcs 'x' 0Ons '
JMETHODS

Chapter 6 System Commands 479

Create Namespace:)NS {nm}

) VS creates a global namespace and displays its full name, nm.

nm may be either a simple name or a compound name separated by ' . ', including one
of the special names ' #' (Root) or '##' (Parent).

If name does not start with the special Root space identifier ' # ', the new namespace
is created relative to the current one.

If name is already in use for a workspace object other than a namespace, the command
fails and displays the error message Name already exists.

If name is an existing namespace, no change occurs.

) NS with no nm specification displays the current namespace.

Examples
)NS

)JNS W.X
)CS W.X

#.W.X

JNS Y.z
#.W.X.Y.Z

)NS
#.W.X

480 Dyalog APL/W Language Reference
List Global Namespaces:)OBJECTS {nm}
This command displays the names of global namespaces in the active workspace.
Names are displayed in the 04V collating order. If a name is included after the
command, only those names starting at or after the given name in collating order are
displayed. Namespaces are objects created using ON.S,) NS or OwC and have name
class 9.
Note:)0BS can be used as an alternative to) 0OBJECTS
Examples
YOBJECTS
FORM1 UTIL WSDOC XREF
YJOBS W
WSDOC XREF
List Global Namespaces:)OBS {nm}

This command is the same as the)0BJECTS command above.

Sign Off APL:)OFF

This command terminates the APL session, returning to the Operating System
command processor or shell.

List Global Defined Operators:)OPS {nm}

This command displays the names of global defined operators in the active workspace
or current namespace. Names are displayed in 04V collation order. If a name is
included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples
)OPS
AND DOIF DUAL ELSE POWER

)OPS E
ELSE POWER

Chapter 6 System Commands 481

Protected Copy: YPCOPY {ws {nms}}

This command brings all or selected global objects from a stored workspace with the
given name provided that there is no existing global usage of the name in the active
workspace. A stored workspace is one which has previously been saved with the
system command) SAVE or the system function OSAVE.

)PCOPY does not copy OSM. This restriction may be removed in a later release.

If the workspace name is not valid or does not exist or if access to the workspace is not
authorised, the system reports "ws not found". If the workspace name identifies a
file that is not a workspace, or is a workspace with an invalid version number (one that
is greater than the version of the current APL) the system reports "bad ws". See page
1 for the rules for specifying a workspace name.

If the workspace name is the name of a valid, readable workspace, the system reports
the workspace name, "saved", and the date and time that the workspace was last
saved.

If the list of names is excluded, all global defined objects (functions and variables) are
copied. If an object is not found in the stored workspace, the system reports

"not found" followed by the name of the object. If an object cannot be copied into
the active workspace because there is an existing referent, the system reports

"not copied" followed by the name of the object.

For further information, see the implementation note under)CoPY.

Examples

)PCOPY WS/UTILITY
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied COPIED IF
not copied COPIED JOIN

YPCOPY TEMP FOO X
./TEMP saved Mon Nov 1 14:20:47 1993
not found X

482 Dyalog APL/W Language Reference
List Properties:) PROPS
The) PROPS system command lists the Properties of the object associated with the
current space.
For example:
0CS '"BB'lWC'BrowseBox'
YPROPS
BrowseFor Caption ChildList Data Event
EventList HasEdit KeepOnClose MethodList
ProplList StartIn Target Translate Type
) PROPS produces no output when executed in a pure (non GUI) namespace, for
example:
gcs 'x' ONS '
YPROPS
Reset State Indicator:)RESET

This command cancels all suspensions recorded in the state indicator and discards any
unprocessed events in the event queue.

Example

)SI
Fool[1]~
k]
Fool[1]~

)RESET

)SI

Chapter 6 System Commands 483

Save Workspace:)SAVE {ws}

This command saves the active workspace after compaction of its contents. The
workspace is saved with its state of execution intact. A stored workspace may
subsequently be loaded with the system command) Lo 4D or the system function
0Lo 4D, and objects may be copied from a stored workspace with the system
commands) COPY or) PCOPY or the system function OCY.

This command may fail with one of the following error messages:

a) unacceptable char
The given workspace name was ill-formed.

b) not saved this ws is WSID
An attempt was made to change the name of the workspace for the save, and
that workspace already existed.

c) not saved this ws is CLEAR WS
The active workspace was CLEAR WS and no attempt was made to change the
name.

d) cannot create
The user does not have access to create the file OR the workspace name
conflicts with an existing non-workspace file.

e) cannot save with windows open
A workspace may not be saved if trace or edit windows are open.

An existing stored workspace with the same name will be replaced. The active
workspace may be renamed by the system command)wSID or the system
function OWSID.

After a successful save, the system reports the workspace name, "saved", followed by
the time and date.

Example

)SAVE MYWORK
./MYWORK saved Thu Sep 17 10:32:20 1998

484

Dyalog APL/W Language Reference

Execute (UNIX) Command:)SH {cmd}

This command allows DOS or UNIX shell commands to be given from APL.)SHisa
synonym of) cMD. Either command may be given in either environment (DOS or
UNIX) with exactly the same effect.).SH is probably more natural for the UNIX user.
This section describes the behaviour of).SH and) cMD under UNIX. See)cmD for a
discussion of their behaviour under DOS.

The system commands 0.SH and OcMD provide similar facilities but may be executed
from within APL code.

) SH allows UNIX shell commands to be given from APL. The argument must be
entered in the appropriate case (usually lower-case). The result of the command, if
any, is displayed.

In Dyalog APL/X,) SH without an argument opens a new window. In non-X versions,
) SH without an argument causes APL to fork a (Bourne) shell and wait. When the
shell is closed ("exit" or Ctrl-d), control returns to APL. See User Guide for further
information.

Example

)SH Is
EXT
FILES

Chapter 6 System Commands 485

State Indicator:)SI

This command displays the contents of the state indicator in the active workspace. The
state indicator identifies those operations which are suspended or pendent for each
suspension.

The list consists of a line for each suspended or pendent operation beginning with the
most recently suspended function or operator. Each line may be:

1. The name of a defined function or operator, followed by the line number at
which the operation is halted, and followed by the x symbol if the operation is
suspended. The name of a function or operator defined in a namespace other
than the root is displayed relative to the root. For example, UTIL.PRINT. In
addition, the display of a function or operator which has dynamically changed
space away from its origin, is prefixed with its current space. For example,

[(OSE] TRAV.
2. A primitive operator symbol.
3. The Execute function symbol ().
4. The Evaluated Input symbol (0).
5. The System Function D@ or OSR (occurs when executing a callback
function).
Examples
)SI
PLUS[21%
MATDIV[u4]
Foo[11x

s

This example indicates that at some point function 700 was executed and suspended
on line 1. Subsequently, function AT DIV was invoked, with a function derived from
the Inner Product or Outer Product operator (.) having defined function PLUS as an
operand.

In the following, function foo in namespace x has called goo in namespace y.
Function goo has then changed space (OCS) to namespace z where it has been
suspended:

)si
[z] y.gool2]x
x.fool[1]

486

Dyalog APL/W Language Reference

MultiThreading

In a multithreading application, where parent threads spawn child threads, the state
indicator assumes the structure of a branching tree. Branches of the tree are represented
by indenting lines belonging to child threads. For example:

) ST

: Calcl[1]
&5
. DivSub[1]
&7

DivSub[1]
&6
: Div[2]x
&4
Sub[3]
Main[4]

Here, Ma in has called Sub, which has spawned threads 4+ and 5 with functions: Div
and Calc. Function Div, after spawning Div.Sub in each of threads 6 and 7, has been
suspended at line [2].

State Indicator & Name List: YSINL

This command displays the contents of the state indicator together with local names.
The display is the same as for) ST (see above) except that a list of local names is
appended to each defined function or operator line.

Example

)SINL
PLUS[2]% B A R DYADIC END
MATDIV[4] R END I J OTRAP

FoOo[11* R
s

Chapter 6 System Commands 487

Thread Identity:)TID {tid}

Only a single thread can be suspended at any one time. You can switch the suspension
between threads by using) TID.

If no thread number is given,) TID reports the number of the current thread.

Only those threads which are paused between lines of code, can be suspended.
Attempting to switch to a thread that is, for example, pendent or waiting for a : Ho Id,

will fail.
Examples
aState indicator
)s1i
. print[1]
&3
sub_calcl[2]x
&2
. calcl1]
&1
aCurrent thread
)t id
is 2
aSwitch suspension to thread 3
ytid 3
was 2
aState indicator
)si
. print[1]x
&3
sub_calc[2]
&2
. calcl1]
&1

nAttempt to switch to pendent thread 1
ytid 1
Can't switch, this thread is 3

488

Dyalog APL/W Language Reference

List Global Defined Variables: YVARS {nm}

This command displays the names of global defined variables in the active workspace
or current namespace. Names are displayed in AV collation order. If a name is
included after the command, only those names starting at or after the given name in
collation order are displayed.

Examples
)VARS
A B F TEMP VAR

)JVARS F
F TEMP VAR

Workspace ldentification: YWSID {ws}

This command displays or sets the name of the active workspace.

If a workspace name is not specified,)W SID reports the name of the current active
workspace. The name reported is the full path name, including directory references.

If a workspace name is given, the current active workspace is renamed accordingly.
The previous name of the active workspace (excluding directory references) is
reported. See page 1 for the rules for specifying a workspace name.

Examples
)LOAD WS/TEMP
WS/TEMP saved Thu Sep 17 10:32:19 1998

YWSID
is WS/TEMP

VWSID WS/KEEP
was WS/TEMP

YWSID
WS/KEEP

Chapter 6 System Commands 439

Load without Latent Expression: YXLOAD {ws}

This command causes the named stored workspace to be loaded. The current active
workspace is lost.

YXLOAD is identical in effect to) L0 AD except that) X L0 AD does not cause the
expression defined by the latent expression OLX in the saved workspace to be executed.

490 Dyalog APL/W Language Reference

491

CHAPTER 7

Error Messages

The error messages reported by APL are described in this chapter. Standard APL
messages that provide information or report error conditions are summarised in Figure
7(i) and described in alphabetical order.

APL also reports messages originating from the Operating System (DOS or UNIX)
which are summarised in Figure 7(ii). Only those Operating System error messages
that might occur through normal usage of APL operations are described in this manual.
Other messages could occur as a direct or indirect consequence of using the Operating
System interface functions O0cmD and 0SH or system commands) C¥D and) SH, or
when a non-standard device is specified for the system functions DARBIN or
0ARBoUT. Refertothe DOS or UNIX reference manual for further information about
these messages.

Most errors may be trapped using the system variable 0T RAP, thereby retaining control
and inhibiting the standard system action and error report. For convenience, Figures
7(i) and 7(ii) identify the error code for trappable errors. The error code is also
identified in the heading block for each error message when applicable.

See User Guide for a full description of the Error Handling facilities in Dyalog APL.

492 Dyalog APL/W Language Reference

Standard Error Action

The standard system action in the event of an error or interrupt whilst executing an
expression is to suspend execution and display an error report. If necessary, the state
indicator is cut back to a statement such that there is no halted locked function visible
in the state indicator.

The error report consists of up to three lines

1. The error message, preceded by the symbol ¢ if the error occurred while evaluating
the Execute function.

2. The statement in which the error occurred (or expression being evaluated by the
Execute function), preceded by the name of the function and line number where
execution is suspended unless the state indicator has been cut back to immediate
execution mode. If the state indicator has been cut back because of a locked
function in execution, the displayed statement is that from which the locked
function was invoked.

3. The symbol A under the last referenced symbol or name when the error occurred.
All code to the right of the A symbol in the expression will have been evaluated.

Examples

X PLUS U
VALUE ERROR
X PLUS U
A
Foo
INDEX ERROR
FOO[2] X<X+A[I]

A

CALC
¢DOMAIN ERROR
CALC[5] =0

A

Chapter 7 Error Messages

493

Error Code Report
bad ws
cannot create name
clear ws
1008 copy incomplete
DEADLOCK
11 defn error
1005 DOMAIN FRROR
90 EOF INTERRUPT
53 EXCEPTION
54 FIELD CONTENTS RANK ERROR
55 FIELD CONTENTS TOO MANY COLUMNS
56 FIELD POSITION ERROR
57 FIELD SIZE ERROR
58 FIELD CONTENTS/TYPE MISMATCH
59 FIELD TYPE/BEHAVIOUR UNRECOGNISED
60 FIELD ATTRIBUTES RANK ERROR
61 FIELD ATTRIBUTES LENGTH ERROR
62 FULL-SCREEN ERROR
63 KEY CODE UNRECOGNISED
70 KEY CODE RANK ERROR
71 KEY CODE TYPE ERROR
19 FORMAT FILE ACCESS ERROR
35 FORMAT FILE ERROR
38 FILE ACCESS ERROR
23 FILE ACCESS ERROR - CONVERTING FILE
21 FILE COMPONENT DAMAGED
20 FILE DAMAGED
22 FILE FULL
32 FILE INDEX ERROR
26 FILE NAME ERROR
34 FILE NAME QUOTA USED UP
28 FILE SYSTEM ERROR
30 FILE SYSTEM NO SPACE
18 FILE SYSTEM NOT AVAILABLE
24 FILE SYSTEM TIES USED UP
25 FILE TIFE ERROR
31 FILE TIED

FILE TIED REMOTELY
FILE TIE QUOTA USED UP

494 Dyalog APL/W Language Reference

Figure 7(i) : APL Error Messages

Chapter 7 Error Messages

495

Error Code

Report

1003

10
16
72

FORMAT ERROR

incorrect command
HOLD ERROR

INDEX ERROR
insufficient resources
INTERRUPT

i1s name

LENGTH ERROR

LIMIT ERROR

NONCE FERROR

NO PIPES

name is not a ws

Name already exists
Namespace does not exist
not copied name

not found name

not saved this ws 1s name
PROCESSOR TABLE FULL
RANK ERROR

RESIZE

name saved date/time
SYNTAX ERROR

sys error number

TIMEOUT

too many names

TRAP ERROR

VALUE ERROR

warning duplicate label
warning duplicate name
warning label name present in line 0
warning pendent operation
warning unmatched brackets
warning unmatched parentheses
was name

WS FULL

ws not found

ws too large

Figure 7(i) : APL Error Messages (Continued)

496 Dyalog APL/W Language Reference

Chapter 7 Error Messages 497

Error Code Report
101 FILE FRROR 1 Not owner
102 FILE ERROR 2 No such file or directory
103 FILE ERROR 3 No such process
104 FILE ERROR 4 Interrupted system call
105 FILE ERROR 5 I/O error
106 FILE ERROR 6 No such device or address
107 FILE ERROR 7 Arg list too long
108 FILE ERROR 8 Exec format error
109 FILE ERROR 9 Bad file number
110 FILE ERROR 10 No children
111 FILE ERROR 11 No more processes
112 FILE ERROR 12 Not enough code
113 FILE ERROR 13 Permission denied
114 FILE ERROR 14 Bad address
115 FILE ERROR 15 Block device required
116 FILE ERROR 16 Mount device busy
117 FILE ERROR 17 File exists
118 FILE ERROR 18 C(Cross-device link
119 FILE ERROR 19 No such device
120 FILE ERROR 20 Not a directory
121 FILE ERROR 21 Is a directory
122 FILE ERROR 22 Invalid argument
123 FILE ERROR 23 File table overflow
124 FILE ERROR 24 Too many open files
125 FILE ERROR 25 Not a typewriter
126 FILE ERROR 26 Text file busy
127 FILE ERROR 27 File too large
128 FILE ERROR 28 No space left on device
129 FILE ERROR 29 Illegal seek
130 FILE ERROR 30 Read-only file system
131 FILE ERROR 31 Too many links
132 FILE ERROR 32 Broken pipe
133 FILE ERROR 33 Math argument
134 FILE ERROR 34 Result too large

Figure 7(ii) : Typical Operating System Error Messages

Note that operating system error messages vary between different operating systems.
Dyalog APL reports the error code associated with the operating system error message
that it received. Figure 7(iii) gives the messages recieved under Windows 95.

498

Dyalog APL/W Language Reference

Error Code | Report
101 FILE ERROR 1 No such file or directory
102 FILE ERROR 2 No such file or directory
103 FILE ERROR 3 Exec format error
105 FILE ERROR 5 Not enough memory
106 FILE ERROR 6 Permission denied
107 FILE ERROR 7 Argument Ilist too big
108 FILE ERROR 8 Exec format error
109 FILE ERROR 9 Bad file number
FILE ERROR 11 Too many open files
111 FILE ERROR 12 Not enough memory
112 FILE ERROR 13 Permission denied
113 FILE ERROR 14 Result too large
114 FILE ERROR 15 Resource deadlock would occur
115 FILE ERROR 17 File exists
117 FILE ERROR 18 Cross-device link
118 FILE ERROR 22 Invalid argument
122 FILE ERROR 23 File table overflow
123 FILE ERROR 24 Too many open files
124 FILE ERROR 33 Argument too large
133 FILE ERROR 34 Result too large
134 FILE ERROR 45 Resource deadlock would occur
145

Figure 7(iii) : Windows 95 Operating System Error Messages

Chapter 7 Error Messages 499

APL Error Messages

There follows an alphabetical list of error messages reported from within Dyalog APL.

bad ws

This report is given when an attempt is made to) CoPy or) PcoPY from a file that is
not a valid workspace file. Invalid files include workspaces that were created by a
version of Dyalog APL later than the version currently being used.

cannot create name

This report is given when an attempt is made to) SAVE a workspace with a name that
is either the name of an existing, non-workspace file, or the name of a workspace that
the user does not have permission to overwrite or create.

clear ws

This message is displayed when the system command) CLE AR is issued.

Example

JCLEAR
clear ws

copy incomplete

This report is given when an attempted) COPY or) PCOPY fails to complete. Reasons
include:

o Failure to identify the incoming file as a workspace.

e Not enough active workspace to accommodate the copy.

500 Dyalog APL/W Language Reference

DEADLOCK 1008

If two threads succeed in acquiring a hold of two different tokens, and then each asks to
hold the other token, they will both stop and wait for the other to release its token. The
interpreter detects such cases and issues an error (1008) DEADLOCK.

This condition can also occur if calls to OTSYNC cause a cyclic dependency.

defn error

This report is given when either:

e The system editor is invoked in order to edit a function that does not exist, or the
named function is pendent or locked, or the given name is an object other than a
function.

e The system editor is invoked to define a new function whose name is already
active.

o The header line of a function is replaced or edited in definition mode with a line
whose syntax is incompatible with that of a header line. The original header line is
re-displayed by the system editor with the cursor placed at the end of the line.
Back-spacing to the beginning of the line followed by line-feed restores the original
header line.

Examples

X<1
vX
defn error

vFoolo[]
(o] R<FO00
(o] R<F00:X
defn error
(o] R«F00:X

JLOCK'FO00'
vFoo([0]
defn error

Chapter 7 Error Messages 501

DOMAIN ERROR 11

This report is given when either:

e Anargument of a function is not of the correct type or its numeric value is outside
the range of permitted values or its character value does not constitute valid
name(s) in the context.

¢ Anarray operand of an operator is not an array, or it is not of the correct type, or its
numeric value is outside the range of permitted values. A function operand of an
operator is not one of a prescribed set of functions.

e A value assigned to a system variable is not of the correct type, or its numeric value
is outside the range of permitted values

e The result produced by a function includes numeric elements which cannot be fully
represented.

Examples

1+0
DOMAIN ERROR
1+0

A

(xo'CAT'")2 4 6
DOMAIN ERROR
(xo'CAT'")2 4 6

A

0I0<«5
DOMAIN ERROR
0I0<«5

A

EOF INTERRUPT 1005

This report is given on encountering the end-of-file when reading input from a file.
This condition could occur when an input to APL is from a file.

502 Dyalog APL/W Language Reference

EXCEPTION 90

This report is given when a Micorosft .Net object throws an exception. Details are
available in DEXCEPTION.

FIELD CONTENTS RANK ERROR 52

This report is given if a field content of rank greater than 2 is assigned to OS¥.

FIELD CONTENTS TOO MANY COLUMNS 53

This report is given if the content of a numeric or date field assigned to 0S¥ has more
than one column.

FIELD POSITION ERROR 54

This report is given if the location of the field assigned to 0S¥ is outside the screen.

FIELD CONTENTS/TYPE MISMATCH 56

This report is given if the field contents assigned to 0.5¥ does not conform with the
given field type eg. character content with numeric type.

FIELD TYPE/BEHAVIOUR UNRECOGNISED 57

This report is given if the field type or behaviour code assigned to 0S¥ is invalid.

Chapter 7 Error Messages 503

FIELD ATTRIBUTES RANK ERROR 58

This report is given if the current video attribute assigned to 0S¥ is non-scalar but its
rank does not match that of the field contents.

FIELD ATTRIBUTES LENGTH ERROR 59

This report is given if the current video attribute assigned to 0S¥ is non-scalar but its
dimensions do not match those of the field contents.

FULL-SCREEN ERROR 60

This report is given if the required full screen capabilities are not available to Osw.
This report is only generated in UNIX environments.

KEY CODE UNRECOGNISED 61
This report is given if a key code supplied to OSR or OPFKEY is not recognised as a
valid code.

KEY CODE RANK ERROR 62
This report is given if a key code supplied to SR or OPFKEY is not a scalar or a
vector.

KEY CODE TYPE ERROR 63

This report is given if a key code supplied to OSR or OPFKEY is humeric or nested; ie.
is not a valid key code.

504 Dyalog APL/W Language Reference

FORMAT FILE ACCESS ERROR 70
This report is given if the date format file to be used by 0S¥ does not exist or cannot be
accessed.

FORMAT FILE ERROR 71

This report is given if the date format file to be used by 0S¥ is ill-formed.

FILE ACCESS ERROR 19

This report is given when the user attempts to execute a file system function for which
the user is not authorised, or has supplied the wrong passnumber. It also occurs if the
file specified as the argument to OFERASE or OFRENAME is not exclusively tied.

Examples

"SALES' UOFSTIE 1

OFRDAC 1
0 4121 0
0 4137 99

X UOFREPLACE 1
FILE ACCESS ERROR
X OFREPLACE 1

A

"SALES' UFERASE 1
FILE ACCESS ERROR
"SALES' UFERASE 1

A

Chapter 7 Error Messages 505

FILE ACCESS ERROR - CONVERTING FILE 35

When a new version of Dyalog APL is used, it may be that improvements to the
component file system demand that the internal structure of component files must alter.
This alteration is performed by the interpreter on the first occasion that the file is
accessed. If the operating system file permissions deny the ability to perform such a
restructure, this report is given.

FILE COMPONENT DAMAGED 38

This report is given if an attempt is made to access a component that is not a valid APL
object. This will rarely occur, but may happen as a result of a previous computer
system failure. Components files may be checked using gfsck. (See User Guide.)

FILE DAMAGED 23

This report is given if a component file becomes damaged. This rarely occurs but may
result from a computer system failure. Components files may be checked using
qgfsck. (See User Guide.)

FILE FULL 21

This report is given if the file operation would cause the file to exceed its file size limit.

FILE INDEX ERROR 20

This report is given when an attempt is made to reference a non-existent component.

506 Dyalog APL/W Language Reference

Example

OFSIZE 1
1 21 16578 4294967295

OFREAD 1 34
FILE INDEX ERROR

OFREAD 1 34

A

OFDROP 1 50
FILE INDEX ERROR

OFDROP 1 50

A

FILE NAME ERROR 22

This report is given if:
e the user attempts to JFCREATE using the name of an existing file.

e the user attempts to JFTIE or JFSTIE anon-existent file, or a file that is not a
component file.

o the user attempts to JFERASE a component file with a name other than the EXACT
name that was used when the file was tied.

FILE NAME QUOTA USED UP 32

This report is given when the user attempts to execute a file system command that
would result in the User's File Name Quota (see User Guide) being exceeded.

This can occur with JFCREATE, OFTIE, OFSTIE or JFRENAME .

Chapter 7 Error Messages 507

FILE SYSTEM ERROR 26

This report is given if the File System Control Block (FSCB) is removed or altered
while files are tied.

Contact the System Administrator. If this occurs when a file is share-tied, the file may
be damaged. It is therefore advisable to check the integrity of all such files using
gfsck.

See User Guide for details.

FILE SYSTEM NO SPACE 34

This report is given if the user attempts a file operation that cannot be completed
because there is insufficient disk space.

FILE SYSTEM NOT AVAILABLE 28

This report is given if the File System Control Block (FSCB) is missing or inaccessible.
See User Guide for details.

FILE SYSTEM TIES USED UP 30

This report is given if the File System Control Block (FSCB) is full. See User Guide
for details.

Dyalog APL/W Language Reference

FILE TIE FRROR

18

This report is given when the argument to a file system function contains a file tie

number used as if it were tied when it is not or as if it were available when it is already
tied. It also occurs if the argument to OFH0 LD contains the names of non-existent

external variables.

Examples

OFNAMES ,OFNUMS
SALES 1
COSTS 2
PROFIT 3

X OFAPPEND 4
FILE TIE ERROR

X UOFAPPEND 4

A

"NEWSALES' OFCREATE 2
FILE TIE ERROR

'"NEWSALES' OFCREATE 2

A

"EXTVFILE' [XT'BIGMAT'
OFHOLD 'BIGMAT'
FILE TIE ERROR
OFHOLD 'BIGMAT'
AN

OFHOLDc'BIGMAT'

FILE TIED

24

This report is given if the user attempts to tie a file that is exclusively tied by another

task, or attempts to exclusively tie a file that is already share-tied by another task.

FILE TIED REMOTELY

25

This report is given if the user attempts to tie a file that is exclusively tied by another
task, or attempts to exclusively tie a file that is already share-tied by another task; and

that task is running on other than the user's processor.

Chapter 7 Error Messages 509

FILE TIF QUOTA USED UP 31

This report is given if an attempt is made to OFTIE, OFSTIE or OFCREATE afile
when the user already has the maximum number of files tied. (See File Tie Quota,
User Guide)

FORMAT

ERROR 7

This report is given when the format specification in the left argument of system
function OFMT is ill-formed.

Example

"A1,1X,I5'0FMT CODE NUMBER
FORMAT ERROR

"A1,1X,I5'0FMT CODE NUMBER

A

(The correct specification should be "41,x1,15")

HOLD ERROR 12

This report is given when an attempt is made to save a workspace using the system
function 0SAVE if any external arrays or component files are currently held (as a result
of a prior use of the system function OFH0LD).

Example

VHOLDASAVE
[1] OFHOLD 1
[2] OSAVE 'TEST!

v

'"FILE' OFSTIE 1

HOLDASAVE
HOLD ERROR
HOLDASAVE([2] OSAVE'TEST'

A

510 Dyalog APL/W Language Reference

Incorrect command

This report is given when an unrecognised system command is entered.

Example

JCLERA
incorrect command

INDEX ERROR 3

This report is given when either:

e The value of an index, whilst being within comparison tolerance of an integer, is
outside the range of values defined by the index vector along an axis of the array
being indexed. The permitted range is dependent on the value of 010.

o The value specified for an axis, whilst being within comparison tolerance of an
integer for a derived function requiring an integer axis value or a non-integer for a
derived function requiring a non-integer, is outside the range of values compatible
with the rank(s) of the array argument(s) of the derived function. Axis is dependent
on the value of 010.

Examples
A

Al1;4]
INDEX ERROR
Al1;4]

A

+ [2]1"ABC' 'DEF'
INDEX ERROR
+ [2]'ABC' 'DEF'

A

Insufficient resources

This report only occurs in Version 7 and is generated by)CoPY or) LOAD. It occurs
when the operating system runs out of GUI memory while attempting to recreate GUI

Chapter 7 Error Messages 511

objects which have been saved in the workspace. Close some applications and try
again.

512 Dyalog APL/W Language Reference

INTERRUPT 1003

This report is given when execution is suspended by entering a hard interrupt. A hard
interrupt causes execution to suspend as soon as possible without leaving the
environment in a damaged state.

Example

11 2 §(2 100p1200)°.]71000p200
(Hard interrupt)
INTERRUPT
11 2 8%(2 100p1200)0.[71000p200
A

is name

This report is given in response to the system command)w.S 1D when used without a
parameter. name is the name of the active workspace including directory references
given when loaded or named. If the workspace has not been named, the system reports
iSCLEAR WS.

Example

YWSID
Is WS/UTILITY

LENGTH

ERROR 5

This report is given when the shape of the arguments of a function do not conform, but
the ranks do conform.

Example

2 3+4 5 6
LENGTH ERROR

2 3+4 5 6

A

Chapter 7 Error Messages 513

LIMIT ERROR 10

This report is given when a system limit is exceeded. System limits are installation
dependent.

Example

(16p1)p1

LIMIT ERROR
(16p1)p1
A

NONCE ERROR 16

This report is given when a system function or piece of syntax is not currently
implemented but is reserved for future use.

NO PIPES 72

This message applies to the UNIX environment ONLY.

This message is given when the limit on the number of pipes communicating between
tasks is exceeded. An installation-set quota is assigned for each task. An associated
task may require more than one pipe. The message occurs on attempting to exceed the
account's quota when either:

e An APL session is started

e A non-APL task is started by the system function 0sH

e An external variable is used.

It is necessary to release pipes by terminating sufficient tasks before proceeding with

the required activity. In practice, the error is most likely to occur when using the
system function 0SH.

514 Dyalog APL/W Language Reference

Examples

'via' [OSH 'via'
NO PIPES

'via' [OSH 'via'

A

"EXT/ARRAY' 0OXT
NO PIPES
"EXT/ARRAY' 0OXT

A

'"EXVAR'

'"EXVAR'

name is not a ws

This report is given when the name specified as the parameter of the system commands
)LOAD, YCOPY or) PCOPY is a reference to an existing file or directory that is not

identified as a workspace.

This will also occur if an attempt is made to) L0 AD a workspace that was) SAVE’d

using a later version of Dyalog APL.

Example

YLOAD EXT\ARRAY
EXT\ARRAY is not a ws

Name already exists

This report is given when an) NS command is issued with a name which is already in
use for a workspace object other than a namespace.

Namespace does not exist

This report is given when a) ¢S command is issued with a name which is not the name

of a global namespace.

Chapter 7 Error Messages 515

not copied name

This report is given for each object named or implied in the parameter list of the system
command) PcoPY which was not copied because of an existing global referent to that
name in the active workspace.

Example

YPCOPY WS/UTILITY A F0OO Z
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not copied Z

not found name

This report is given when either:

e An object named in the parameter list of the system command) ERASE is not
erased because it was not found or it is not eligible to be erased.

e An object named in the parameter list (or implied list) of names to be copied from a
saved workspace for the system commands) COPY or) PCOPY is not copied
because it was not found in the saved workspace.

Examples

YERASE (IO
not found [IO

YCOPY WS/UTILITY UND
WS/UTILITY saved Mon Nov 1 13:11:19 1993
not found UND

516

Dyalog APL/W Language Reference

not saved this ws 1is name

This report is given in the following situations:

e When the system command) SAVE is used without a name, and the workspace is
not named. In this case the system reports not saved this ws is CLEAR WS.

¢ When the system command) SAVE is used with a name, and that name is not the
current name of the workspace, but is the name of an existing file.

In neither case is the workspace renamed.

Examples

JCLEAR
)SAVE
not saved this ws 1is CLEAR WS

JWSID JOHND
)SAVE
JWSID ANDYS
)SAVE JOHND
not saved this ws 1is ANDYS

PROCESSOR TABLE FULL 76

This report can only occur in a UNIX environment.

This report is given when the limit on the number of processes (tasks) that the
computer system can support would be exceeded. The limit is installation dependent.
The report is given when an attempt is made to initiate a further process, occurring
when an APL session is started.

It is necessary to wait until active processes are completed before the required task may
proceed. If the condition should occur frequently, the solution is to increase the limit
on the number of processes for the computer system.

Chapter 7 Error Messages 517

Example

'prefect' 0OSH 'prefect'

PROCESSOR TABLE FULL
'prefect' 0OSH 'prefect'
A

RANK ERROR 4

This report is given when the rank of an argument or operand does not conform to the
requirements of the function or operator, or the ranks of the arguments of a function do
not conform.

Example

2 3 + 2 2p10 11 12 13
RANK ERROR

2 3 + 2 2p10 11 12 13
A

RESIZE

1007

This report is given when the user resizes the s window. It is only applicable to
Dyalog APL/X and Dyalog APL/W.

name saved date/time

This report is given when a workspace is saved, loaded or copied.

date/t ime is the date and time at which the workspace was most recently saved.

Examples
)LOAD WS/UTILITY
WS/UTILITY saved Fri Sep 11 10:34:35 1998

)COPY SPACES GEOFF JOHND VINCE
./SPACES saved Wed Sep 30 16:12:56 1998

518 Dyalog APL/W Language Reference

SYNTAX ERROR

This report is given when a line of characters does not constitute a meaningful
statement. This condition occurs when either:

An illegal symbol is found in an expression.

Brackets, parentheses or quotes in an expression are not matched.

Parentheses in an expression are not matched.

Quotes in an expression are not matched.

A value is assigned to a function, label, constant or system constant.

A strictly dyadic function (or derived function) is used monadically.

A monadic function (or derived function) is used dyadically.

A monadic or dyadic function (or derived function) is used without any arguments.
The operand of an operator is not an array when an array is required.

The operand of an operator is not a function (or derived function) when a function
is required.

The operand of an operator is a function (or derived function) with incorrect
valency.

A dyadic operator is used with only a single operand.

An operator is used without any operands.

Chapter 7 Error Messages 519

Examples

(A>10/4

SYNTAX ERROR
(A>10/4
A

T2 4 8

SYNTAX ERROR
T2 4 8
A

A.+1 2 3

SYNTAX ERROR
A.+1 2 3
A

Sys error number

This report is given when an internal error occurs in Dyalog APL.

Under UNIX it may be necessary to enter a hard interrupt to obtain the UNIX
command prompt, or even to kill your processes from another screen. Under DOS it
may be necessary to reboot your PC.

If this error occurs, please submit a fault report to your Dyalog APL distributor.

TIMEOUT 1006

This report is given when the time limit specified by the system variable ORT L is
exceeded while awaiting input through character input (1) or OSR.

It is usual for this error to be trapped.

Example

ORTL<+5 o [«'RESPOND WITHIN 5 SECONDS: ' o R<[]
RESPOND WITHIN 5 SECONDS:
TIMEOUT

ORTL«5 o [«'RESPOND WITHIN 5 SECONDS: ' o R<[l

A

520 Dyalog APL/W Language Reference

TRAP ERROR 8L

This report is given when a workspace full condition occurs whilst searching for a
definition set for the system variable 0T RAP after a trappable error has occurred. It
does not occur when an expression in a OT RAP definition is being executed.

too many names

This report is given by the function editor when the number of distinct names (other
than distinguished names beginning with the symbol 0) referenced in a defined
function exceeds the system limit of 4096.

VALUE ERROR 6

This report is given when either:
o There is no active definition for a name encountered in an expression.

o A function does not return a result in a context where a result is required.

Examples
)CLEAR
X
VALUE ERROR
X
A
v HELLO
(1] "HI THERE'
(2] v
2+HELLO
HI THERE

VALUE ERROR
2+HELLO
A

Chapter 7 Error Messages 521

warning duplicate label

This warning message is reported on closing definition mode when one or more labels
are duplicated in the body of the defined function. This does not prevent the definition
of the function in the active workspace. The value of a duplicated label is the lowest of
the line-numbers in which the labels occur.

warning duplicate name

This warning message is reported on closing definition mode when one or more names
are duplicated in the header line of the function. This may be perfectly valid.
Definition of the function in the active workspace is not prevented. The order in which
values are associated with names in the header line is described in Chapter 2.

warning pendent operation

This report is given on opening and closing definition mode when attempting to edit a
pendant function or operator.

Example
(0] vVF0O
(1] GO0
[2] v
(o] vG0O
(1] °
[2] v

Foo
SYNTAX ERROR
Goo[1] o

A

vVF0O
warning pendent operation
(o] VF00
(1] GO0
[2] v

warning pendent operation

522 Dyalog APL/W Language Reference

warning label name present in line 0

This warning message is reported on closing definition mode when one or more label
names also occur in the header line of the function. This does not prevent definition of

the function in the active workspace. The order in which values are associated with
names is described in Chapter 2.

warning unmatched brackets

This report is given after adding or editing a function line in definition mode when it is
found that there is not an opening bracket to match a closing bracket, or vice versa, in

an expression. This is a warning message only. The function line will be accepted
even though syntactically incorrect.

Example

[3] Al ;B[;21«0

warning unmatched brackets
(4]

warning unmatched parentheses

This report is given after adding or editing a function line in definition mode when it is
found that there is not an opening parenthesis to match a closing parenthesis, or vice
versa, in an expression. This is a warning message only. The function line will be
accepted even though syntactically incorrect.

Example

(4] X<(E>2)AE<10)#4
warning unmatched parentheses

(5]

Chapter 7 Error Messages 523

was name

This report is given when the system command)WSID is used with a parameter
specifying the name of a workspace. The message identifies the former name of the
workspace. If the workspace was not named, the given report iswas CLEAR WS.

Example

JWSID TEMP
was UTILITY

WS FULL 1

This report is given when there is insufficient workspace in which to perform an
operation. Workspace available is identified by the system constant Ow A.

The maximum workspace size allowed is defined by the environment variable MAXWS.
See User Guide for details.

Example

WA p 1.2
WS FULL
WA p 1.2

A

ws not

found

This report is given when a workspace named by the system commands) LOAD,
YyCOPY or) PCoPY does not exist as a file, or when the user does not have read access
authorisation for the file.

Examples
YLOAD NOWS

ws not found

YCOPY NOWS A FOO X
ws not found

524 Dyalog APL/W Language Reference

ws too large

This report is given when:

e the user attempts to) L0 AD a workspace that needs a greater work area than the
maximum that the user is currently permitted.

e the user attemptsto)coPy or) PcOoPY from a workspace that would require a

greater work area than the user is currently permitted if the workspace were to be
loaded.

The maximum work area permitted is set using the environment variable MAXWS.

Chapter 7 Error Messages 525

Operating System Error Messages

There follows a numerically sorted list of error messages emanating from a typical
operating system and reported through Dyalog APL.

FILF FRROR 1 Not owner 101

This report is given when an attempt is made to modify a file in a way which is
forbidden except to the owner or super-user, or in some instances only to a super-user.

FILE ERROR 2 No such file or directory 102

This report is given when a file (which should exist) does not exist, or when a directory
in a path name does not exist.

FILE ERROR 5 I/0 error 105

This report is given when a physical 1/0 error occurred whilst reading from or writing
to a device, indicating a hardware fault on the device being accessed.

FILF FRROR 6 No such device or address 106

This report is given when a device does not exist or the device is addressed beyond its
limits. Examples are a tape which has not been mounted or a tape which is being
accessed beyond the end of the tape.

FILE ERROR 13 Permission denied 113

This report is given when an attempt is made to access a file in a way forbidden to the
account.

526 Dyalog APL/W Language Reference

FILE ERROR 20 Not a directory 120

This report is given when the request assumes that a directory name is required but the
name specifies a file or is not a legal name.

FILE ERROR 21 Is a directory 121

This report is given when an attempt is made to write into a directory.

FILEF ERROR 23 File table overflow 123

This report is given when the system limit on the number of open files is full and a
request is made to open another file. It is necessary to wait until the number of open
files is reduced. If this error occurs frequently, the system limit should be increased.

FILE ERROR 24 Too many open files 124

This report is given when the task limit on the number of open files is exceeded. It
may occur when an APL session is started or when a shell command is issued to start
an external process through the system command OSH. It is necessary to reduce the
number of open files. It may be necessary to increase the limit on the number of open
files to overcome the problem.

FILE ERROR 26 Text file busy 126

This report is given when an attempt is made to write a file which is a load module
currently in use. This situation could occur on assigning a value to an external variable
whose associated external file name conflicts with an existing load module's name.

Chapter 7 Error Messages 527

FILE ERROR 27 File too large 127

This report is given when a write to a file would cause the system limit on file size to
be exceeded.

FILE ERROR 28 No space left on device 128

This report is given when a write to a file would exceed the capacity of the device
containing the file.

FILE ERROR 30 Read-only file system 130

This report is given when an attempt is made to write to a device which can only be
read from. This would occur with a write-protected tape.

529

CHAPTER 8

APL Character Sets

The mapping between the Dyalog APL/W atomic vector and the symbols displayed on
your screen or printer depends upon two factors. The first is the Output Translate
Table in use (normally WIN.DOT) which maps JAV to font positions. The second
factor is the location of the symbols in your font. Both are to a large extent user
configurable.

Dyalog APL/W provides two separate font layouts. The first includes traditional APL

underscored characters A-Z at the expense of certain (less commonly used) National
Language symbols. This mapping is shown in Figure 8(i). The JAV obtained using the

second font layout contains a richer set of National Language symbols but no
underscored characters and is shown in Figure 8(ii).
Three characters have no display but have the following effect when sent to a terminal:

0Aavi1+0r10] BS Back-Space by one character.

0Avi2+0I10] LF Line-Feed to next line with the cursor remaining in
the same column position.

0avi3+0r10] NL New Line, causing the cursor to be placed at the
beginning of the next line.

These characters are also contained in the system constant J7c. Other control
characters found early in the atomic vector include, for example,

0Av([9+010] HT Horizontal Tab character.

530 Dyalog APL/W Language Reference

Dyalog APL Atomic Vector

Standard Characters

nul| bs | 1f | cr | sp | ££ [(06)|pes |esc|tab| T |+ [o | 1 | o | w
_|lal|b|c|d]|el|f hli|j|lk|1l|m|n]|o
plglr|s|t|lul|lv|w]|x]|y]|z|°D0CD " 8
123 |u|s5|6|7|8[9|°r|¥|$]|L8]C¢
AN|lA|B|C|D|E|F|G|H|I|J|K|L|M|N|O
PlQ|R|S|T|U|V|W|X|Y]|Z]|O0C)Yy (7£)
A|lA|B|C|DI|E|E|G|E|L|J|K|L| M |N|O
PIQIR|S|TZT|U|VY|W|X|XY|Z|{|e|)Y]|~|DO
A|A|A|£|Z|E|N|O|@|U|s|lala|a]|a
dlae|lcleéel|lél|é|leée|i|1|i|al|ll|/|4]|\N]\N
<l s | =fz2]|>|z|v]|a|l-|+]|+]|x]|2]|e]|p]|~
p Yy v o x| T |JL]v]e](]e]2]n]u]L]T
Lls ||~V]|Ad|&|d]|e|e|H|!|F]|2]|*®
s|l=|lz|o6|6l6|a]| " | # |1 & Tlq] r
)= k4]t r| ! |e|lalalal|"|u K
elec|i|o|«|>]a|)| 2|0 |O0|0] %
Figure 8(i) : Dyalog Std 04V (with underscores)

Note that ASCII symbols ~ (caret) and | (pipe) are interpreted as APL functions A
(And) and | (Magnitude or Residue).

Chapter 8: APL Character Sets

531

There are currently 9 unused character positions. (xx) means that the unused 04v

character at this position is mapped to font position (hex) xx, and to this byte value for

ONAPPEND and ONREPLACE.

Alternative Characters

nul| bs | 1f | cr | sp | £f |(o6)|bellesc|tab| T |+ [o | 1 o
_|al|b|lc|d|e]|Tl hli|j|k|1l]|m o
plgq|r|s t ulv| iwl|x|y]|z (o1)[co2)] — e
1|23 |4 |5|6|7]|8]9|°]2]% ¢
ANA|A|B|C|DI|F|F|G|H|I|J|K|L|M 0
PIQ|R|S|T|U|V I IW]|X]|Y|Z|00]0O (7£)
A A|A|A|¢|E|E|E|T|T|T|1]|5D)
o|lv|uo|O|Y|B|a|i|d|o|d]|({|e]l> 0
A|A|A|E|=|E|N|0|p|U|s|a|3 4
alel|l¢clel|lélé|éli|1|1i|al|l]|/ |4 X
<|ls|=|z2]>]z2|Vv]|Aa|l-|+]|+]|x]2]c¢€ -
r)y v o x| T |L]|Vv]e|(]|c]|>|n]|uv T
Ll || (~|V]|Ad|[&|d]e|e|H]|! |7 7
sl=l=z]|6|6|6]|a]|"|#]|"8 1]
1= F] Tl]elulalal|" | T
celelilol<l>|nal)|1[DE |0 »

Figure 8(ii)

: Dyalog Alt 04v (without underscores)

532 Dyalog APL/W Language Reference

Dyalog APL Font Layout

Standard Characters

nul [(2b)|(2c)|(3a)|(5h)|(5c)|(06)| bel| bs |tab| 1If T fr cr _|_ ~

J 1 r L + — |> 4 1L T | esc| ! (d9)|(fa)
oL N I I I O - (R GO D I A IO AP (R I
of1|12 |3 |4 |5|6]|7]8]|29 H < | =1> ?
@Q|A|B|(C|D|E|F|G|H|I|J|K|L|M|N|O
PlQ|R|S|T|U |V IW|X|Y|Z|L|N[T|A]_
a|b|lc|d|el|f|lg|h|iI|j|k|lI|m|n]|o
plg|lr|s|t|lu|v iw|x|yl|lz|[{]|I]|Y]~["®D

gla|v|A|V|s || T |L|NX|#A]c|2]n]Uyu]|vV
ol s el e -|¥ 0|z alole|l=z|=|5]|"
olo | o[|e|e T o | e | e | # 1 p | w | ¢
A|A|B|C|4Ad|A|£|D|E|E|E|G|H|I|J|K
L|N|M|N|OQ|2P|O|*x|@|Q|R|S|U|L|U|®B
alalal|lv|dlala|l¢c|lel|é|é|é|W|I1I]|T]|1i
x|alrl|oé|s|z|s|s|o|lalalalal|ly|=]¥%

Figure 8(iii) : Dyalog Std Font Layout (with underscores)

Figure 8(iii) illustrates the Dyalog Std font layout which includes underscored
characters (4-2). Figure 8(iv) illustrates the Dyalog Alt layout which does not include
the underscored characters.

Chapter 8: APL Character Sets 533
Note: (xx) means that the unused 04V character at (hex) xx is mapped to this font
position, and that ONRE 4D of this character is mapped into AV [xx].
Alternative Characters
nul|(2b)|(2¢)|(3a)|(sB)|(se)|(06)| bel | bs |tab| 1f | T | £f |cr| L | °
RS R AR R i R
SC R I N T /A - L G D I A I IO /
0 1 2 3 4 5 6 7 8 9 s < = > ?
@Q|A|B|(C|D|E|F|G|H|I|J|K|L|M|N|O
PIQ|R|S|T|UO|V I IW|X|Y|[Z|L|N|D]]|Ar]_
a|b|lc|d|lel|f|g|h|i1|j|k|lI|m|n]|o
plglr|s|t|lul|lv|iw|x|y|lz|<]|I]|Y]|~]|®D
€A | T L] <]|~>|1% v | < > A~ |« (O|10|#| A
gla|lv|iAd|V|s|e| T |L|X]|#|c]|>2|n]vyv]vV
ol s le|&e|l-|¥ (0|1 alo|le|=z|=|5]|"
olo| ¢ | & |e|e | T o |le|lelz|v]|p]|w]|¢
A|A|A|Z |4 |4A|£&|¢C|E|E|E|E|T|T|T|T
D|N|O|O|O|O|O|x|@|Uu|U|TG|U|Y|DB|G&g
alalalalaldalelc|lele|él|lée|l|i]|]1]1
dla|lo|6|6|d|d|=+|g|lula|d|ul|ly]|=]F%

Figure 8(iv) : Dyalog Alt Font Layout (without underscores)

Note that the APL quote resides in the ASCII quote position, which means that when

reading text with embedded quotes from a plain ASCI| file, the quotes will be

converted by default (see ONXLATE) into APL quotes.

534 Dyalog APL/W Language Reference

Note also that most printer drivers have troube printing the characters to be found in the
first two rows of the above font tables because they are often used as control
characters.

Overstrike Combinations

You may enter certain composite characters by typing two symbols (in either order)
with an intervening left cursor movement. This applies only if the cursor is in replace
mode and does not apply if it is in insert mode. Permissible overstrike combinations
are listed in Figure 8(v).

A A 4 V_ ¢ o]

B B_

[C_ W W_ S) o-

D D_

E E_ X X _ ® o x

FF_

G G_ Yy r_ g 0O+

H H_

l I_ g Z_ 1 1

J I

K K A A ¥ To

L L_

M M I TL [} Lo

N N_

2 o + - R

P P_

Q@ 9 & 0~ = =

R R_

S S_ $ S| # z_

r TI_

u U_ £ L-] ar
z ~ A no
¢ < { [o
0 (] I Jo
£ -/ o AV

Chapter 8: APL Character Sets 535

\ -\ ° <>
“ v~ ¥ v~
A A~ -) -
\ lv € (-
A | a € e_
) o\

Figure 8(v) : Overstrike Combinations

537

Symbolic Index

F e See add/identity/plus
S ———————— See minus/negate/subtract
X v See multiply/signum/times
et ————— See divide/reciprocal
B o See matrix divide/matrix inverse
| See magnitude/residue
[See ceiling/maximum
L e See floor/minimum
K rvere s s See exponential/power
B cverer e See logarithm
€ e See less
> e See greater
S e See less or equal
2 See greater or equal
S e ———————————— See equal
Z eiierie e See not equal
S i —————— See depth/match
F s See not match
e ————— See excluding/not/without
A e See and/caret pointer
Ve See or
A e See nand
M et See nor
U oo See union/unique
N s See intersection
S v See enclose/partition/partitioned enclose
D i See disclose/mix/pick
7 See deal/roll
D See binomial/factorial
A See grade up
(/2SS See grade down
@ s See execute
B et e e See format
L ettt See decode
T e e See encode
O e See circular/pi times
® e See transpose
D e s See reverse/rotate
© v See reverse first/rotate first
s et ———— See catenate/laminate/ravel
e —————————— See catenate first
R See index generator/index of

YR See reshape/shape

€ s See enlist/membership/type
€ et See find
A e See disclose/mix/take/ancestry
¥ e ————————— See drop/split
ST TRV PRPRTN See assignment
e See abort/branch

......... See name separator/decimal point/inner

product
O ket See outer product
LI PP PR TPRRUPRTPI See compose
/s See compress/replicate/reduce
F e See replicate first/reduce first
N e —————— See expand/scan
N See expand first/scan first
s See each
s See commute
& e —————————— See spawn
B e See zilde
TP UO PR See negative sign
e ———— See underbar character
D et See delta character
T, See delta underbar character
L PP PROPROPRPR See quotes
L] e See indexing/axis
() e See parentheses
2 S See braces
O ettt s See left argument
L S See left operand
W reereetr e See right argument
W errerreesreeseeseeseesreenreeeeenee s See right operand
B e See Root object
BH e See parent object
O e See statement separator
B e See comment symbol
T e See function self/del editor
TV e See operator self
P See name separator/array separator
D s See label colon
$ANAIE i See and if condition
$CASE o See case qualifier
:Caselist .o See caselist qualifier
:Continue .oeeeenn. See continue branch
tE1S@ i See else qualifier

538 Symbolic Index

tEISeIf i See else-if condition
2ENd e See general end control
tENdFOL v See end-for control
tEndHold oo, See end-hold control
tEndIf e, See end-if control
:EndRepeat ... See end-repeat control
:EndSelect ... See end-select control
tENdTrap .o See end-trap control
tEndWhile .vvicinn, See end-while control
tEndWith v, See end-with control
tFOra.: TN, veeiiieiiineinn, See for statement
1GOTO vt See go-to branch
tHOLd v See hold statement
ST i See if statement
2 LEAVE v See leave branch
PR 0) o O RR See or-if condition
:Repeat ..criiinnnn, See repeat statement
tREEUIN e, See return branch
:SeleCt i, See select statement
(TEAD v siee s See trap statement
2UNEIL v See until condition
tWhIile s, See while statement
SWIER e See with statement
O e See quote-quad/character NO
O e See quad/evaluated NO
O4 o, See underscored alphabet
A o See alphabet
[See account information
OAN e See account name
OARBIN eovvviveiiiiienseinns See arbitrary input
OARBOUT coovvviiiiniienieeenn See arbitrary output
OAT oo See attributes
OAV e See atomic vector
OCLEAR oo, See clear workspace
gcup ... See execute DOS command/start AP
OCR e, See canonical representation
OCS et See change space
OCT i, See comparison tolerance
OCY e See copy workspace
82 OSSR See digits
ODIV oo, See division method
82 S See delay
ODM v See diagnostic message
ODQ v See dequeue events
ODR v See data representation

)2 See edit object

OEM oo See event message
OEN o See event number
OEX oo See expunge object
OEXCEPTION ovceveciieiiensieinanns See exception
OEXPORT ovceoveiieeeesienainnns See export object
OFAPPEND ... See file append component
OFAVAIL oo, See file available
OFCREATE o See file create
OFDROP .ccviiviinn, See file drop component
OFERASE coeveiieeceeeieeieeeeee e See file erase
OFHOLD ovoviiieiieece e See file hold
OFLIB oo See file library
OFMT oo See format
OFNAMES oovieieicie e See file names
OFNUMS oo See file numbers
OFRDAC ovveevrenn, See file read access matrix
OrrDcI ..See file read component information
OFREAD .ocoveeeceecrenne. See file read component
OFRENAME .cccovveeiiieeeeieeeen, See file rename
OFREPLACE See file replace component
OFRESIZE ccvoeeeiiieeeiieneecivieenn, See file resize
OFSIZE oo cieeeie e See file size
OFSTAC ovvivieiienen, See file set access matrix
OFSTIE oivciiiiiiiiieceecneee s See file share tie
OFTIE oo See file tie
OFUNTIE oo iieeeeeieee s See file untie
()20 G SRR See fix definition
OI0 oo See index origin
OKL oo See key label
OLC oo See line counter
OLOAD i See load workspace
OLOCK covoeeeeciieeeeciee e See lock definition
OLX o See latent expression
OMAP et See map file
OML i, See migration level
OMONITOR vevcieeeeeeieeeieesee e See monitor
ONA oo, See name associate
ONAPPEND cccevvirennne See native file append
ONC e See name class
ONCREATE ovviiveeieeennn, See native file create
ONERASE oo, See native file erase
ONL oo See name list
ONLOCK ooeeeeciiieeeeiiee e, See native file lock
ONNAMES .coovveeeaciieeen, See native file names
ONNUMS covveeeceeeecneen. See native file numbers
ONQ oo See enqueue event

Symbolic Index 539

ONR e See nested representation
ONREAD ovviiiieiieeiieesieens See native file read
ONRENAME .cooiviieinnns See native file rename
ONREPLACE .ccvevvenennnn. See native file replace
ONRESIZE ocvcvviiieiiinnn, See native file resize
ONS e See namespace
ONST e See namespace indicator
ONSIZE v, See native file size
ONTIE oo See native file tie
ONULL covvieeeeiie e See null item
ONUNTIE oveivieeiieeeireennnen See native file untie
ONXLATE ocvriviiieinnns See native file translate
OOFF e See sign off APL
OOR o See object representation
OPATH oo See search path
OPFKEY covvveiveenns See program function key
(2 See print precision
OPW oo e See print width
OREFS ooeeiiiiieeeiieee i See cross references
ORL oo See random link
ORTL oo See response time limit
OSAVE oo See save workspace
(1) 2 See screen dimensions
OSE toeeeeieeiecieeieinns See session namespace
OSH ... See execute shell command/start AP
OSHADOW ccvvviiiiieeeeciee e See shadow name
[See state indicator
OSIGNAL ovoeeciiceeieeiesieninaens See signal event
OSTIZE woeveiceieieceiieie e, See size of object
OSM e See screen map
[SR See screen read
OSTACK covveeeeiinennn, See state indicator stack
OSTATE oo See state of object
OSTOP oeveeeeeeeeeese e See stop control
OSVC oo, See shared variable control
OSVO oo, See shared variable offer
OSVQ o See shared variable query
OSVR covveeeeiieeecienn, See shared variable retract
[S See shared variable state
OTC oo See terminal control
OTCNUMS eeveveen, See thread child numbers
OTID oo, See thread identity
OTKILL oooiiieeecieee e See thread kill
OTNUMS oooviieecieeeeciieeeens See thread numbers
OTRACE oo See trace control

OTRAP oot See trap event

OTS o See time stamp
OTSYNC oo See threads synchronize
OUSING oo See using path
OVEI i, See verify and fix input
OVR e See vector representation
OWA oo See workspace available
OWC e See window create object
OWG e See window get property
OWN e See window child names
OWS o See window set property
OWSID vovreeennne. See workspace identification
[1]/20. QSRR See window expose hames
OXST oo See extended state indicator
OXT oo See external variable
YCLEAR oo, See clear workspace
YOMD it See command
YCONTINUE oveoeieiennninaeenns See continue off
YCOPY it See copy workspace
YCS e See change space
YDROP ooveceeceeseece e See drop workspace
YED oo See edit object
YERASE ioiiiiiieeenieee e, See erase object
YEVENTS oo See list events
YENS o See list functions
YJHOLDS oo See held tokens
YLIB oo seeeie s See workspace library
YLOAD ovvvvieeieece e, See load workspace
YMETHODS ooveeeeeseeenneeenes See list methods
INS e See namespace
YOBJECTS woveveeererenenienennneans See list objects
YOBS e See list objects
YOFF i See sign off APL
YOPS e See list operators
YPCOPY ovveieeeenesin e, See protected copy
YPROPS ovieiiiiiineeiene See list properties
YRESET ovcvvcveveienanns See reset state indicator
YSAVE i, See save workspace
YSH it See shell command
VST e See state indicator
YSINL wocvvcveieieieeneens See state indicator name
YTID oo See thread identity
YVARS oo See list variables
YWSID ooiiiiiieeieiieens See workspace identity
YXLOAD oo, See quiet-load workspace

540 Symbolic Index

541

Alphabetic Index

A
A Programming Language See APL
abort function ... 113
absolute value..........ccccoceveinienen See magnitude
access codes.......... 285, 286, 287, 288, 289, 291
account information...........ccccoevvneiicinnenn. 235
ACCOUNT NAMEeieieeiiiiecree e 236
add arithmetic function...........ccoceeveennnnn. 114
alphabetic charactersccocevvvivevvcrennenn, 235
alternative characters.........c.ccooevvviviicienene, 469
ambivalent functionscccceoeveicnenn, 15, 46
ANCESIONS ..ttt 351
and boolean functionccocooviicicnene, 114
and-if condition ..o 56
APL oo 1
ATAYS .o 4
character Setsccceevvveernnne See Chapter 8
Characters.......cooevevere e 245
component files ... 43
€ITON MESSAYES ... 439
EXPIESSIONS ..vvevvieiieciie e e cie e et 14
FUNCLIONS ..o 15
line editor........ccooveieiiiiieecce, 17,95
(0] 0] 21 (0] £ USSR UPRR 18
QUOTES ottt 6
STAEMENTS ..o 48
WOTKSPACES ...t 1
appending components to files.................... 269
appending to native filecccccoeninenn, 331
arbitrary iNPut........ccccooveiiinieee 236
arbitrary OULPULccovverviiricricccc 240
AFGUIMENTS ..vveeiiiie et 45
arguments of functionsccccevveeveenne, 15
array eXPreSSioNSocvecververesiesieeseesieeneeens 14
array Separatorccccvevveerirvesiinesienens 117, 164
AITAYS vveeieeetie e et e s see st e b e rbe e beesbe e e 4
depth Of oo, 4
dimensions ofccccceevveviveecicsene e, 191
display Ofcoooviici 10
ENCIOSEAccvviviiiecece e 6
INAEXING .o 163

MALETTX ottt e e e e e s 4

Multi-dimensional...........ccoceovveverneieiieennn, 4
of namespace references...........ccceevevvennnne 26
Prototypes ofcccccvereinenein e, 111
rank Of ..o 4,191
SCAlAr....cuiciveeiee e 4
ShaPE OF...ceeii e 4
TYPE OF o 5
UMK o 107
VECION ..o 4
ASSIGNMENTveceieiece e 115
distributed ..o, 28
FUNCLION.....oiiii s 17
INAEXEA .. 117
indexed modifiedccccceveieniiinineennnn 202
modified by functions...........ccccccoeneinen. 201
SEIECHIVE ..o 121
selective modified..........ccooervvviiininnnnnn, 203
SIMPIE (oo 115
atomiC VECTON ..ooveeivieciec e, 245, 467, 468
attributes of operationscc.ccecevevvevinnne. 241
auUto_PW Parameterccccvvviveeriveesneesneennns 353
auxiliary processorsS......cccevvveveerieeriesnens 43, 250
E (L0 01T 1 (o] S 112
with dyadic operands........c...cccceevveieennnne 205
with monadic operands...........ccccccevevveennene 204
axis specificationc.ccoocvvvrivivnnennnn, 112,200
B
DA WS 439
best fit approximation...........c.ccoceovvireienennn. 171
beta functioncccocvvevviv e 122
binomial functionc.cccceeiiiiiii, 122
body
of fUNCLION ..o, 16
of operatorcccccvevveveiie e 19, 45
Boolean functions
and (conjunction)........ccccveeevieesieeseesieene. 114
NANG ..o 174
10 PP 175
NOL. e 175
not-equal (exculsive disjunction).............. 176
or (inclusive disjunction)cc.cceeennen. 177
DraCeS....ccvveieicecece e 16

542 Alphabetic Index

bracket indexingcc.cccccevvrivinnnnns See indexing
branch arrow.........ccccoveveiienciiece e 76
branch function..........ccocovvviineiiinenieen, 123
branch statements
Pranch.......ccoeiii e 76
CONLINUE .. 77
GO0 it 76
JEAVE ..o 76
L1=] (0 RO 76
C
callback functions.........c.cccccevervrennnne. 262, 338
callback functions run as threads.................... 33
CaNNOt Create NAMEcccveveereveieeiee e 439
canonical representation of operations ... 45, 251
Caret POINTET.....cvevveeieeie e 259
case qualifier clausecccoeevieiieeveeiieenne. 66
case-list qualifiercccocovvvvvieiin i, 56
catenate functioncccoceveveiininiicncnnn 127
catenate-first function...........ccccooevereinnnnn 128
ceiling function..........cccccvevciiiniice, 129
changing NAmespacescccovervreenen. 253, 413
CharacCter arraysccoeoveereeeinieesineeseneens 6
character input/outpuL............cocevverenirienen, 231
Characters........ccoevveiecic e 6
Child NAMES......ccoiiiii 400
child threads ... 382
choose indexed assignmentc.cccceveee. 119
choose INdexXing........ccccevvvevieevecie e 165
circular funCtionsS.........ccocvevieinienc i 129
classification of namesccccoevvvrnnnne. 331
ClEAr WS 439
clearing WOrkspacescococeverireennen. 245, 408
€oloN CharaCterccocvvvveiveieree e 50
command operating Systemcc.ceeveenen. 408
COMMENTS ..eoeeiiiiiiieiee et 45, 48
COMMULE OPEIALON......evvivieiieeiiieeiee e siee e 208
comparison tolerance...........ocveveveevvesvennnnn, 255
component fileScccovevviiiiic i, 43
composition operator
FOrm Lo, 209
form Il .o 54,210
form .o 54,211
FOrmM IV . 211
COMPIess OPeration...........ccoceeveenns See replicate
COMPULE TIME ..o 235

conditional statements

if (CONdition)......cccovvvvveve e 57
UNEH e 62
WHIE s 60
conformability of argumentsc..ccccenee 111
CONJUNCEION ..veiieceee e See and
CONNECE LIME .. 235
continue branch statementsccccceveveenee. 77
continue off ..., 411
control qualifiers
(08 1P OP PR 66
CONtrol StrUCTUIESocvvevvee e 55
FOr 64
ROId.. .o 69
if (CONdition).......cccooeviveve e 57
FEPEAL....eei ittt 62
SEIECE .. 66
EFAP. ettt 73
WHIE e 60
WItN .o 68
control words.............cc..... See control structures
COPY INCOMPIELE ..o 439
copying from other workspaces............ 256, 411
CPU tIME e 303
creating component filesccccccoeeviennnnns 270
creating GUI Objects........ccevcvevvciiiievieniens 396
creating NameSPAaCESccvevveeververieans 342,421
creating native filescccovveviviciiieiieins 333
CroSS referenCescovveveriniricieecee e 354
curly bracketsccocevvvevvcivcieenn, See braces
current thread identityccccoecvvennnee. 382, 429
CUthaCK error trapcccoevvvereienineesienieeas 386
D
data representation
AYAIC .. 263
MONAIC ...veevecieciecteecre e 262
DEADLOCK ...t 440
deal random function...........c.ccoevvviiiicicne 130
decimal NUMDENSccoovviiiiiiie 5
decimal Point........cccoevieiiie i 5
decode fuNCLIONccoeveieiiiiiicccee e 130
defined functions..........ccccece e 45
defined operationsc.ccccuee. See Chapter 2
defined Operators.........ccoevevvenvinenciienns 45
defining function ..., 16
defining operators...........ccocevverenenncnennnn, 19
definition Modecccevevevvvvsr e, 95

Alphabetic Index 543

defn error ..o 440
del editOr......covviriiri e 95
delay times........ccocvvvircieeice e 259
delta charaCter.........ccocoveivvencienercc e 7
delta underbar charactercc.cocevvveneeiennn, 7
depth function.........ccccevvevevie i, 132
depth Of ArraysS......ccevereercee e 4
dequeuing eVeNtScoceovvrereirieecsieenes 260
derived functionsccocevevennnnne 18, 45, 199
AfNS .o See dynamic functions
diagnoStiC MESSAGESveveververreiirieeeeirieenes 259
diamond symbol See statement separators
digits 010 9.cvvevvecrcereec e 258
dimensions of arrays.........ccccceevvvvivevvcreenennn, 191
direction.......cccevevevevr s See signum
disclose function..........cccocoeeeneninenicieiee, 133
disSjunNCtionccoeeveviceceee e, See or
displaying arrays........cccccevvvevveieeiesnennnns 10, 13
displaying assigned functions.............cc.co...... 17
displaying held tokens............ccccccovniinennne. 417
distributed functions...........cccocovevviviiiierennne 29
divide arithmetic function.............cc.ccceeruenee. 134
division methods..........cocovvvievivninnieiicenen, 258
DOMAIN ERRORcccoveviiieiieneesieas 441
drop funCtionccccvevvevi i, 135
WIth @XES....oiviiiiiieiiece e 136
dropping components from files................... 271
dropping WOrKSPAaceScccevvervverveevesinnnenn, 414
dyadic funCtionsccceeveveiie v 15
dyadic Operations..........ccoceevvereineneniseneae 46
dyadiC OPeratorsc.coeverereineneisesiene 18
dyadic primitive functions
A . 114
AN .o 114
CALENALE ..o 127
catenate-firstcoceveveiineniceee e, 128
CIFCUIAN .. 129
deal ..o 130
deCOE. ..o 130
IVIAE .o 134
(o[(0] o TSRS 135
LT a (ot o[- 139
EXECULE ..ottt 143
EXPANG ..t 144
eXPand-first.......cocoovervinieieineeccee 145
fiN oo 146

grade doOWnccoevvvevereeee e 156
Grade UP .oveeeveecece e 160
(02T 1] SRRV OPPOTR 160
greater or equal.......cccceevevievenerenn s, 161
INAEX OF ... 163
INEEISECHION ...ovvevieiciec e 167
JESS ottt 167
lessorequal ..o 168
10garithm ..o 168
MALCH ..o 169
MatrixX diVide.......ccoooevviiiiieecee 170
MAXTMUM .. 172
Member Of ..., 172
MINTMUM Lo 172
NANG .o 174
40 TSSO UR PR PRSP 175
NOt €QUAL ..o 176
NOt MALCH ...eeiiiiic 176
OF ottt 177
PArtItiON ...oovoviiieierce e 178
partitioned enclose.........cccoceveriirenieenen, 180
PICK .ot 181
POWET ...t 182
FepPlicate ...ocovevee e 186
FESNAPE.... e eee e 187
FESIAUR ..o 188
FOLALE ...t 189
SUDEIACT ... 192
TAKE oo 193
TrANSPOSE ... 195
UNIQUE ..t 197
dyadic primitive operators
AXIS veveirirecreeeerie e 204, 205
COMPOSE...eveeereerireenireesiree e 209, 210, 211
iNNer Product.........c.cccvevvinennincnce 214
outer Product.........ccceevveveeiesiesee e 215
dyadic scalar functionscc.ccccevevvernnnnn. 106
Dyalog AIt TT font......cccooeveveeireecc, 471
Dyalog Std TT font.........ccccoeevvevvecrcie, 470
dynamic data exchange...........ccooceevveivernnennn. 377
dynamic functionsccceeeveeneecc e, 80
default left arguments..........ccccceevvevvveeenene, 82
EITON QUAITS. ..ot 87
QUATDS v 83
local assignment Ofcccoceveiiinennnen, 81
MUIEE-TNE oo 81,94
FECUISION oottt 90

544 Alphabetic Index

FESUIL OF .. 81

StatiC NAME SCOPE.....covevverirrrreeeeeie e e 84

tail callsoovveveiiie e 85, 90
dynamic link libraries........c..cccocovvieiennnnnn, 304
dynamic localisation..........ccccceevereiienininnnnns 21
dynamic NAmMe SCOPEccvvvvvereeeereerieriesiesinanens 84
dynamic Operatorsccccoeeveireennen. 80, 89, 90
E
each operator

with dyadic operands..........c.ccoceeererirenen 213

with monadic operands............c.ccoeeevrenen. 212
editing APL objects.......ccooevvineniicnen. 264, 414
editing direCtiVesccccevvvvvveieeiece e 98
BAITON .o 264
else qualifier ..., 56
else-if condition...........cocvveiiiiiniiiinee 56
EMPLY VECTOIS ..vevivieiiie i siee s 5,197
enclose function.........coceveiiiiiicic i 137

WIth @XES...cvveieeeierie e 138
encloSed arrayscccovevrereinineseens 6
enclosed elements.........c.ccoovvveiicieiene e 6
encode functionccccoevvivveiencnc e 139
end CONLIOL.......cveriiiiii e 56
end-for control..........ccocevvvieiiieienene e 56
end-hold control ... 56
end-if Control ... 56
end-repeat control............cccoevvieviniie e, 56
end-select coNtrolccocevveeiciiienciee 56
end-trap Controlcceevvevieviee e, 56
end-while control..........c.ccoooeeieieii i 56
end-with controlccocveviieiencie e 56
enlist fFunCtion ... 141
ENQUEUING @N BVENT.......ccoveieeriereerieceie e 337
EOF INTERRUPTccovveieiveee e 441
equal relational function...........ccccceveniiennen. 141
erasing component files..........cccocvvevviiennnnnn, 272
erasing native files..........cccoveviviiiiic e, 333
erasing objects from workspaces.......... 266, 415
EITOF QUANDSocvvevreieeicee e 87
EITOr MESSAPES ..evvvvvervreeririeirreenenas See Chapter 7
error trapping control structures...................... 73
error trapping system variable...................... 386
evaluated input/outputccoevvvererieienen, 233
evaluation of namespace references............... 21
EVENT MESSAGES ... nreens 265
EVENE NUMDELS ..o 265

EXCEPLION v 265, 442
excluding set functionccocoeeveieiciennnns 142
exclusively tying files.........cccccooveveiiiciennnns 291
EXECULE BITOr traP....ccvvvvereeerireesveesireeseeenineas 386
execute operation
AYadiC ..ooveerece 143
MONAAIC ..o 143
executing commands
DOS ...ttt 246, 408
UNDX i 357, 426
exiting APL SYStemcccccvevvncnennns 346, 422
expand OPErationc.ccoeverereeeneienenienas 144
WItHh @XIS cveveiieccie e 144
expand-first operation............cc.cccevevveieiennnns 145
exponential function...........cc.ccoeveeveiiiciennns 145
exporting objectSccccevvveveevici e, 268
€XPOSING ProPErtiesccevvvevveveervesvesieninens 402
EXPIESSIONS ..ovvvevreieeie e ee et sre e 48
array eXpPresSioNnSocueoeerereenenieeseneane 14
function expressions..........ccoevvveveivicniennas 14
expunging objects........ccocoovvriiiiiiiiie 266
extended state indicator............ccocvevererienene 403
eXternal arrayscoovevereiieneiieeneese e 404
external fuNCLioNScccovcevvvvcicicnns 43, 250
external variables...........cccoovvniiiniiicncnenn, 42
GUETY ettt ettt sttt 406
SBL et 404
F
factorial function ..., 145
FIELD ATTRIBUTES LENGTH ERROR ..443
FIELD ATTRIBUTES RANK ERROR....... 443
FIELD CONTENTS RANK ERROR 442
FIELD CONTENTS TOO MANY COLUMNS
.. 442
FIELD CONTENTS/TYPE MISMATCH ...442
FIELD POSITION ERRORcccccovevriennnn. 442
FIELD TYPE/BEHAVIOUR
UNRECOGNISED.......ccocvrvriiririiieinn 442
file
append COMPONENE........ccovvveveerreeresienieens 269
available ..., 269
CrEALE ..o 270
drop COMPONENt.......ccevverieirereeesee 271
BIASE. .ei ittt ettt 272
ROId....coececc e 272

Alphabetic Index 545

NAMES ...ttt 283
NUMDETS 1. 284
read access MatriX......coovereeriervererenenans 284
read COMPONENtccvevvereeverereeeeee e 285
read component information.................... 285
FENAIME ... 286
replace COMpoNeNt..........ccoeevrereirenennns 287
FESIZE..uiiitiiete e 288
Set ACCESS MALFIX ..vvevveeeeirieeiieieeeie e 289
Share-tieccoveevevicie e 290
SIZB it e 288
tie (NUMDEN) wovieicii e 291
UNEIE et 292
FILE ACCESS ERROR........ccoeovvirieiriennn 444
FILE ACCESS ERROR - CONVERTING
FILE oo 445
FILE COMPONENT DAMAGED 445
FILE DAMAGEDcccoceiviiieiiieieeses 445
FILE FULL oo 445
FILE INDEX ERROR........cccceivveviiiiiieiies 445
FILE NAME ERRORcccceiiiveiiiieciee, 446
FILE NAME QUOTA USED UP 446
file system availability..........cccooovvininenn 269
file system control blockccccoeeini 447
FILE SYSTEM ERROR........ccccovveriairiennn. 447
FILE SYSTEM NO SPACE..........cccccvruennn. 447
FILE SYSTEM NOT AVAILABLE............ 447
FILE SYSTEM TIES USED UP.................. 447
FILE TIE ERRORcccooieiieieeceee e 448
FILE TIE QUOTAUSED UP.........ceeueee 449
FILETIED wvvveeeeeeeeee e 448
FILE TIED REMOTELYcoovevveiiiieiiens 448
files
APL component files.........ccccovvninennnn, 270
MAPPE ... 298
operating system native files 333
fill elements ..o, 111
find fUNCLION ..o, 146
First funCLionccoeveiiiii e, 147
fixing operation definitionsc.ccccce..e. 293
floor fuNCtioncocoveiiiiii e, 147
for Statementsc.covveveeiee e 64
FORMAT ERROR.......cccoierviiecec e, 449
FORMAT FILE ACCESS ERROR.............. 444
FORMAT FILE ERROR........c..cccoeiviieiiene 444
format function
AYadiC ..o 152

MONAAIC ... 147
format specification..........c.cccceceveevivivincnnnne, 276
format system function

AffIXIUrES. ..o, 278

digit Selectors.......ccvvviveveieiece e 281

G-TOrmat......cooveveiiiicee e 281

O-format qualifier.........cccccoveneiininnene, 282

QUANTIENS ..., 277

teXt INSEItIONovvvveieciee e 276
formatting system function

AYAAIC v 276

MONAAIC ...cveeeieieee e 275
FULL-SCREEN ERRORccocevvrinierinnn. 443
function assignment..........cccccevevveieennnne. 17,116
function body........ccccvvvvveieiec e, 16
function displayccccovevvevviciieeee 17
function headerccooeeoeiiiiiiiie, 16
fUNCION KEYS ..vvvece e 352
function self-reference.........cccccoevvvivivinnnnne, 90
FUNCLIONS ..., 15

ambivalentccccoeeeeiiiie i, 15, 46

arguments Of ..o 15

defined ... 45

derived... ..o 45

distributed.........ccoooiiiiiii 29

AYAIC v 15

AYNAMIC ...veceieccceeceee e 80

EXEEINAL ..ot 43

leftargument.........ccccooeveieeie e, 15

MIXEd raNKcveieerreireee e 108

model syntax ofcccovveviiiiniiieee, 46

MONAAIC ..o 15

NHAAIC ..o 15

PEIVASIVE ...t 105

PriMItiVe ..o See Chapter 3

rank Zerocccoceveeeeeene See scalar functions

rightargument ..o, 15

scalar rank........coccoeveeininieiee 105

SCOPE OF v 15
G
gamma fuNCtionccoceeevveeieiencnc e 145
generating random NUMDETSccccoevernen. 355
getting properties of GUI objects 399
global NAMES........ccviriiri e, 49
goto branch statementscccccevcvrevvvrnnnnnn, 76

grade-down function

546 Alphabetic Index

AYadiC .oovviereecce e 156

MONAAIC ..vvveieiicie e 154
grade-up function

AYadiC ..ovevcicce e 160

MONAAIC ..vvveieiicie e 159
greater-or-equal function.............ccccoccevvvnenn 161
greater-than relational function 160
QUATTS .. 83
GUI ODJECES .. 260
H
hash tables ... 54
header

Of FUNCLION ... 16

Of Operatorcccccvvvvveveeci e 19, 45
header liNeS.........ccoveviiiniiice 49
held tOKENScoveiiie e, 417
high minus symbolccccocoveiiiiiiiccee e, 5
HOLD ERRORccooviiriiiiininsc s 449
hold statements.........cccocvvveiiieiencse e 69
holding component files.........c.ccccooereirinnen. 272
home NamesPaceoccoeveveenense e, 31
hyperbolic functions......... See circular functions
I
identification of workspaces............cccccccouene. 430
identity elementsccceevvievin e, 216
identity functioncccoooviiin i, 161
identity MatriXccccevvevveievieie e, 171
idiom recognitioncccceeveeve e 51
if Statementsccoevveiiiii 57
in control wordcccc.... See for statements
incorrect command...........ccoceeeveeerennienennne 450
INDEX ERROR.......coviveiviecec e, 450
INAEX OFIQIN .o 294
indexed assigNMEeNtccovereiviireeicnienn, 117
indexed modified assignment....................... 202
index-generator functioncccccceceveenenen. 162
INEXING ArTaYSccvevveieeece e 163
index-of fUNCtioNcoovveiiiiniic e, 163
ineach control word............... See for statements
inner-product operator..........c.cccoevereieneene. 214
insufficient reSOUrCeS.........cocvveerieereieniene. 450
iNteger NUMDEIScocovieeereee e 5
INTERRUPT ... 451
intersection set functionc..ccocceevvvrnnne. 167

[[0] - VO See index generator
K
KEY CODE RANK ERRORcccccevrveninn. 443
KEY CODE TYPE ERROR..........ccccecvruennnn. 443
KEY CODE UNRECOGNISED................... 443
key labels........cccveveiciiiec e 294
Keying time.......coveveiineneeeee e 235
Kill threads.......c.ccooeeveieneniiecceee e 383
L
1abels ..o, 48, 49, 124
laminate function...........ccoceevviiinieiiieee, 127
lamp symbol ..., See comments
latent eXpressionsccccevcvevieeieeveesie e 298
least squares SOIULION..........cccccvevvevvevecne, 171
leave branch statements...........c.cccceeeienennenn 76
left argument of function...........c.cccceevevenne 15
left operand of operators.........cccccveevvvivevveninnns 18
legal NAMES.......cccvviiiece e 7,396
LENGTH ERROR.........cccoiiiiieee e 451
less-or-equal functionc.cccvveveiicnennn 168
less-than relational function 167
levels of migration towards APL2.................. 43
levels of SUSPENSION........cooevirerciiecc e 78
libraries of component files.........c.ccccocevenen. 274
LIMIT ERROR ..ot 452
line editorccooveviiiiiice 95, 98
editing direCtivesScccceevveiieiee e 98
line NUMDErS ..o 99
line editor, traditionalcccceviieiinennnn 17
line 1abelsocooii 48
line number counter..........ccocveveeieieieienn, 295
line NUMDErSooieeee 99
list names iNa classccocvvvvvevereeneievienen, 334
listing global defined functions.................... 416
listing global defined operators.................... 422
listing global namespaces...........ccccevevvvennenne. 422
listing global objects...........ccccovviveviiiien, 422
listing global variables............ccccccovvevvennne. 430
listing GUI events..........ccooeviviiinieeneicnen, 416
listing GUI methodscccooeeiiieiiienen, 420
listing GUI properties........c.ccooveeeveereneneennn. 424
listing workspace libraries..........cc.ccccoeeruenen. 418
literalS......coovvveeeeece e, See characters

loading WOrkspacesc..cceeververernnunns 296, 419

Alphabetic Index 547

without latent expressionsccccceeeveene 431
local NAMES.......oovvireireee e 21,45, 49
localisationccccovevvieiciiiiciecc s 49, 359
lock native file.......ccocoovvineiiinciec 334
locking defined operations 78, 296
logarithm functionccccoev e 168
logical conjunctionccceeeveiincricnne See and
logical disjunctionccceevveiviienne, See or
logical equivalence..........cc.ccooveeerenens See match
logical negationccccocevvverciinciennns See not
logical operations See Boolean functions
10giN NAME ..o 236
M
magic NUMDErSccceveererenne. See passnumbers
magnitude function...........ccccceevvieiiieiiennns 168
MANTISSAL ...t e 5
mapped files ..., 298
match relational function.............ccccceeeienee 169
MALTICES ovevveeecie et 4
matrix productccoeueene. See inner product
matrix-divide function...........cc.ccocveveieinnnne 170
matrix-inverse functionccoccoveiiiennne 171
maximum functionccocceevveviiniiicnenne 172
membership set function...........cccoevvirenne 172
migration levels..... 43, 132, 133, 141, 173, 196,

300
Minimum fuNCHioN ... 172
minus arithmetic function............ccccceeenie 172
miscellaneous primitive functions................ 108
MIX FUNCLION ..ovve e 173

WIth @XIS .oveevecieece e 173
mixed rank functions..........ccoccoeveevvieienennnns 108
modified assignment.........ccccoeviniiiciens 201
monadic fuNCtionscccccovevvevirnieercenee, 15
MOoNadic OPerationsS..........occevvervvererincrennns 46
MoNadiC OPEratorscccovevveeveevieesieesie e 18
monadic primitive functions

Pranch ..., 123

CeIlING oo, 129

depth .o, 132

diSCIOSE ...veeieecece e, 133

ENCIOSE . .ovvvie e 137

<101 1] S 141

EXECULE ..ottt s 143

eXponentialccoveveiiiiieiine 145

FaCtorial.....cveeeiieee e 145

FlOOK o 147
fOrmat ..o 147
grade dowWnccccveveveieiecece e 154
Grade UP .oveeeveeciese e 159
HHENEILY o 161
INAEX GENEIAtOrccvevvvveeeeeeeie e 162
MAGNITUAE ..o 168
MALFiIX INVEISE ..o 171
MIEX vt eite et re e 173
natural logarithmcccocoveiiniincnn, 174
NEJALIVE ..ot 175
10 PP PP 175
PiTIMES .o 180
FAVEL .. 183
L=ToT o] (0 Tor: | S 186
TEVEISE vttt et 188
FOIl o 189
SNAPE ..t 191
SIGNUM coieee e 191
SPIIE e 192
TrANSPOSE....covviiiei e 195
TYPE oo 196
UNTON ettt 197
monadic primitive operators
assignment.........cceeveevenvennnnn, 201, 202, 203
COMMUIE ..o 208
BACN. ... 212,213
FEAUCE ...ovvieeeieieee e 216, 217, 218
SCAN ...ttt 219, 220
SPAWN ... 221
monadic scalar functionsccoceeevennnn 106
monitoring operation statistics
QUETY e 303
SBL e 302
MPUT ULHHEY ..o, 298
multi-dimensional arrays..........ccccccevevevieeieenns 4
multiply arithmetic function.......................... 174
multithreadingccoccvevviviiieicceecees 32,37
(0 [=] o0 o fo g To OSSR 35
external functions ..o 41
SPAWIN ...ttt 221
N
name already eXists.........ccocevveerernereienennes 453
NaMme assOCIatioN........cocvvvevereeriere e seeseeneas 304
name classifications.........cc.ccovvvverevivnivnnennns 331
NAME IS NOL A WS ...ovvevereerecieeieiee e e 453

548 Alphabetic Index

name lists by classification...............cc.cc....... 334
name references in operations..............c........ 354
name saved date/timeccocovervreneninennnn, 456
NAME SCOPE FUIES ...c.vevvviecercecee e 35
NAME SEPANALONeevvvveverie e 45
names
global....c.ociii 49
legal ..o 7, 396
local....ooveiei 21,45, 49
names of tied component files...................... 283
names of tied native files...........cccocevrennnn 336
namespace does NOt eXiStc.cccvvereiriennen. 453
namespace indicatorccoeevevererenennnn 343

namespace reference ... 4, 22, 31, 116, 253, 260,
399, 401

namespace reference assignment.................. 116
NAMESPACESeeiviiiieeerreesieesreessieesreessieesreeans 2
array eXPanSioNcccceveereereesieeseeseeseeenns 26
CrEALE ..ot 421
distributed assignment............ccccoeeeerirnnnn. 28
distributed functions...........ccccccoevevvirninnn. 29
OPEIALONS ..ot 31
reference SYNtaX.......ccoveevvvrencniencinienns 20
search path.........cccocevv i 350
UNNAMEM ... 24,342
nand boolean functionccccceveniiennne. 174
Naperian logarithm function 174
NAtCh ...ocovvvicccee, See not-match function
national language characters 7,235, 467
native file
APPEND .o 331
CrEALE ..ot 333
BIASE. c.eeeiiie sttt 333
10CK .o 334
NAMES.eieiiieeiee sttt 336
NUMDEIS .. 336
FEAL ...viieieieeiee e 340
TENAIME ...ttt 341
FEPIACE ..o 341
FESIZE oot 341
SIZE i 343
tie (NUMDEN) c.eovii e 344
translatecveveeeeee e 346
UNEIE vttt 346
natural logarithm function.............cccceceeennen. 174
NEJALE ..o See negative function
negative functionccoceveveiiiinininne, 175

Negative NUMDENS.......coovvrererrre e 5
Negative Sign......ccccceveverernnnnnn, See high minus
nested arrays.......ccoeevereeennnn See enclosed arrays
nested representation of operations 339
NEXL EITON TraAP ..evvvvieiiee st 386
niladic fUNCLIONSccoveviviiiire e 15
niladic OPerationsccoceovvvererniieincnenns 46
niladic primitive functions
ADOM...e 113
ZIAB e 197
NO PIPES.....ccoviiiiieei e 452
NONCE ERROR.......ccoceiiiiiiceseee e 452
nor boolean function...........cc.coevvvencicienn, 175
not boolean function.........c.ccocevevvrenccienn, 175
not copied NAMEc.ccevvvevecrceee e 454
NOt fouNd NAME........ccoeviiriiieeec 454
not saved this ws is nameccccceevennn 455
notation
KEYS ot 44
VECTON .ttt 8
not-equal relational functioncc.......... 176
not-match relational function 176
NUIL e 345
number of each threadcccooveieiiiennn 383
NUMDEIS ..ottt 5
decimals........cooiviiiiii 5
EMPLY VECLOIS ...vvvivieiieeviiienrec i 5,197
1] 70T £ 5
MANTISSAL ...t e 5
NEJALIVE .o 5
numbers of tied component files 284
numbers of tied native files..........cccccooenee.. 336
NUMETIC ITAYS ..veveevireeieeirieeeie e 5
0
object representation of operations............... 347
OPEIaNdSeevvvevrieieecieeie e 18, 45, 199
operating system error messages.................. 464
operations
MOdel SYNtaXcccoevvveievieiieceece e, 46
PENAENT ...c.veeieee e 78
SUSPENAED ... 78
Valence Of ... 46
operator self-reference..........cccovvvvvnviennnn, 90
OPEIALOIS ...t 18
DOAY ..o 19

Alphabetic Index 549

dyadiC ...ocvireiece 18, 199
dynamiccccevvveie i 80, 89, 90
headerccovveiiice e 19
IN NAMESPACES ... eeevverrereerreriesieereeeeeeeeseenes 31
model syntax ofcccccviviviviircciee 46
MONAAIC ...cvevveieeie e 18, 199
OPEIANGS ...t 18
SCOPE OF v 18
SYNEAX .t 199
or boolean function...........ccccoceviiivicinnenn, 177
or-if condition.........cccoevvvveiiiinii 56
outer-product Operator...........occvvervevrienne 215
overstrike combinations...........c.ccocevveirenne 472
P
parent ObJECTc.ccveeeece e 20
PAreNthESESecvvvviiecee e 408
partition functionccccccevev e, 178
partitioned enclose functionc.cccoev... 180
WIth @XIS ..veeieiieece e 180
passnumbers of files ... 285
pass-through Valuesccccoeviineinciennns 201
pendent Operations..........ccoccvveeeeneneecnienenns 78
pervasive fUNCLions..........cccocevvviineincienens 105
PICK FUNCLION......coviiiiic e 181
pi-times fuNCtion.........ccccovevevv e 180
plus arithmetic function...........c...cccocvvvenns 181
power fUNCLION.........cccovvveieeie e, 182
primitive function classifications.................. 108
primitive functions See Chapter 3
primitive operatorsc.ccceeuene. See Chapter 4
AXIS v 204, 205
COMMUEE ...t 208
COMPOSE...eeeereeririesiree e seee e 209, 210, 211
=T (o] o O 212,213
indexed modified assignment................... 202
inner Product..........ccceevevvcevieecee e 214
modified assignment...........ccceeeiveiieninns 201
outer Product.........ccceevvvevevienieie e, 215
FEAUCE ..o 216
redUCE N-WISE......ceeiiiiiiiie e 218
reduce-first.......ccooeviiniiniieeeee, 217
1o (PP PP PR UPRRTPR 219
SCAN-TIrSt..vvveviicecee e 220
selective modified assignment.................. 203
SPAWN ...t 221

print width in SeSSION.......cccevverervriernieanns 353
PROCESSOR TABLE FULLccceuue... 455
product
NN e 214
OULBE . 215
programming function Keys..........cc.ccocvvvnin. 352
protected copying from workspaces............. 423
prototypes of arrays........ccoccoeevciinincinnennn, 111
pythagorean functions See circular functions
Q
quad CharacCter..........ccoeevvereeneneseresiens 223
quietly loading workspacesc.ccoeevrene. 431
QUOLE CharaCtercccoevveriie e 6
quote-quad charactercccceevevieereereeene. 231
R
random linK........ccooeiivinic 355
RANK ERRORcccoviiiirieinenec e, 456
rank Of arrays......ccccevvvvevieeveese e 4,191
ravel fuNCtion.........ccocevevvvvieicnence e, 183
WIth @XES ..o 183
reach indexed assignment..........c.ccccecerecnen. 120
reach iNdexingccoceveveveneinenesenee, 166
reading components from files 285
reading file access matrices..........c.ccoevevennee. 284
reading file component information 285
reading native filescccoocvviiiiiiieenn, 340
reading properties of GUI objects 399
reading SCreen Mapsccevveeveevveerveevennnenns 366
reciprocal function...........ccccccevvevv e, 186
FECUISTON ...ttt 90
reduce-first operatorc.ccovevvevrenecnen. 217
reduction OpPerator..........ccoceveveverecnienienceen, 216
N=WISE ot 218
WIth @XiS .oovovei e 216
releasing component files..........c.cccoveneennen. 272
renaming component filesc.cceeevenene. 286
renaming native filescccooevveiiinnnnen, 341
repeat Statementscoccvevvveerivenineesinesiee e 62
replacing components on files....................... 287
replacing data in native files..............cc.c....... 341
replicate operationccoceeevenencicsiennnne 186
WIth @XIS .vveeiecc e 186
replicate-first operationc.ccoceevrerecnnen. 187
reset state iNdicator.........ccoovevveverervrn s, 424

550 Alphabetic Index

reshape functioncccceevevvvvcie s, 187
residue fUNCLioncccocevviveneinenecceen 188
RESIZE ..ottt 456
resizing component files.........cccocvvvvivnnnnn. 288
resizing native files........ccccoovveveicniniecnnne, 341
response time limit........cccccoevvevnienn e, 355
FESLTUCLUNING @ITAYS....covveeererieesrerieesesieesreneas 9
return branch statements...........cccocevvvveiennene 76
reverse fUNCtionccocevvvevvein e 188
WIth @XiS ..o, 188
reverse-first functioncccocoeeveenns 189, 190
right argument of function.............ccccocevveenen. 15
right operand of operatorscccccevvrveeenn 18
roll random function...........cccceeeevveneriiinnnn, 189
2 {0101 0] o] [<1 o] A S 20
rotate fuNCtion ..., 189
WIth @XIS ..o, 189
S
samples\dfns directory..........cccovvvvreiicnnenn, 94
saving continuation workspaces................... 411
SaVING WOrKSPaCeS.ccccvrveereerieeniens 356, 425
SCAlAr AITAYS....veveeiceirieiee e 4
scalar eXtensioNcoccvvevvveieniee e 106
scalar funCtions..........cocvveevveienicie s 105
SCANAIS ..o 4
SCAN OPETALON ..vvvivieiie e 219
WIth @XIS ..o, 219
scan-first operator........c.cccccvveevvive e e, 220
scope of functions...........cccevevievin e, 15
SCOPE Of OPErators.......covvrvvviiriiicirieecins 18
screen dimensionsccocvvveeeeerenenenennnns 356
SCIEENM MAPS ... 363
SCIEEN AUceevieeieeese e 366
search functions..........ccceevvevvieicecieicne e, 54
search path.......cc.ccoceeeevene i, 350, 392
select StatementS..........coovveiieeeice e 66
selection primitive functions......................... 108
selective assignment..........cccceveveveicieieennnnn, 121
selective modified assignment..................... 203
selector primitive functions.............c.cccoc.e..... 108
self-reference
FUNCLIONSveevccce e 90
OPEIALONS ...t 90
SEMI-COION SPAratOrcvvveieeeiie e 45
SESSION NAMESPACE ... veveveieieriereeie e 357

set differenceccccovevecevenicennn, See excluding

setting properties of GUI objects.................. 401
Shadowing NAMEScccevvevervireeeeeiese s 359
shape functionc.ccceeevvvviin e 191
shape of arrays.......ccccceveveveniene e 4
shared variables
offer couplings......cccevevevieivieciecececee, 377
query access CONLrolccecvververineniennnn 377
query couplings ..o 379
query outstanding offers..........c.ccccocevennn 380
retract Offers ... 380
set access Control.......ccocceevvvevereiencnien, 375
STALES ... 380
share-tying files ... 290
ShY FESUIES ...o.vvveecee e, 46, 83
signalling events........ccccovvvvvvvncecieesesennens 361
signing off APLccccovvvevviiicccieis 346, 422
Signum funCtion........cccccevveve e 191
simple assignMEeNtccccceevveveccieiiesieninns 115
simple indexed assignment...........c.ccccecevenne 117
SiMple INdeXingcooeveiiiiiiiiiccc s 163
sizes of component filescccoceveivinens 288
sizes of native files........cccocvvvviviiiincieie 343
Sizes Of ODJECES ...cvevveiiiicce 362
spawn thread Operatorcccccveevvvcverveninnns 221
special primitive functionsccceeveevene 108
specificationc..cco........ See also assignment
AXIS vttt e 112, 200
Of variables ... 7
Split fUNCLION........coeiecc e, 192
WIth aXiS ..uveiviiiccc e 192
SEACK ..ot 370
standard characters..........ccocvvevvveiereneseniens 468
standard error action...........ccccceeveverenereninns 434
starting auxiliary processors
DOS ...t 250
UNDX s 358
state indicatorcccceverennenn 1, 78, 360, 427
and name list.......cccoevereniiiiiniceeee, 428
EXEENSION. ... 403
TESEL ..ttt 424
SEACK. . 370
statement Separatorsccocceevveerveeiiiienineens 48
STAtEMENTS ... 48
branch statementsccoovveveeveieeierennnn, 76
conditional statementsc..coevevverierennenn 57
states Of ODJECES ...ovvevviriiicreece 372
static localisationcccccceveveeieevecce e, 21

Alphabetic Index 551

StatiC NAME SCOPE...vviveereeieie e et 84
stop control

GUETY caeee ittt 375

SBL et 373
STOP EITON traP «ovvveveeecriecee e 386
strand notation..................... See vector notation
structural primitive functions 108
subtract arithmetic function...............ccco....... 192
suspended OPerations..........c.cooevvrererirenienenne 78
suspension

[eVelS OF .., 78
switch thread identityc.cocoevviicnennnn 429
switching threads..........cccccevevevniie e, 34
Symbol table ... 1
SYNTAX ERROR ..o 457
syntax of operations...........c.ccccevevieeveeieennenn, 46
SYS €rror NUMDETocveiieceeceeceee e 458
system commands............c.c.ev..e. See Chapter 6
SYStEM CONSLANTS ... 225
SYSEEM ITOIS ..ot 458
system functions...........ccoceevveennen. See Chapter 5

CAtEgOriZEd. .. .cveveieiieeee e 226
SYSLEM NAMESPACES......ocvvirvrerierieieriee e 225
system variablescccccvenne See Chapter 5
T
tail calls ...ooeiiiiiee 85, 90
take fuNCLioNccoeoiviii e, 193

WIth @XES....oiviiiiiiiicice e 194
terminal control Vectorcccceoeieienenn. 381
thread SWiItChing ..o 34
threads

child NUMBErSccooovvviireeeece e, 382

1HeNtityooeiieeeee e 382, 429

Killo.ocoe e 383

NUMDELS ... 383

SYNCAFONIZE....cvvevvcece e 391
threads and external functions..............c......... 41
threads and niladic functions..............cccccce..... 40
tie NUMDENS ..o 284, 336
time StampP .ovveeee 390
TIMEOUT ..ot 458
times arithmetic function...........cccccevervrenn. 195
{00 MANY NAMES......cvverirrireeree e 459
tracing lines in defined operations

QUEBTY cee et 385

translating native files.......c.cccocevvvvivviviivnnnnne. 346
transpose function

AYadiC .coveveeiec e 195

MONAAIC ... 195
transposition of axes......cccccevevevevevesesenne, 195
TRAP ERROR ...t 459
trap statements.........ccocvveiiciiiiciee 73
trapping error conditionsccccccvereenen. 386
trigonometric functions ... See circular functions
tying component filesccoceeveennen. 290, 291
tying native files ..., 344
type fUNCLION ... 196
tyPES OF ArraYS ...ocvvveecee e 5
U
underbar characterccoovvveeieicne i, 7
underscored alphabetic characters................ 235
union set fUNCLioNcoceeveiiicie i 197
unique set FunCtionccccveeevevieiieeieenns 197
UNIEAITAYS ..t 107
unnamed NAMESPACESevveververeereriereeieneenns 24
until conditional...........cccoovvviieienniciee 62
untying component filesc.coceeviiienn. 292
untying native files ..., 346
user identificationccocevviveincicicenn, 235
user-defined operations See Chapter 2
USING 1ottt ste e srn e 392
Vv
valence of functions..........ccccceeeieiiiiciennee, 15
valence of operations..........c.ccccevvevievieeinennns 46
ValENCY ..o See valence
valid NAmMes..........ccoevvereinenns See legal names
VALUE ERROR ..o 459
variables

EXLEINAL ..o 42

specification Of ..., 7
VECTON AITAYS .vveeeieeiiriesiiee e sineeseeesiveesaeesineens 4
VECLOr NOLALIONcvviiiiiiic i 8
vector representation of operations............... 394
VECTOIS .t 4

empty charactercccoccoeveneiencnceenee 248

eMPLY NUMEFIC ...cceereieeie e See zilde
verification of iNput..........ccovvviiiineicce, 393
ViSiDIE NAMESovvvivcieeeeee e 49

552 Alphabetic Index

W
waiting for threads to terminate................... 391
warning duplicate labelc..cccooeveiiienns 460
warning duplicate namec.ccccoeieiinennas 460
warning label name presentin line 0............ 461
warning pendent operationc.ccocecvvenes 460
warning unmatched brackets...............cc.c.... 461
warning unmatched parentheses................... 461
while Statementsccovvverreiennee e 60
window
Create ODJECt......cccovevviesreeeeee e 396
EXPOSE NAMES.....eeviveeirierireerireenreeeninesnieeans 402
Ot PrOPertY .oovveeviie e 399

names of children ..o, 400

SEL PrOPertY ..cvvevvievecere e 401
With statementS........coccoveveviieneinieneceee 68
without set function ..o, 197
workspace availability............ccccoeveviiennnnn. 395
workspace identification....................... 402, 430
WOTKSPACES ...t 1
writing file access matricescccccvenne. 289
WS FULL .ot 462
WS NOt FOUN ..o, 462
WS 100 [arge ...ovieiiieiccce 463
Z

zilde constant........cccoeeveveeeieic v 5,197

553

