

/w



.NET Interface Guide

Riverside View
Basing Road, Old Basing

Basingstoke
Hampshire, RG24 7AL

United Kingdom

tel: +44 (0)1256 811125
fax: +44 (0)1256 811130

email: support@dyadic.com
http://www.dyadic.com

Dyalog APL is a trademark of Dyadic Systems Limited

Copyright  1982-2003

Copyright  1982-2003 by Dyadic Systems Limited.

All rights reserved.

Version 10.0

First Edition March 2003

No part of this publication may be reproduced in any form by any means without the

prior written permission of Dyadic Systems Limited, Riverside View, Basing Road, Old

Basing, Basingstoke, Hampshire, RG24 7AL, United Kingdom.

Dyadic Systems Limited makes no representations or warranties with respect to the

contents hereof and specifically disclaims any implied warranties of merchantability or

fitness for any particular purpose. Dyadic Systems Limited reserves the right to revise

this publication without notification.

TRADEMARKS:

Microsoft, MS and MS-DOS are registered trademarks of Microsoft Corporation.

Windows, Windows NT, Windows 2000, Visual Basic and Excel are trademarks of Microsoft Corporation.

The Dyalog APL True Type font is the copyright of Adrian Smith.

TrueType is registered trademark of Apple Computer, Inc.

All other trademarks and copyrights are acknowledged.

Printed in the United Kingdom.

i

Contents
C H A P T E R 1 Overview ... 1

Introduction ... 1
.NET Classes ... 1
GUI Programming with System.Windows.Forms .. 2
Web Services ... 2
ASP.NET and WebForms .. 2

Prerequisites .. 3
The dotnet Sub-directory .. 3

C H A P T E R 2 Accessing .NET Classes ... 5
Introduction ... 5
Locating .NET Classes and Assemblies .. 5
Using .NET Classes .. 7

Constructors and Overloading ... 8
How the  Function is implemented ... 8
Displaying a .NET Object .. 9

Exploring .NET Classes .. 9
Advanced Techniques ... 17

Class Methods .. 17
APL language extensions for .NET objects ... 17
Exceptions ... 21

More Examples ... 22
Directory and File Manipulation .. 22
Sending an email .. 24
Web Scraping .. 25

Enumerations .. 27
Handling Pointers with Dyalog.ByRef .. 29

C H A P T E R 3 Using Windows.Forms .. 33
Introduction ... 33
Creating GUI Objects ... 33

Object Hierarchy .. 34
Positioning and Sizing Forms and Controls .. 34
Modal Dialog Boxes ... 34

Example 1 .. 35
Example 2 .. 38

Non-Modal Forms ... 39
DataGrid Examples .. 39
GDIPLUS Workspace ... 41
TETRIS Workspace ... 41
WEBSERVICES Workspace ... 41

ii Contents

C H A P T E R 4 Writing .NET Classes in Dyalog APL ... 43
Introduction .. 43
Assemblies, Namespaces and Classes .. 43
Example 1... 44

aplfns1.cs .. 48
Calling IndexGen from Dyalog APL... 49

Example 2... 50
aplfns2.cs .. 53

Example 2a ... 54
aplfns2a.cs ... 54

Example 3... 56
aplfns3.cs .. 58

Example 4... 59
aplfns4.cs .. 65

Example 5... 66
aplfns5.cs .. 71

Interfaces .. 73
C H A P T E R 5 Dyalog APL and IIS ... 75

Introduction .. 75
IIS Applications and Virtual Directories .. 76
Internet Services Manager .. 76

The apl.net Virtual Directory .. 77
Creating the apl.net Virtual Directory ... 78
Creating the apl.net Virtual Sub-Directories ... 83

C H A P T E R 6 Writing Web Services ... 85
Introduction .. 85
Web Service (.asmx) Scripts .. 86
Compilation .. 86
Exporting Methods ... 87

Add1 ... 88
Add2 ... 88

Web Service Data Types .. 88
Execution.. 89
Global.asax and Application and Session Objects ... 89
Sample Web Service: EG1 ... 90

Testing APLExample from IE5 ... 90
Sample Web Service: LoanService .. 93

Testing LoanService from IE5 .. 96
Sample Web Service: GolfService ... 101

GolfService: Global.asax .. 102
GolfService: GolfCourse class .. 103
GolfService: Slot class .. 104

Contents iii iii

GolfService: Booking class.. 105
GolfService: StartingSheet class .. 106
GolfService: GetCourses function ... 107
GolfService: GetStartingSheet function ... 108
GolfService: MakeBooking function ... 110
Testing GolfService from IE5 .. 114
Using GolfService from C# ... 120

Sample Web Service: EG2 .. 121
Testing EG2 from IE5 ... 125

C H A P T E R 7 Calling Web Services .. 129
Introduction ... 129
The MakeProxy function... 129
Using LoanService from Dyalog APL .. 130
Using GolfService from Dyalog APL ... 131
Exploring Web Services.. 135
Asynchronous Use .. 137

Using a callback ... 138
C H A P T E R 8 Writing ASP.NET Web Pages .. 143

Introduction ... 143
Your first APL Web Page ... 144
The Page_Load Event ... 149
Code Behind ... 153
Workspace Behind .. 156

The Page_Load function .. 161
Callback functions ... 163
Validation functions ... 165
Forcing Validation ... 172
Calculating and Displaying Results ... 173

C H A P T E R 9 Writing Custom Controls for ASP.NET 177
Introduction ... 177
The SimpleCtl Control .. 178

Using SimpleCtl ... 182
The TemperatureConverterCtl1 Control ... 183

Child Controls .. 184
Fahrenheit and Centigrade Values ... 187
Responding to Button presses .. 189
Using the Control on the Page ... 189

The TemperatureConverterCtl2 Control ... 192
Fahrenheit and Centigrade Values ... 192
Rendering the Control .. 195
Loading the Posted Data .. 200
Postback Events ... 202
Using the Control on a Page .. 205

iv Contents

C H A P T E R 10 APLScript ... 209
Introduction .. 209
The APLScript Compiler, aplc.exe .. 210
Creating an APLScript File .. 211
Transferring code from the Dyalog APL Session ... 212
General principles of APLScript .. 213
Creating Programs (.exe) with APLScript .. 214

A simple GUI example .. 214
A simple console example ... 215
Defining Namespaces .. 216

Creating .NET Classes with APLScript .. 218
Exporting Functions as Methods ... 218
A .NET Class example .. 220
Defining Properties ... 222
Indexers ... 225

Creating ASP.NET Classes with APLScript .. 226
Web Page Layout .. 226
Web Service Layout .. 226
How APLScript is processed by ASP.NET ... 227

C H A P T E R 11 Visual Studio Integration .. 229
Introduction .. 229
Hello World Example... 230

Creating an APL.EXE Project... 230
Using an Existing Workspace .. 236
The Component Files Solution ... 240

The cfiles project (APL) ... 240
The ComponentFiles project (C#) ... 244
Running the Solution ... 246

C H A P T E R 12 Implementation Details ... 249
Introduction .. 249
The dyalog10.dll active workspace .. 249
Threading ... 252

DYALOG10.DLL Threading .. 252
DYALOG.EXE Threading .. 253
Thread Switching .. 253

Debugging an APL .NET Class .. 254
Specifying the DLL ... 254
Forcing a suspension ... 255
Using the Session, Editor and Tracer .. 256

Index .. 257

1

C H A P T E R 1

Overview

Introduction
This manual describes the Dyalog APL interface to the Microsoft .NET Framework. This

document does not attempt to explain the features of the .NET Framework, except in terms

of their APL interfaces. For information concerning the .NET Framework, see the

documentation, articles and help files, which are available from Microsoft and other

sources.

The .NET interface features include:

 The ability to create and use objects that are instances of .NET Classes

 The ability to define new .NET Classes in Dyalog APL that can then be used from

other .NET languages such as C# and VB.NET.

 The ability to write Web Services in Dyalog APL.

 The ability to write ASP.NET web pages in Dyalog APL

.NET Classes
The .NET Framework defines a so-called Common Type System. This provides a set of

data types, permitted values, and permitted operations. All cooperating languages are

supposed to use these types so that operations and values can be checked (by the Common

Language Runtime) at run time. The .NET Framework provides its own built-in class library

that provides all the primitive data types, together with higher-level classes that perform

useful operations.

Dyalog APL allows you to create and use instances of .NET Classes, thereby gaining access

to a huge amount of component technology that is provided by the .NET Framework.

It is also possible to create Class Libraries (Assemblies) in Dyalog APL. This allows you to

export APL technology packaged as .NET Classes, which can then be used from other .NET

programming languages such as C# and Visual Basic.

2 Microsoft .Net Interface

The ability to create and use classes in Dyalog APL also provides you with the possibility to

design APL applications built in terms of APL (and non-APL) components. Such an

approach can provide benefits in terms of reliability, software management and re-usage,

and maintenance.

GUI Programming with System.Windows.Forms
One of the most important .NET class libraries is called System.Windows.Forms

which is designed to support traditional Windows GUI programming. Unlike the current

Windows GUI, it is thoroughly object-oriented and based upon a single consistent

programming model. Visual Studio .NET, which is used to develop GUI applications in

Visual Basic and C#, produces code that uses System.Windows.Forms. Dyalog APL

allows you to use System.Windows.Forms, instead of (and in some cases, in

conjunction with) the built-in Dyalog APL GUI objects such as the Dyalog APL Grid, to

program the Graphical User Interface.

Web Services
Web Services are programmable components that can be called by different applications.

Web Services have the same goal as COM, but are technically platform independent and

use http as the communications protocol with an application. A Web Service can be used

either internally by a single application or exposed externally over the Internet for use by

any number of applications.

ASP.NET and WebForms
ASP.NET is a new version of Microsoft Active Server Page technology that makes it easier

to develop and deploy dynamic Web applications. To supplement ASP.NET, there are some

important new .NET class libraries, including WebForms which allow you to build browser-

based user interfaces using the same object-oriented mechanism as you use

Windows.Forms for the Windows GUI. The use of these component libraries replaces

basic HTML programming.

ASP.NET pages are server-side scripts, that are usually written in C# or Visual Basic.

However, you can also employ Dyalog APL directly as a scripting language (APLScript) to

write ASP.NET web pages. In addition, you can call Dyalog APL workspaces directly from

ASP.NET pages, and write custom server-side controls that can be incorporated into

ASP.NET pages.

These features give you a wide range of possibilities for using Dyalog APL to build

browser-based applications for the Internet, or for your corporate Intranet.

 Chapter 1: Overview 3

Prerequisites
The Dyalog APL .NET interface requires a computer running Windows 2000 or Windows

XP Professional with the following elements installed:

 The Microsoft .NET Framework SDK V1.0.3705 or higher.

 Microsoft Internet Information Services (IIS) 5.0 or 5.1

 Microsoft Internet Explorer Version 6.00.

The dotnet Sub-directory
The dotnet sub-directory contains files that are used to support the .NET interface,

namely:

 aplc.exe; the APLScript compiler that is itself written in Dyalog APL and

packaged as an executable.

 aplprovider.dll; which performs the initial processing of an APLScript

file.

 bridge.dll; the interface library to the .NET framework

 dyalog10.dll; the developer/debug version of the dynamic link library that

hosts the execution of Dyalog APL classes and COM objects.

 dyalog10rt.dll; the re-distributable run-time version of dyalog10.dll.

 dyadic.dll; a subsidiary library

The samples subdirectory contains several sub-directories relating to the .NET interface:

 aplclasses; a sub-directory that contains examples of .NET classes written in

APL.

 aplscript; a sub-directory that contains APLScript examples.

 asp.net; a sub-directory that is mapped to the IIS Virtual Directory apl.net,

and contains various sample APL Web applications.

 winforms; a sub-directory that contains sample applications that use the

System.Windows.Forms GUI classses.

4 Microsoft .Net Interface

5

C H A P T E R 2

Accessing .NET Classes

Introduction
.NET classes are implemented as part of the Common Type System. The Type system

provides the rules by which different languages can interact with one another. Types include

interfaces, value types and classes. The .NET Framework provides built-in primitive types

plus higher-level types that are useful in building applications.

A Class is a kind of Type (as distinct from interfaces and value types) that encapsulates a

particular set of methods, events and properties. An object is simply an instance of a .NET

Framework class. An object is created by calling the class’s constructor function.

Classes support inheritance in the sense that every class (but one) is based upon another so-

called Base Class.

An assembly is a logical DLL that contains all of the code and metadata for a Class or a

number of classes. Assemblies are intended to resolve the DLL Hell (version conflicts)

inherent in previous versions of Windows. Assemblies can be dynamic (created in memory

on-the-fly) or static (files on disk). For the purposes of this document, the term Assembly

refers to a file (usually with a .DLL extension) on disk.

Locating .NET Classes and Assemblies
Unlike COM objects, which are referenced via the Windows Registry, .NET assemblies and

the classes they contain, are totally self-contained independent entities. In simple terms, you

can install a class on your system by copying the assembly file onto your hard disk and you

can de-install it by erasing the file.

Although classes are arranged physically into assemblies, they are also arranged logically

into namespaces. These have nothing to do with Dyalog APL namespaces and, to avoid

confusion, are henceforth referred to in this document as .NET namespaces.

6 Microsoft .Net Interface

Often, a single .NET namespace maps onto a single assembly and usually, the name of the

.NET namespace and the name of its assembly file are the same; for example

System.Windows.Forms is the .NET namespace represented by the

System.Windows.Forms.dll assembly.

However, it is possible for a .NET Namespace to be implemented by more than one

assembly; there is not a one-to-one-mapping between .NET Namespaces and assemblies.

Indeed, the main top-level .NET Namespace, System, is spread over a number of different

assembly files.

Within a single .NET Namespace there can be any number of classes, but each has its own

unique name. The full name of a class is the name of the class itself, prefixed by the name of

the .NET namespace and a dot. For example, the full name of the DateTime class in the

.NET namespace System is System.DateTime.

There can be any number of different versions of an assembly installed on your computer,

and there can be several .NET namespaces with the same name, implemented in different

sets of assembly files; for example, written by different authors.

To use a .NET Class, it is necessary to tell the system to load the assembly (dll) in which

it is defined. In many languages (including C#) this is done by supplying the names of the

assemblies or the pathnames of the assembly files as a compiler directive.

Secondly, to avoid the verbosity of programmers having to always refer to full class names,

the C# and Visual Basic languages allow the .NET namespace prefix to be elided. In this

case, the programmer must declare a list of .NET namespaces with Using (C#) and

Imports (Visual Basic) declaration statements. This list is then used to resolve

unqualified class names referred to in the code.

In either language, when the compiler encounters the unqualified name of a class, it

searches the specified .NET namespaces for that class.

In Dyalog APL, this mechanism is implemented by the  system variable. 

performs the same two tasks that Using/Imports declarations and compiler directives

provide in C# and Visual Basic; namely to give a list of .NET namespaces to be searched

for unqualified class names, and to specify the assemblies which are to be loaded.

 is a vector of character vectors each element of which contains 1 or 2 comma-

delimited strings. The first string specifies the name of a .NET namespace; the second

specifies the pathname of an assembly file. This may be a full pathname or a relative one,

but must include the file extension (.dll). If just the file name is specified, it is assumed to

be located in the standard .NET Framework directory that was specified when the .NET

Framework was installed (e.g. c:\winnt\Microsoft.NET\Framework\v1.0.3705)

 Chapter 2: Accessing .NET Classes 7

It is convenient to treat .NET namespaces and assemblies in pairs. For example:





Note that because Dyalog APL automatically loads mscorlib.dll (which contains the

most commonly used classes in the System Namespace), it is not actually necessary to

specify it explicitly in .

Note that  has Namespace scope, i.e. each Dyalog APL Namespace has its own

value of  that is initially inherited from its parent space but which may be

separately modified.  may also be localised in a function header, so that different

functions can declare different search paths for .NET namespaces/assemblies.

Using .NET Classes
To create a Dyalog APL object as an instance of a .NET class, you invoke the  method

of the class.

This is a monadic method whose argument depends upon the particular class. Its result is a

namespace reference to the newly created object. For example, to create a DateTime

object whose value is the 30
th

 April 2001:





The result of the New method is a namespace reference with name class 9.





If you type the name of a .NET Object, APL calls its ToString method to obtain a useful

description or identification of the object. This topic is discussed in more detail later in this

chapter.




If you want to use fully qualified class names instead, one of the elements of  must

be an empty vector. For example:





8 Microsoft .Net Interface

Although, in the case of a DateTime class, it is appropriate to call the  method with a

specific argument (a date) it is common for a class not to require parameters when creating

a new instance.

Typically, to create a default object in other languages, you call the New method with no

argument. This syntax is not possible in APL, so instead you specify an argument of 

(zilde). For example to obtain a default Button object (a class exposed by

System.Windows.Forms):



Notice that when you create a new instance of a .NET class, you do not have to declare the

class name in advance. Assuming that you have defined  correctly, you can simply

use the .NET class name directly.

The mechanism by which APL associates the class name with a class in a .NET namespace

is described below.

Constructors and Overloading
Each .NET Class has one or more constructor methods. A constructor is a method that must

be used to create an instance of the Class. Typically, a Class will support several constructor

methods each with a different set of parameters. For example, System.DateTime

supports a constructor that takes three Int32 parameters (year, month, day), another that

takes six Int32 parameters (year, month, day, hour, minute, second), and so forth. These

different constructor methods are not distinguished by having different names but by the

different sets of parameters they accept.

This concept, which is known as overloading, may seem somewhat alien to the APL

programmer. After all, we are used to defining functions that accept a whole range of

different arguments. However, type checking, which is fundamental to the .NET

Framework, requires that a method is called with the correct number of parameters, and that

each parameter is of a predefined type. Overloading solves this issue.

When you create an instance of a class in C#, you do so using the new operator. This is

automatically mapped to the appropriate constructor method by matching the parameters

you supply to the various forms of the constructor. A similar mechanism is implemented in

Dyalog APL using the  function.

How the  Function is implemented
The first time that Dyalog APL encounters a reference to a non-existent name (i.e. a name

that would otherwise generate a ), it searches the .NET

namespaces/assemblies specified by  for a .NET class of that name. If found, the

name (in this case ) is recorded in the APL symbol table with a special name

class of 10 and is associated with the corresponding .NET namespace.

 Chapter 2: Accessing .NET Classes 9

 Subsequent references to that symbol (in this case ) are resolved directly and do

not involve any assembly searching.

The resolution of the  method is also special. First, APL searches the class for a static

method called New and, if it is found, calls it. If not, it calls the constructor method in the

class and associates the symbol  (in the class) with the constructor.

If you call  with an argument of  (zilde), APL will attempt to call the version of the

constructor that is defined to take no arguments. If no such version of the constructor exists,

the call will fail with a . Otherwise, APL will call the version of the

constructor whose parameters match the argument you have supplied. If no such version of

the constructor exists, the call will fail with a .

Displaying a .NET Object

When you display a reference to a .NET object, APL calls the object's ToString method

and displays the result. All objects provide a ToString method because all objects

ultimately inherit from the .NET class System.Object. Many .NET classes will provide

their own ToString that overrides the one inherited from System.Object, and returns

a useful description or identifier for the object in question. ToString usually supports a

range of calling parameters, but APL always calls the version of ToString that is defined

to take no calling parameters. Monadic format () and monadic  have been extended

to provide the same result, and provides a quick shorthand method to call ToString in

this way. The default ToString supplied by System.Object appears to return the

name of the object’s Type.

Note that if you want to check the type of an object, this can be obtained using its

GetType method.

Exploring .NET Classes
Microsoft supplies a tool for browsing .NET Class libraries called ILDASM.EXE.

As a convenience, the Dyalog APL Workspace Explorer has been extended to perform a

similar task as ILDASM so that you can gain access to the information within the context of

the APL environment.

The information that describes .NET classes, which is known as its Metadata, is part of the

definition of the class and is stored with it. This Metadata corresponds to Type Information

in COM, which is typically stored in a separate Type Library.

To enable the display of Metadata in the Workspace Explorer, you must have the Type

Libraries option of the View menu checked.

10 Microsoft .Net Interface

To gain information about one or more Net Classes, open the Workspace Explorer, right

click the Metadata folder, and choose Load.

This brings up the Browse .Net Assembly dialog box as shown below. Navigate to the .NET

assembly of your choice, and click Open.

Note that the .NET Classes provided with the .NET Framework are typically located in

C:\WINNT\Microsoft.NET\Framework\V1.0.3705.

The most commonly used classes of the .NET Namespace System are stored in this

directory in an Assembly named mscorlib.dll, along with a number of other

fundamental .NET Namespaces.

 Chapter 2: Accessing .NET Classes 11

The result of opening this Assembly is illustrated in the following screen shot. The

somewhat complex tree structure that is shown in the Workspace Explorer merely reflects

the structure of the Metadata itself.

12 Microsoft .Net Interface

Opening the Classes sub-folder causes the Explorer to display the list of classes contained in

the .NET Namespace as shown in the picture below.

 Chapter 2: Accessing .NET Classes 13

The Constructors folder shows you the list of all of the valid constructors and their

parameter sets with which you may create a new instance of the Class by calling . The

constructors are those named .ctor; you may ignore the one named .cctor, (the class

constructor) and any labelled as Private.

For example, you can deduce that  may be called with three numeric

(Int32) parameters, or six numeric (Int32) parameters, and so forth. There are in fact

seven different ways that you can create an instance of a DateTime.

For example, the following statement may be used to create a new instance of DateTime

(09:30 in the morning on 30
th

 April 2001):






14 Microsoft .Net Interface

The Properties folder provides a list of the properties supported by the Class. It shows the

name of the property followed by its data type. For example, the DayOfYear property is

defined to be of type Int32.

You can query a property by direct reference:




 Chapter 2: Accessing .NET Classes 15

Notice too that the data types of some properties are not simple data types, but Classes in

their own right. For example, the data type of the Now property is itself

System.DateTime. This means that when you reference the Now property, you get back

an object that represents an instance of the System.DateTime object:






The Methods folder lists the methods supported by the Class. The Explorer shows the data

type of the result of the method, followed by the name of the method and the types of its

arguments. For example, the IsLeapYear method takes an Int32 parameter (year) and

returns a Boolean result.




16 Microsoft .Net Interface

 Chapter 2: Accessing .NET Classes 17

Advanced Techniques

Class Methods
Certain .NET Classes provide methods, and properties, that can be called directly without

the need to create an instance of the Class first.

The methods Now and IsLeapYear exported by System.DateTime fall into this

category. For example:









APL language extensions for .NET objects
The .NET Framework provides a set of standard operators (methods) that are supported by

certain classes. These operators include methods to compare two .NET objects and methods

to add and subtract objects.

In the case of the DateTime Class, there are operators to compare two DateTime

objects. For example:








The op_Addition and op_Subtraction operators add and subtract TimeSpan

objects to DateTime objects. For example:













18 Microsoft .Net Interface




 Chapter 2: Accessing .NET Classes 19

The corresponding APL primitive functions have been extended to accept .NET objects as

arguments and simply call these standard .NET methods internally. The methods and the

corresponding APL primitives are shown in the table below.

.NET Method APL Primitive Function

op_Addition 

op_Subtraction 

op_Multiply 

op_Division 

op_Equality 

op_Inequality 

op_LessThan 

op_LessThanOrEqual 

op_GreaterThan 

op_GreaterThanOrEqual 

So instead of calling the appropriate .NET method to compare two objects, you can use the

familiar APL primitive instead. For example:










Apart from being easier to use, the primitive functions automatically handle arrays and

support scalar extension; for example:




In addition, the monadic form of Grade Up () and Grade Down (), and the Minimum ()

and Maximum () primitive functions have been extended to work on arrays of references

to .NET objects. Note that the argument(s) must be a homogeneous set of references to

objects of the same .NET class, and in the case of Grade Up and Grade Down, the argument

must be a vector. For example:




20 Microsoft .Net Interface




 Chapter 2: Accessing .NET Classes 21

Exceptions
When a .Net object generates an error, it does so by throwing an exception. An exception is

in fact a .Net class whose ultimate base class is System.Exception.

The system constant  returns a reference to the most recently generated

exception object.

For example, if you attempt to create an instance of a DateTime object with a year that is

outside its range, the constructor throws an exception. This causes APL to report a

(trappable)  error (error number 90) and access to the exception object is

provided by .
























22 Microsoft .Net Interface

More Examples

Directory and File Manipulation

The .NET Namespace System.IO (also in the Assembly mscorlib.dll) provides

some useful facilities for manipulating files. For example, you can create a

DirectoryInfo object associated with a particular directory on your computer, call its

GetFiles method to obtain a list of files, and then get their Name and CreationTime

properties.




 is an instance of the Directory Class, corresponding to the directory c:\Dyalog

APL.




The GetFiles method returns a list of files; actually, FileInfo objects, that represent

each of the files in the directory: Its optional argument specifies a filter; for example:




The Name property returns the name of the file associated with the File object:




And the CreationTime property returns its creation time, which is a DateTime object:




If you call GetFiles without an argument (in APL, with an argument of ), it returns a

complete list of files:



Taking advantage of namespace reference array expansion, an expression to display file

names and their creation times is as follows.









 Chapter 2: Accessing .NET Classes 23



24 Microsoft .Net Interface

Sending an email

The .NET Namespace System.Web.Mail provides objects for handing email.

You can create a new email message as an instance of the MailMessage class, set its

various properties, and then send it using the SmtpMail class.

Please note that these examples will only work if your computer is configured to allow

you to send email in this way.










However, note that the Send method of the SmtpMail object is overloaded and may be

called with a single parameter of type System.Web.Mail.MailMessage as above, or

four parameters of type System.String:

So instead, you can just say:




 Chapter 2: Accessing .NET Classes 25

Web Scraping

The .NET Framework provides a whole range of classes for accessing the internet from a

program. The following example illustrates how you can read the contents of a web page. It

is complicated, but realistic, in that it includes code to cater for a firewall/proxy connection

to the internet. It is only 9 lines of APL code, but each line requires careful explanation.

First we need to define  so that it specifies all of the .NET Namespaces and

Assemblies that we require.







The WebRequest class in the .NET Namespace System.Net implements the .NET

Framework's request/response model for accessing data from the Internet. In this example

we create a WebRequest object associated with the URI http://www.cdnow.com.

Note that WebRequest is an example of a static class. You don't make instances of it; you

just use its methods.



In fact (and somewhat confusingly) if the URI specifies a scheme of "http://" or "https://",

you get back an object of type HttpWebRequest rather than a plain and simple

WebRequest. So, at this stage,  is an HttpWebRequest object.




This class has a Proxy property through which you specify the proxy information for a

request made through a firewall. The value assigned to the Proxy property has to be an

object of type System.Net.WebProxy. So first we must create a new WebProxy

object specifying the hostname and port number for the firewall. You will need to change

this statement to suit your own internet configuration..





Having set up the WebProxy object as required, we then assign it to the Proxy property

of the HttpRequest object .



26 Microsoft .Net Interface

The HttpRequest class has a GetResponse method that returns a response from an

internet resource. No its not HTML (yet), the result is an object of type

System.Net.HttpWebResponse.





The HttpWebResponse class has a GetResponseStream method whose result is of

type System.Net.ConnectStream. This object, whose base class is

System.IO.Stream, provides methods to read and write data both synchronously and

asynchronously from a data source, which in this case is physically connected to a TCP/IP

socket.





However, there is yet another step to consider. The Stream class is designed for byte input

and output; what we need is a class that reads characters in a byte stream using a particular

encoding. This is a job for the System.IO.StreamReader class. Given a Stream

object, you can create a new instance of a StreamReader by passing it the Stream as a

parameter.





Finally, we can use the ReadToEnd method of the StreamReader to get the contents of

the page.





Note that to avoid running out of connections, it is necessary to close the Stream:



 Chapter 2: Accessing .NET Classes 27

Enumerations
An enumeration is a set of named constants that may apply to a particular operation. For

example, when you open a file you typically want to specify whether the file is to be opened

for reading, for writing, or for both. A method that opens a file will take a parameter that

allows you to specify this. If this is implemented using an enumerated constant, the

parameter may be one of a specific set of (typically) integer values; for example, 1=read,

2=write, 3=both read and write. However, to avoid using meaningless numbers in code, it is

conventional to use names to represent particular values. These are know as enumerated

constants or, more simply, as enums.

In the .NET Framework, enums are implemented as classes that inherit from the base class

System.Enum. The class as a whole represents a set of enumerated constants; each of the

constants themselves is represented by a static field within the class.

The next chapter deals with the use of System.Windows.Forms to create and

manipulate the user interface. The classes in this .NET Namespace use enums extensively.

For example, there is a class named System.Windows.Forms.FormBorderStyle

that contains a set of static fields named None, FixedDialog, Sizeable, and so forth.

These fields have specific integer values, but the values themselves are of no interest to the

programmer.

Typically, you use an enumerated constant as a parameter to a method or to specify the

value of a property. For example, to create a Form with a particular border style, you would

set its BorderStyle property to one of the members of the FormBorderStyle class,

viz.








An enum has a value, which you may use in place of the enum itself when such usage is

unambiguous. For example, the FormBorderStyle.Fixed3D enum has an underlying

value is 2:




You could set the border style of the Form  to FormBorderStyle.Fixed3D with

the expression:



28 Microsoft .Net Interface

However, this practice is not recommended. Not only does it make your code less clear, but

also if a value for a property or a parameter to a method may be one of several different

enum types, APL cannot tell which is expected and the call will fail.

 Chapter 2: Accessing .NET Classes 29

For example, when the constructor for System.Drawing.Font is called with 3

parameters, the 3
rd

 parameter may be either a FontStyle enum or a GraphicsUnit

enum. If you were to call Font.New with a 3
rd

 parameter of 1, APL cannot tell whether this

refers to a FontStyle enum, or a GraphicsUnit enum, and the call will fail.

Handling Pointers with Dyalog.ByRef
Certain .NET methods take parameters that are pointers.

APL does not have a mechanism for dealing with pointers, so Dyadic provides a .NET class

for this purpose. This is the Dyalog.ByRef class, which is a member of the dyadic

Assembly that is loaded automatically by the Dyalog APL program.

An example of a .NET method that requires pointers is the nGetVersion method that is

provided by the System.Reflection.Assembly class. This method may be used to obtain the

major version, minor version, and build and revision numbers associated with a .NET

Assembly. The following example illustrates how this works.

Firstly, to gain access to the Dyalog .Net Namespace, it must be specified by .

Note that you need not specify the Assembly (DLL) from which it is obtained

(dotnet\bridge.dll), because (like mscorlib.dll) it is automatically loaded by

DYALOG.EXE.



System.AppDomain.CurrentDomain represents the collection of Assemblies that is

loaded into the current process. The first of these is mscorlib.dll.








The version information is in fact shown when you display the object and could be derived

programmatically by parsing the character vector returned by format (). However, the

nGetVersion method, which produces this information in numerical form, is more

convenient. The problem is that it takes four parameters, each of which is a pointer to an

Int32. When you call nGetVersion, it enters the major, minor, build and revision

numbers into the addresses that you have provided as its parameters.

The Dyalog.ByRef class represents a pointer to an object of type System.Object. It

has a number of constructors, some of which are used internally by APL itself. You only

need to be concerned about two of them; the one that takes no parameters, and the one that

takes a single parameter of type System.Object. The former is used to create an empty

pointer; the latter to create a pointer to an object or some data.

30 Microsoft .Net Interface

For example, to create a empty pointer:



Or, to create pointers to specific values,





Notice that the parameter can be any scalar APL array, so you must enclose it.

Alternatively, the parameter may be a .NET object.

The ByRef class has a single property called Value.








Note that if you reference the Value property without first setting it, you get a

.






Returning to the example, we recall that the nGetVersion method takes as its

parameters, 4 pointers into which it will insert Int32 values. Using ByRef, we can call it

as follows:











 Chapter 2: Accessing .NET Classes 31

In some cases a .NET method may take a parameter that is an Array and the method expects

to fill in the array with appropriate values. In APL there is no syntax to allow a parameter to

a function to be modified in this way. However, we can use the Dyalog.ByRef class to

call this method. For example, the System.IO.FileStream class contains a Read

method that populates its first argument with the bytes in the file.











33

C H A P T E R 3

Using Windows.Forms

Introduction
System.Windows.Forms is a .NET namespace that provides a set of classes for

creating the Graphical User Interface for Windows applications. For languages such as C#

and Visual Basic, this mechanism replaces the Windows API as the means to write the GUI.

For Dyalog APL developers, System.Windows.Forms is an alternative to the Dyalog

APL built-in GUI, which will continue to be maintained for the foreseeable future.

The main advantage of using System.Windows.Forms is that it provides immediate

access to the latest Microsoft GUI components. Whenever Microsoft develops a new

Windows.Forms component, it can immediately be incorporated into a Dyalog APL

application; you do not need to wait for Dyadic to cover it. The same applies to GUI

components developed by third parties.

Unless otherwise specified, all the examples described in this Chapter may be found in the

samples\winforms\winforms.dws workspace.

Creating GUI Objects
GUI objects are represented by .NET classes in the .NET Namespace

System.Windows.Forms. In general, these classes correspond closely to the GUI

objects provided by Dyalog APL, which are themselves based upon the Windows API.

For example, to create a form containing a button and an edit field, you would create

instances of the Form, Button and TextBox classes.

34 Microsoft .Net Interface

Object Hierarchy
The most striking difference between the Windows.Forms GUI and the Dyalog GUI is

that in Windows.Forms the container hierarchy represented by forms, group boxes, and

controls is not represented by an object hierarchy. Instead, objects that represent GUI

controls are created stand-alone (i.e. without a parent) and then associated with a container,

such as a Form, by calling the Add method. Notice too that Windows.Forms objects are

associated with APL symbols that are namespace references, but Windows.Forms objects

do not have implicit names.

Positioning and Sizing Forms and Controls
The position of a form or a control is specified by its Location property, which is

measured relative to the top left corner of the client area of its container.

Location has a data type of System.Drawing.Point. To set Location, you must

first create an object of type System.Drawing.Point then assign that object to

Location.

Similarly, the size of an object is determined by its Size property, which has a data type of

System.Drawing.Size. This time, you must create a System.Drawing.Size

object before assigning it to the Size property of the control or form.

Objects also have Top(Y) and Left(X) properties that may be specified or referenced

independently. These accept simple numeric values.

The position of a Form may instead be determined by its DeskTopLocation property,

which is specified relative to the taskbar. Another alternative is to set the

StartPosition property whose default setting is WindowsDefaultLocation,

which represents a computed best location.

Modal Dialog Boxes
Dialog Boxes are displayed modally to prevent the user from performing tasks outside of

the dialog box.

To create a modal dialog box, you create a Form, set its BorderStyle property to

FixedDialog, set its ControlBox, MinimizeBox and MaximizeBox properties to

false, and display it using ShowDialog.

A modal dialog box has a DialogResult property that is set when the Form is closed,

or when the user presses OK or Cancel. The value of this property is returned by the

ShowDialog method, so the simplest way to handle user actions is to check the result of

ShowDialog and proceed accordingly. Example 1 illustrates a simple modal dialog box.

 Chapter 3: Using WinForms 35

Example 1
Function  illustrates how to create and use a simple modal dialog box. Much of the

function is self explanatory, but the following points are noteworthy.

 set  to include the .NET Namespaces System.Windows.Forms

and System.Drawing.

 create a Form and two Button objects. As yet, they are unconnected. The

constructor for both classes is defined to take no arguments, so the  function is called

with an argument of zilde().

 shows how the Location property is set by first creating a new Point object

with a specific pair of (x,y) values.

 computes the values for the Point object for , from the

values of the Left, Height and Top properties of ; thus positioning 

relative to .


























36 Microsoft .Net Interface

 sets the DialogResult property of  and  to

DialogResult.OK and DialogResult.Cancel respectively. Note that

DialogResult is an enumeration with a predefined set of member values.

Similarly,  defines the BorderStyle property of the form using the

FormBorderStyle enumeration.

 defines the AcceptButton and CancelButton properties of the Form

to  and  respectively. These have the same effect as the Dyalog GUI

Default and Cancel properties.

 sets the StartPostion of the Form to be centre screen. Once again this is

specified using an enumeration; FormStartPosition.






























 Chapter 3: Using WinForms 37

 associate the buttons with the Form. The Controls property of the Form

returns an object of type Form.ControlCollection. This class has an Add method

that is used to add a control to the collection of controls that are owned by the Form.

 calls the ShowDialog method (with no argument; hence the ). The result is an

object of type Form.DialogResult, which is an enumeration.

 compares the result returned by ShowDialog with the enumeration member

DialogResult.OK (note that the primitive function = has been extended to compare

objects).























38 Microsoft .Net Interface

Example 2
Functions  and  illustrate how the Each operator () and the extended namespace

reference syntax in Dyalog APL may be used to produce more succinct, and no less

readable, code.
































 takes advantage of the fact that .NET classes are namespaces, so the expression

 is a vector of namespace refs, and the expression

 runs the  function in each of them.

Similarly,  combine the use of extended namespace reference and the

Each operator to set the Text, Location and Size properties in several objects

together.



 Chapter 3: Using WinForms 39


























Non-Modal Forms
Non-modal Forms are displayed using the Run method of the

System.Windows.Forms.Application object. This method is designed to be

called once, and only once, during the life of an application and this poses problems during

APL development. Fortunately, it turns out that, in practice, the restriction is that

Application.Run may only be run once on a single system thread. However, it may be

run successively on different system threads. During development, you may therefore test a

function that calls Application.Run, by running it on a new APL thread using Spawn

(). See Chapter 13 for further details.

DataGrid Examples
Three functions in the samples\winforms\winforms.dws workspace provide

examples of non-modal Forms. These examples also illustrate the use of the

WinForms.DataGrid class.

Function  is an APL translation of the example given in the help file for the

DataGrid class in the .NET SDK Beta1. The original code has been slightly modified to

work with the SDK Beta2.

40 Microsoft .Net Interface

Function  is an APL translation of the example given in the help file for the

DataGrid class in the .NET SDK Beta2.

 Chapter 3: Using WinForms 41

Function  is an APL translation of the example given in the file:
C:\Program Files\Microsoft.Net\FrameworkSDK\Samples\...

...QuickStart\winforms\samples\VB\Data\Grid\Grid.vb

This example uses Microsoft SQL Server 2000 to extract sample data from the sample

NorthWind database. To run this example, you must have SQL Server running and you

must modify function  to specify the name of your server.

GDIPLUS Workspace
The samples\winforms\gdiplus.dws workspace contains a sample that

demonstrates the use of non-rectangular Forms. It is a direct translation into APL from a C#

sample (WinForms-Graphics-GDIPlusShape) that is distributed on the Visual Studio .NET

Beta 2 Resource CD.

TETRIS Workspace
The samples\winforms\tetris.dws workspace contains a sample that

demonstrates the use of graphics. It is a direct translation into APL from a C# sample

(WinForms-Graphics-Tetris) that is distributed on the Visual Studio .NET Beta 2 Resource

CD.

WEBSERVICES Workspace
An example of a non-modal Form is provided by the  function in the

samples\asp.net\webservices\webservices.dws workspace. This function

performs exactly the same task as the  function in the same workspace, but it uses

Windows.Forms instead of the built-in Dyalog GUI.

, and its callback functions  and  perform exactly the same task, with

almost identical dialog box appearance, of  and its callbacks  and  that are

described in Chapter 7.

Note that when you run  or  for the first time, you must supply an argument

of 1 to force the creation of the proxy class for the GolfService web service.

43

C H A P T E R 4

Writing .NET Classes in Dyalog APL

Introduction
Dyalog APL allows you to build new .NET Classes, components and controls. A component

is a class with emphasis on cleanup and containment and implements specific interfaces. A

control is a component with user interface capabilities.

With one exception, every .NET Class inherits from exactly one base class. This means that

it starts off with all of the behaviour of the base class, in terms of the base class properties,

methods and events. You add functionality by defining new properties, methods and events

on top of those inherited from the base class or by overriding base class methods with those

of your own.

Assemblies, Namespaces and Classes
To create a .NET class in Dyalog APL, you start with an APL workspace. This should

contain a single top-level namespace whose name represents the name of the .NET

Namespace that will be stored in your assembly. Under this namespace, you create one or

more objects (namespaces) of Type  each of which represents a .NET class.

When you create a  object, you specify the name of the base class from which it

inherits (the default is System.Object).

Within each of the  namespaces, you define functions and variables as usual. If a

function is to be exported as a method, you must define the number of parameters, their data

types, and the data type of the result. You may also specify names for these items. This

information can be entered through the Net Properties tab of the Properties dialog box, or

established programmatically using  and . The

information is necessary to allow a client application to use your classes.

44 Microsoft .Net Interface

Once you have defined the functionality of your .NET classes, you are ready to save them in

an assembly. This is simply achieved by selecting Export from the Session File menu.

You will be prompted to specify the directory and name of the assembly (DLL) and it will

then be created and saved. Note that the workspace itself is not saved at the same time.

Your .NET class is now ready for use.

When an APL .NET class is invoked by a client application, it automatically loads

dyalog10.dll or dyalog10rt.dll, the developer/debug or run-time dynamic link

library version of Dyalog APL. You decide which of these dlls is to be used according to

the setting of the Runtime application checkbox in the Create bound file dialog box. See

User Guide for further details.

Example 1
This example builds an Assembly called APLClasses1.dll in the sub-directory

samples\aplclasses, which contains a .NET Namespace called APLClasses.

APLClasses contains a single .NET Class called Primitives that exports a single

method called IndexGen.

First we create a container namespace  that will represent the .NET

Namespace in the assembly:





Next, using , we create a NetType object called .

Note that the default BaseClass for a  object is System.Object.





Then, inside the  namespace, we set  so that the code inside this

object can reference the .NET base types such as Int32.





Next, we write the  function. As we will see later, it is not

necessary for a function to have the same name as the exported method that it implements,

but it is the default.





 Chapter 4: Writing .NET Classes 45

The next step is to define the public characteristics for the exported method . This is done

using the .Net Properties page of the Properties dialog box for the  function as

shown below.

1. To make the function available to a client application, check the Public check box.

2. To export the function as a method (as opposed to a Web Method, or a Property

Get/Set function), select the Method radio button.

3. Enter Int32[] in the box for Result Type. This says that IndexGen returns an

array of integers.

4. Enter Int32 in the box for the Param1 Type and (optionally) rename the

parameter Param1, in this case, to "number".

5. Click OK.

46 Microsoft .Net Interface

Note that APL will at this stage check the data types you have specified for the result and

for the method's parameters. If one or more of the data types are not recognised as available

.NET Types (Classes), you will be informed by a message box. If you see such a warning

you have either entered an incorrect data type, or you have not set  correctly. In

this case, the only data type used is Int32, which is a Type, defined in the .NET

Namespace System, and  is set to , so all will be well.

The next step is not strictly necessary, but it does make good sense to  the

workspace at this stage. The name you choose for the workspace will be the default name

for the assembly








Now you are ready to create the assembly. This is done by selecting Export… from the

Session File menu. This displays the following dialog box.

 Chapter 4: Writing .NET Classes 47

This gives you the opportunity to change the name or path of the assembly. The Runtime

application checkbox allows you to choose to which if the two versions of the Dyalog APL

dynamic link library the assembly will be bound. See User Guide for further details.

Finally click Save.

APL now makes the assembly and, as it does so, displays information in the Status window

as shown below. If any errors occur during this process, the Status window will inform you.

48 Microsoft .Net Interface

Note that when APL makes a .NET Assembly, it does not save the workspace at the same

time.

aplfns1.cs
The following C# source, called samples\APLClasses\aplfns1.cs, may be used

to call your APL .NET Class.

The using statements specify the names of .NET namespaces to be searched for

unqualified class names.

The program creates an object named apl of type Primitives by calling the new

operator on that class. Then it calls the IndexGen method with a parameter of 10.

using System;

using APLClasses;

public class MainClass

 {

 public static void Main()

 {

 Primitives apl = new Primitives();

 int[] rslt = apl.IndexGen(10);

 for (int i=0;i<rslt.Length;i++)

 Console.WriteLine(rslt[i]);

 }

 }

 Chapter 4: Writing .NET Classes 49

Then, to compile and run the program from a DOS command shell, change directory to the

samples\aplclasses sub-directory, and then type the following commands shown in

bold type. The first command is required to set up environment variables and your PATH.

Note that all this assumes that you have Visual Studio.NET installed.

APLClasses>setpath.bat

Setting environment for using Microsoft Visual C++.NET

7.0 tools.

(If you also have Visual C++ 6.0 installed and wish to

use its tools

from the command line, run vcvars32.bat for Visual C++

6.0.)

APLClasses>csc /r:APLClasses1.dll aplfns1.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR

version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights

reserved.

APLClasses>aplfns1

1

2

3

4

5

6

7

8

9

10

Calling IndexGen from Dyalog APL





50 Microsoft .Net Interface

Example 2
In Example 1, we said nothing about a constructor used to create an instance of the

Primitives class. In Example 2, we will show how this is done.

In fact, in Example 1, APL supplied a default constructor, which is inherited from the base

class (System.Object) and is called without arguments.

Example 2 will extend Example 1 by adding a constructor that specifies the value of .

First, we will  the aplclasses1 workspace we saved in Example 1, and change to

the APLClasses.Primitives namespace.






Next, we will define a function called  that simply sets  to the value of its

argument. The name of this function is purely arbitrary.





 Chapter 4: Writing .NET Classes 51

Then we will export this function as a constructor. This is done using the .Net Properties

page of the Properties dialog box for the  function as shown below. Note that in

addition to checking Public and selecting Method, the Constructor box is also checked. The

data type of the result is defined to be Void (no result) and that of its parameter to be

Int32.

52 Microsoft .Net Interface

Then we rename and save the workspace:






Finally, we can build a new .NET Assembly using File/Export… as before.

Please note that, in this case, it is essential (for Example 2a) that the Build runtime

assembly checkbox is not checked. We will need the development version for debugging

purposes.

 Chapter 4: Writing .NET Classes 53

aplfns2.cs
The following C# source, called samples\APLClasses\aplfns2.cs, may be used

to call your APL .NET Class.

 using System;

 using APLClasses;

 public class MainClass

 {

 public static void Main()

 {

 Primitives apl = new Primitives(0);

 int[] rslt = apl.IndexGen(10);

 for (int i=0;i<rslt.Length;i++)

 Console.WriteLine(rslt[i]);

 }

 }

The program is the same as in the previous example, except that the code that creates an

instance of the Primitives class is simply changed to specify an argument; in this case

0.

 Primitives apl = new Primitives(0);

When the code is compiled, this call is matched with the various constructors available in

the Primitives class, namely the default constructor (which takes no arguments) and the

 constructor, which takes a single integer argument. The latter matches, so the

program compiles successfully with this line compiled to call  with a parameter of 0.

When the program runs, the output is 0-9 as expected.

54 Microsoft .Net Interface

APLClasses>setpath.bat

...

APLClasses>csc /r:APLClasses2.dll aplfns2.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR

version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights

reserved.

APLClasses>aplfns2

0

1

2

3

4

5

6

7

8

9

Example 2a
In Example 2, the argument to , the constructor for the Primitives class, was

defined to be Int32. This means that the .NET Framework will allow a client to specify

any integer when it creates an instance of the Primitives class. What happens if the

client uses a parameter of 2? Clearly this is going to cause an APL  when

used to set .

aplfns2a.cs
The following C# source, called samples\APLClasses\aplfns2a.cs, may be used

to demonstrate what happens.

 using System;

 using APLClasses;

 public class MainClass

 {

 public static void Main()

 {

 Primitives apl = new Primitives(2);

 int[] rslt = apl.IndexGen(10);

 for (int i=0;i<rslt.Length;i++)

 Console.WriteLine(rslt[i]);

 }

 }

 Chapter 4: Writing .NET Classes 55

The code is the same as in the previous example, except that the line that creates an instance

of the Primitives class specifies an inappropriate argument; in this case 2.

 Primitives apl = new Primitives(2);

Then, when the program is compiled and run …

APLClasses>setpath.bat

...

APLClasses>csc /r:APLClasses2.dll aplfns2a.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR

version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights

reserved.

APLClasses>aplfns2a

… the APL Session appears, and the Tracer may be used to debug the problem. You can see

that the constructor  has stopped with a . Meanwhile, the C#

program is still waiting for the call (to create an instance of APLClasses.Primitives)

to finish.

In this case, debugging is simple, and you can simply type:




56 Microsoft .Net Interface

This causes the APL Session to disappear; the aplfns2a program continues successfully

and the output is displayed.

1

2

3

4

5

6

7

8

9

10

Notice that in Dyalog APL, the  System Command provides information about the

entire calling stack, including the .NET function calls that are involved. Notice too that the

 function, the constructor for this APL .NET class, is running here in APL thread 1,

which is associated with the system thread 2116. See Chapter 12 for further information on

debugging APL classes.

Example 3
The correct .NET behaviour when an APL function fails with an error is to throw an

exception, and his example shows how to do it.

In the .NET Framework, exceptions are implemented as .NET Classes. The base exception

is implemented by the System.Exception class, but there are a number of super

classes, such as System.ArgumentException and

System.ArithmeticException that inherit from it.

 has been extended to allow you to throw an exception. To do so, its right

argument should be 90 and its left argument should be an object of type

System.Exception or an object that inherits from System.Exception. (Other

options for the left argument may be implemented later).

When you create the instance of the Exception class, you may specify a string (which

will turn up in its Message property) containing information about the error.

Starting with the APLCLASSES2.DWS workspace, the following changes add exception

handling to the  function.






Then modify the  function to perform exception handling in the approved manner.



 Chapter 4: Writing .NET Classes 57
















and make a new .NET Assembly called aplclasses3.dll.

58 Microsoft .Net Interface

aplfns3.cs
The following C# source, called samples\APLClasses\aplfns3.cs, may be used

to invoke the new  function. aplfns3.cs contains code to catch the exception and

to display the exception message.

 using System;

 using APLClasses;

 public class MainClass

 {

 public static void Main()

 try

 {

 Primitives apl = new Primitives(2);

 int[] rslt = apl.IndexGen(10);

 for (int i=0;i<rslt.Length;i++)

 Console.WriteLine(rslt[i]);

 }

 catch (Exception e)

 {

 Console.WriteLine(e.Message);

 }

 }

Then, when the program is compiled and run …

APLClasses>setpath.bat

APLClasses>csc /r:APLClasses3.dll aplfns3.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR

version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights ...

APLClasses>aplfns3

IndexOrigin must be 0 or 1

 Chapter 4: Writing .NET Classes 59

Example 4
This example builds on Example 3 and illustrates how you can implement constructor

overloading, by establishing several different constructor functions.

By way of an example, when a client application creates an instance of the Primitives

class, we want to allow it to specify the value of  or the values of both  and .

The simplest way to implement this is to have two public constructor functions  and

, which call a private constructor function  as listed below.




























The .Net Properties for these three functions show that  is defined as a constructor

that takes a single Int32 parameter,  is defined as a constructor that takes two

Int32 parameters, and  has no .NET Properties defined at all.

Note that in .NET terms,  is not strictly a Private Constructor; it is simply an internal

function that is invisible to the outside world.

60 Microsoft .Net Interface

.NET Properties for 

 Chapter 4: Writing .NET Classes 61

.NET Properties for 

62 Microsoft .Net Interface

.NET Properties for 

 Chapter 4: Writing .NET Classes 63

Next, a function called  is defined and exported as a Public Method. It simply

returns the current values of  and .






Having done this, the workspace is renamed aplclasses4.dws, and saved, and a new

Assembly aplclasses4.dll is built.






64 Microsoft .Net Interface

 Chapter 4: Writing .NET Classes 65

aplfns4.cs
The following C# source, called samples\APLClasses\aplfns4.cs, may be used

to invoke the two different constructor functions  and  in the new

aplclasses4.dll Assembly

 using System;

 using APLClasses;

 public class MainClass

 {

 public static void Main()

 {

 Primitives apl10 = new Primitives(1);

 int[] rslt10 = apl10.GetIOML();

 for (int i=0;i<rslt10.Length;i++)

 Console.WriteLine(rslt10[i]);

 Primitives apl03 = new Primitives(0,3);

 int[] rslt03 = apl03.GetIOML();

 for (int i=0;i<rslt03.Length;i++)

 Console.WriteLine(rslt03[i]);

 }

 }

In this example, the code creates two instances of the Primitives class named apl10 and

apl03. The first is created with a constructor parameter of (1); the second with a

constructor parameter of (0,3). The C# compiler matches the first call with ,

because  is defined to accept a single Int32 parameter. The second call is matched

to  because  is defined to accept two Int32 parameters

Then, when the program is compiled and run …

APLClasses>setpath.bat

...

APLClasses>csc /r:APLClasses4.dll aplfns4.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR

version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights

reserved.

APLClasses>aplfns4

1

0

0

3

66 Microsoft .Net Interface

Example 5
This example takes things a stage further and illustrates how you can implement method

overloading.

In this example, the requirement is to export three different versions of the IndexGen

method; one that takes a single number as an argument, one that takes two numbers, and a

third that takes any number of numbers. These are represented by three functions named

,  and  respectively. Because monadic  performs

all of these operations, the three APL functions are in fact identical. However, their public

interfaces, as defined in their .NET Properties, are all different.

The overloading is achieved by entering the same name for the exported method

(IndexGen) in the box provided, for each of the three APL functions.

 Chapter 4: Writing .NET Classes 67












This is the version we have seen before. The method is defined to take a single argument of

type Int32, and to return a 1-dimensional array (vector) of type Int32.

68 Microsoft .Net Interface





This version is defined to take two arguments of type Int32, and to return a 2-dimensional

array, each of whose elements is a 1-dimensional array (vector) of type Int32.

 Chapter 4: Writing .NET Classes 69





In principle, we could define 7 more different versions of the method, taking 3, 4, 5 etc

numeric parameters. Instead, this method is defined more generally, to take a single

parameter that is a 1-dimemsional array (vector) of numbers, and to return a result of type

Array. In practice we might use this version alone, but for a C# programmer, this is harder

to use than the two other specific cases.

70 Microsoft .Net Interface

 Chapter 4: Writing .NET Classes 71

aplfns5.cs
The following C# source, called samples\APLClasses\aplfns5.cs, may be used

to invoke the three different variants of IndexGen, in the new aplclasses5.dll Assembly

 using System;

 using APLClasses;

 public class MainClass

 {

 static void PrintArray(int[] arr)

 {

 for (int i=0;i<arr.Length;i++)

 {

 Console.Write(arr[i]);

 if (i!=arr.Length-1)Console.Write(",");

 }

 }

72 Microsoft .Net Interface

 public static void Main()

 {

 Primitives apl = new Primitives(0);

 int[] rslt = apl.IndexGen(10);

 PrintArray(rslt);

 Console.WriteLine("");

 int[,][] rslt2 = apl.IndexGen(2,3);

 for (int i=0;i<2;i++)

 {

 for (int j=0;j<3;j++)

 {

 int[] row = rslt2[i,j];

 Console.Write("(");

 PrintArray(row);

 Console.Write(")");

 }

 Console.WriteLine("");

 }

 int[] args = new int[3];

 args[0]=2;

 args[1]=3;

 args[2]=4;

 Array rslt3 = apl.IndexGen(args);

 Console.WriteLine(rslt3);

 }

Then, when the program is compiled and run …

APLClasses>setpath.bat

...

APLClasses>csc /r:APLClasses5.dll aplfns5.cs

Microsoft (R)Visual C# Compiler Version 7.00.9254 [CLR

version 1.0.2914]

Copyright (C) Microsoft Corp 2000-2001. All rights

reserved.

APLClasses>aplfns5

0,1,2,3,4,5,6,7,8,9

(0,0)(0,1)(0,2)

(1,0)(1,1)(1,2)

System.Object[,,]

 Chapter 4: Writing .NET Classes 73

Interfaces
Interfaces define additional sets of functionality that classes can implement; however,

interfaces contain no implementation, except for static methods and static fields. An

interface specifies a contract that a class implementing the interface must follow. Interfaces

can contain static or virtual methods, static fields, properties, and events. All interface

members must be public. Interfaces cannot define constructors. The .NET runtime allows an

interface to require that any class that implements it must also implement one or more other

interfaces.

When you create a  object using  you may specify which interfaces it

provides by specifying a value for the  property. You must do this when you

create the object; you cannot subsequently change the value of the  property.

The value of  is a character vector containing a comma-separated list of

Interface names. Each of these must be the full name of an existing Interface, which is

defined in one of the .NET Namespaces installed on your computer. Note that  is

not used to locate an Interface name; you must specify it fully. However, the .NET

Assembly that defines the Interface must be included in .

If you specify that your class implements a certain Interface, you must provide all of

the members (methods, properties, and so forth) defined for that Interface. However,

some Interfaces are only marker Interfaces and do not actually specify any members.

An example is the TemperatureControlCtl1 custom control described in Chapter

10. This is built on top of the System.Web.UI.Control class, which defines an

optional Interface called INamingContainer. A class based on Control that

implements INamingContainer specifies that its child controls are to be assigned

unique ID attributes within an entire application. This is a marker interface with no methods

or properties defined for it.

The TemperatureControlCtl2 custom control example described in Chapter 10

implements two interfaces named IPostBackDataHandler and

IPostBackEventHandler. These interfaces are required for a custom control that

intends to render the HTML for its own form elements in a Web page. These interfaces

define certain methods that get called at the appropriate time by the page framework when a

Web page is constructed for the browser. It is therefore essential that the class implements

all the methods specified by the interface, even if they do nothing.

See these examples in Chapter 10 for further details.

74 Microsoft .Net Interface

75

C H A P T E R 5

Dyalog APL and IIS

Introduction
Microsoft Internet Information Services (IIS) is a comprehensive Web Server software

package that allows you to publish information on your Intranet, or on the World Wide

Web. IIS comes with NT XP Professional and Windows 2000; all you need add is a

network connection to run your own Web site.

IIS includes Active Server Page (ASP) technology. The basic idea of ASP is to permit web

pages to be created dynamically by the web server. An ASP file is a character file that

contains a mixture of HTML and scripts. When IIS receives a request for an ASP file, it

executes the server-side scripts contained in the file to build the Web page that is sent to the

browser. In addition to server-side scripts, ASP files can contain HTML (including related

client-side scripts) as well as calls to COM components that can perform a variety of tasks

such as database lookup, calculations, and business logic.

Basically, each script inside an ASP page generates a stream of HTML. The server runs the

scripts and assembles the resulting HTML into a single stream (Web page) that is sent to the

browser.

ASP.NET is a new version of ASP and is based upon the Microsoft .NET Framework

technology. It offers significantly better performance and a host of new features including

support for Web Services.

76 Microsoft .Net Interface

IIS Applications and Virtual Directories
IIS supports the concept of an Application. An application is a logically separate service or

web site. IIS can run any number of Applications concurrently. The files associated with an

application are stored in a physical directory on disk, which is linked to an IIS Virtual

Directory. The name of the Virtual Directory is the name of the Application or Web Site.

The Dyalog APL distribution contains a directory named

Dyalog10\Samples\asp.net and a set of sub-directories each of which contains a

sample application.

During the installation of Dyalog APL, these are automatically registered as IIS Virtual

Directories named apl.net, apl.net/Golf, and so forth. When you want to run the

Web Services and Web Page examples, you do so by specifying the URL
http://localhost/apl.net/…

Internet Services Manager

As its name suggests, Internet Services Manager is a tool for managing IIS. If you are going

to develop Web Pages and/or Web Services, you will be using this tool a lot, and it makes

sense to add it as a shortcut on your desktop.

To do this, open Control Panel, then open Administrative Tools, right-click Internet

Services Manager, and select Send To Desktop (create shortcut).

 Chapter 5: Dyalog APL and IIS 77

The apl.net Virtual Directory
Following a successful installation of Dyalog APL, the apl.net Virtual Directory should

appear in Internet Services Manager as shown below.

In case you need to set up your own IIS Virtual Directories yourself, the procedure is

described below.

78 Microsoft .Net Interface

Creating the apl.net Virtual Directory

Start Internet Services Manager, open the icon associated with your computer (in this case,

pdport) and select Default Web Site (or whatever it is called).

 Chapter 5: Dyalog APL and IIS 79

Select New Virtual Directory from the Action menu or from the item’s context menu. This

brings up the Virtual Directory Creation Wizard. Click Next to bring up the first page and

enter apl.net into the Alias field.

Click Next, then enter the full pathname to the Dyalog10\samples\asp.net

directory as shown below.

80 Microsoft .Net Interface

 Chapter 5: Dyalog APL and IIS 81

Accept the default Access Permissions, as shown below, and click Next.

Then finally, click Finish.

82 Microsoft .Net Interface

 Chapter 5: Dyalog APL and IIS 83

Creating the apl.net Virtual Sub-Directories

The golf, temp and webservices sub-directories in apl.net represent separate IIS

Applications, so these need to be registered as IIS Virtual Directories too.

Open the newly created apl.net item shown in the left pane of Internet Services Manager,

bring up the context menu of the Golf sub-directory, and select Properties.

Click the Create button; this turns the sub-directory into an IIS Virtual Directory (a separate

IIS application) named Golf.

Note that the Application Protection entry dictates whether your application is loaded into

the IIS process (Low), a shared DLLHost task (Medium) or its own DLLHost task (High).

The last choice isolates your application from all other IIS applications, and is the safest

option.

Follow the same procedure to define Temp and webservices as Virtual Directories (as

sub-directories of apl.net).

84 Microsoft .Net Interface

It is not necessary to do this now, but you will need to do this during development and it

won’t hurt now.

Restart IIS. You can do this from the context menu of the item associated with your

computer at the top of the tree. Restarting IIS causes it to unload all the assemblies

associated with your Applications.

85

C H A P T E R 6

Writing Web Services

Introduction
A Web Service can be thought of as a Remote Procedure Call. However, it is a remote

procedure call that can be made over the Internet using simple character-based messages.

Web Services are implemented using Simple Object Access Protocol (SOAP), Extensible

Mark-up Language (XML) and Hypertext Transfer Protocol (HTTP). Web Services do not

require proprietary network protocols or software. Web Service calls and responses can

successfully be transmitted around the Internet without the need to specially configure

firewalls.

A Web Service is a programmable class that may be called by any program running on the

computer, any program running on a computer on the same LAN, or any program running

on any computer on the internet.

Web Services are hosted (i.e. executed) by ASP.NET running under Microsoft IIS. Any one

Web Services sits on a single server computer and runs there under ASP.NET/IIS. The

messages that invoke the Web Service, pass its arguments, and return its results, utilise

standard HTTP/SOAP/XML protocols.

A Web Service consists of a single text script file, with the extension .asmx, in an IIS

Virtual Directory on the server computer.

A Web Service may expose a number of Methods and Properties. Methods may be called

synchronously (the calling process waits for the result) or asynchronously (the calling

process invokes the method, continues for a bit, and then subsequently checks for the result

of the previous call).

86 Microsoft .Net Interface

Web Service (.asmx) Scripts
Web Services may be written in a variety of languages, including APLScript, the

scripting version of Dyalog APL (see Chapter 10).

The first statement in the script file declares the language and the name of the service. For

example, the following statement declares a Dyalog APL Web Service named

GolfService.

<%@ WebService Language="apl" Class="GolfService" %>

Note that Language=”apl” is specifically connected to the Dyalog APL script compiler

through the ASP.NET system file Machine.config.

The syntax of this first line is common to all Web Services, regardless of the language in

which they are written.

A Dyalog APL Web Service script starts with a  statement and ends with an

 statement. These statements are directives used by the Dyalog APL script

compiler and are specific to Dyalog APL.

The  statement declares the name of the Class (which must be the same as the name

declared in the WebService statement) and the Base Class from which it inherits, which

is normally System.Web.Services.WebService.



Following the  statement, there may appear any number of APL expressions and

function bodies. Following these there must be a  statement. Internal sub-

classes (nested classes) may also be defined within the main 

block.

Compilation
When the Web Service, specified by the .asmx file, is called for the first time, ASP.NET

invokes the appropriate language compiler (in this case, the Dyalog APL Script compiler)

whose job is to produce an Assembly that defines and describes a class. When the Web

Service is used subsequently, the request is satisfied by creating and using an instance of the

class. However, ASP.NET detects if the .asmx script has been modified, and recompiles it

in this case.

The Dyalog APL Script compiler creates a DLL containing a workspace, which itself

contains a single namespace that represents the Web Service class. The class namespace

contains all the functions, which are defined within the script, together with any variables

that were established by expressions in the script. A single function comprises all the

statements enclosed within a pair of del() symbols

 Chapter 6: Writing Web Services 87

For example, the following script would result in a namespace running with

containing a single function  and a variable .









Note that all expressions are executed by the script compiler when it creates the class

namespace. They are not executed when the Web Service is invoked.

If your script contains a  statement, it will be executed by the compiler when

establishing the class namespace. This may be used to import functions from other

workspaces and obviate the need to include them in the .asmx file.

Exporting Methods
Your Web Service will be of no use unless it exports at least one method. To export a

function as a method, you must include declaration statements. Such declarations may be

supplied anywhere within the function body, but it is recommended that they appear

together as the first block of statements in your code. All declaration statements begin with

the colon (:) character and the following declaration statements are supported:



This statement causes the function to be exported as a method and must be present.



This statement declares the data type of the result of the method where type may specify any

valid .NET type that is supported by Web Services.



This statement declares one or more input parameters to the method with specified type and

name. The declaration of each parameter is separated from the next by a comma (,). Each

type may specify any valid .NET type that is supported by Web Services. Each name may

be any ASCII character string. Note that names are optional.



This statement supports method overloading and Property Get/Put functions. The type may

be one of the terms ,  or . The name specifies the public name

of the method that this function is exported as, or the public name of the property that this

function gets or sets.

88 Microsoft .Net Interface

Add1







The  function defined above is exported as a method that takes exactly (and only) two

parameters of type Int32 and returns a result of type Int32. Armed with this definition,

that is recorded in the metadata associated with the class, the .NET Framework guarantees

that the method will only be called in this way.

Add2







The  function defined above is exported as a method that takes an array of Double

and returns a result of type Double.

Web Service Data Types
In principle, Web Services are designed to support most, if not all, of the data types

supported by the .NET Framework, and to support any new .NET classes that you choose to

define.

In practice, the current set of data types supported by Web Services is somewhat restricted;

in particular:

1. Multi-dimensional arrays are not supported; only vectors.

2. Arbitrary nested arrays are not supported.

However, despite these restrictions, it is possible to build effective Web Services, as you

will see in the following examples.

 Chapter 6: Writing Web Services 89

Execution
When your Web Service is invoked, ASP.NET requests an instance of the corresponding

Class from the Assembly (DLL) that was created when it was compiled. The first time this

happens for any Dyalog APL Web Service or Web Page, the Dyalog APL dynamic link

library (see Chapter 12) is loaded into the ASP.NET host process and the namespace

corresponding to your Web Service class is  from the Assembly. the Dyalog APL

dynamic link library then delivers an instance of this namespace to the client (calling)

process.

In general, every call on a method in a Web Service causes a new instance of the Web

Server class namespace to be created. If you need to maintain/update variables between

calls, you have to put the variables in the parent namespace (##) of the class.

If a client invokes a different Dyalog APL Web Service or Web Page, its class namespace is

ed from its Assembly into the workspace managed by the Dyalog APL dynamic link

library. All Dyalog APL Web Services (and Web Pages) share the same workspace when

they are invoked. This has implications for the way that you access and manage global

resources such as component files.

Global.asax and Application and Session Objects
When a Web Service runs, it has access to the Application and Session objects. These are

objects provided by ASP.NET through which you can manage the execution of the Web

Service. ASP.NET creates an Application object when it first starts the Application, i.e.

when any client requests any Web Service or Web Page stored in the same IIS Virtual

Directory. It also creates a Session object for each client process.

When the first request comes in for an ASP.NET application, ASP.NET checks for an

optional file named global.asax, and if it is there it compiles it. The application’s

global.asax instance is then used to apply application events.

global.asax typically defines callback functions to be executed on the various

Application and Session events, such as Application_Start,

Application_End, Session_Start, Session_End and so forth.

Dyalog APL allows you to use APL functions in the global.asax script. This allows

you to initialise your APL application when it is first invoked, and to close it down cleanly

when it is terminated.

For example, you can use global.asax to tie a component file on start-up, and untie it

on termination.

90 Microsoft .Net Interface

Sample Web Service: EG1
The first APLExample sample is supplied in

samples\asp.net\webservices\eg1.asmx which is mapped via an IIS Virtual

Directory to the URL http://localhost/apl.net/webservices/eg1.asmx














The  function defined above is exported as a method that takes exactly (and only) two

parameters of type Int32 and returns a result of type Int32.

Line [4] could in fact be coded as:



because .NET guarantees that a client can only call the method by providing two 32-bit

integers as parameters.

Testing APLExample from IE5
If you connect, using Internet Explorer 5, to a URL that represents a Web Service, it

displays a page that displays information about the service and the methods that it contains.

In certain cases, but by no means all, the page also contains form fields that let you invoke a

method from the browser.

The screen shot below shows the page displayed by IE5 when it is pointed at eg1.asmx. It

shows that the Web Service is called APLExample, and that it exports a single method

called Add. Furthermore, the Add method takes two parameters of type int, named arg1

and arg2.

 Chapter 6: Writing Web Services 91

92 Microsoft .Net Interface

The following screen shot shows the result of entering the values 23 and 19 into the form

fields and then pressing the Invoke method.

In this case, the method returns an int value 42.

It is important to understand what is happening here.

Accessed in this way from a browser, a Web Service appears to be behaving like a Web

Server; this is not the case.

It is simply that the browser detects that the target URL is a Web Service, and invokes an

ASP+ page named DefaultSdlHelpGenerator.aspx that inspects the compiled

class and returns an HTML view of the Web service.

 Chapter 6: Writing Web Services 93

Sample Web Service: LoanService
The LoanService sample is supplied in

Dyalog10\Samples\asp.net\Loan\Loan.asmx, which is mapped via an IIS

Virtual Directory to the URL http://localhost/apl.net/Loan/Loan.asmx

This APLScript sample defines a class named LoanService that is based

upon. The LoanService class defines a

sub-class called LoanResult and a method called CalcPayments.






































94 Microsoft .Net Interface




 Chapter 6: Writing Web Services 95

CalcPayments takes five integer parameters (see comments for their descriptions) and

returns an object of type LoanResult.

Note that the block of APLScript that defines the sub-class (LoanResult must reside

between the  and  statements of the main class, (LoanService,

but you may define any number of internal classes in this way.

The LoanResult class is made up only of Fields and it does not export any methods or

properties. Furthermore, there are no constructor methods defined and it relies solely on its

default constructor that is inherited from its base class, System.Object. The default

constructor is called without any parameters and in fact does nothing except to create an

instance of the class. In particular, the fields it contains are not initialised. In this case, that

is sufficient, as all the fields will be filled in explicitly later.







The  statement starts the definition of a new class and specifies its name. The

 statement terminates it definition.

The three  declaration statements specify the names and data types of three public

fields. The Public attributes are necessary to make the fields visible to methods within the

LoanService class as a whole, as well as to external clients.

The Periods field is defined to be an array of integers; the InterestRates field an

array of Double. Both these arrays are 1-diemsional, i.e. vectors. These will contain the

numbers of years, and the different interest rates, to which the repayments matrix applies.

Notice however that Payments is also defined to be 1-dimensional when in fact it is, more

naturally, a 2-dimesional matrix. The reason for this is that, currently, Web Services do not

support multi-dimensional arrays. This is a .NET restriction and not a Dyalog restriction.

 gets a new instance of the LoanResult class by calling

. It then assigns values to each of the three fields in lines , 

and .

96 Microsoft .Net Interface

Testing LoanService from IE5
Like the methods exported by the APLEXample Web Services described above, the

CalcPayments method exported by LoanService is callable from a browser and the

page that is displayed when you point IE5 at it is shown below.

 Chapter 6: Writing Web Services 97

To test the CalcPayments method, you can enter numbers into the form fields in this

page, as shown in the screen shot above, and then press the Invoke button. The result of the

method is then displayed in a separate window as illustrated below.

Notice that the result is described using XML, which is in fact the very language used to

invoke a Web Service and return its result.

You can see that the result is of type LoanResult, and it contains 3 fields named

Payments, InterestRates and Periods. This information was derived by our

definition of the LoanResult class in the APLScript file.

98 Microsoft .Net Interface

Opening the Periods field causes the page to display its value. As you can see, it contains

a vector of integers from the minimum period to the maximum period that we specified on

the input form, in increments of 1.

 Chapter 6: Writing Web Services 99

Similarly, opening the InterestRates field shows that it contains a vector of floating-

point values (double) from the minimum rate to the maximum rate that we specified on

the input form. This time, the increment is 0.5.

100 Microsoft .Net Interface

Finally, the Payments field contains the calculated repayment values.

 Chapter 6: Writing Web Services 101

Sample Web Service: GolfService
GolfService is an example Web Service that resides in the directory

Dyalog10\samples\asp.net\Golf and is associated with the IIS Virtual Directory

apl.net/Golf. This example makes extensive use of internal classes to define data

structures that are appropriate for a client application, such as C# or VB.

The directory contains a global.asax script, which is used to initialise the application.

The Golf Web Service example manages the reservation of tee-times at golf courses. All the

data is held in a component file called GolfData.dcf. This file may be initialised using

the function  in the workspace

samples\asp.net\webservices\webservices.dws. You may need to alter the

file path first.

Each golf course managed by the application has a unique code (integer) and a name

(string). This is handled by defining a class (structure) called GolfCourse with two

fields, Code and Name.

GolfService provides 3 methods:

GetCourses()

Returns a list of Golf Courses (CourseCode and CourseName). The result of this

method is an array of GolfCourse objects.

GetStartingSheet(CourseCode,Date)

Returns the starting sheet for a specified golf course on a given day. A starting

sheet is a list of starting times with a list of the golfers booked to start their round

at that time. The result of this method is a StartingSheet object.

MakeBooking(CourseCode,TeeTime,GimmeNearest,

Name1,Name2,Name3,Name4))

Requests a tee reservation at the course specified by CourseCode. TeeTime is

a DateTime object that specifies the requested date and time. GimmeNearest

is Boolean. If 1, requests the nearest tee-time to that specified; if 0, requests only

the specified tee-time. Name1-4 are strings specifying up to 4 players. Note that all

parameters are required. The result of this method is a Booking object.

102 Microsoft .Net Interface

GolfService: Global.asax



















The  function is called when the GolfService Web Service is

invoked for the first time. It ties the GolfData component file, and then stores the tie

number in a new Item called GOLFID in the Application object. This item is then

subsequently available to methods in the GolfService for the duration of the

application.

The  function is invoked when the GolfService Web Service

terminates. It unties the GolfData component file.

This example may be considered slightly weak in that the location of the data file is hard-

coded in the application's Global.asax file. An alternative is to store this information in

the <appsettings> section of the appropriate web.config file or in the global

machine.config file. This is preferable if the resource (in this case a file name) is to be

accessed from more than one script. For further information on ASP.NET config files, see

the documentation for the .NET Framework SDK.

Note that the GolfData file may be initialised using the function  in

the samples\asp.net\webservices\webservices.dws workspace. You may

need to alter the file path first.

 Chapter 6: Writing Web Services 103

GolfService: GolfCourse class
The GolfCourse class is effectively a structure with two fields named Code and Name.

Code is an integer code that provides a shorthand way to refer to a specific golf course;

Name is a String containing its full name.
















The GolfCourse class provides two constructors. The first, named , takes no

arguments and therefore overrides the default constructor that is inherited from

System.Object.  calls  to initialise the instance with a Code of  and

an empty Name.

The constructor named  accepts two parameters named CourseCode (an integer)

and CourseName (a string), and simply assigns these values into the corresponding fields.

Therefore, valid ways to create an instance of a GolfCourse are:




Or, more simply



Note that the names of the constructor functions are not visible outside the class.

Constructors are identified by their signatures (basically, their parameters) and not by their

names.

104 Microsoft .Net Interface

GolfService: Slot class
The Slot class is effectively a structure with two fields named Time and Players.

Time is a DateTime object that represents a time that can be reserved on the first tee.

Players is an array of (up to 4) strings that contains the names of the golfers who have

reserved to start their round of golf at that time.





















This class provides two constructor functions named  and . However, for

internal reasons, if a class defines any constructor functions, it is currently necessary to

provide a dummy default constructor (the form of the constructor that takes no parameters);

hence .

The constructor  accepts a single DateTime parameter, which it assigns to the

Time, field, and initialises the Players field to an empty array.

The constructor ctor2 accepts two arguments, a specified tee time, and an array of strings

that contains golfers names. It assigns these parameters to Time and Players

respectively.

 Chapter 6: Writing Web Services 105

GolfService: Booking class
The Booking class represents the result of the MakeBooking method. It contains 4

fields named OK, Course, TeeTime and Message.

OK is Boolean and indicates whether or not the attempt to make a reservation was

successful. If OK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a GolfCourse object, and the

TeeTime field contains an instance of a Slot object. Together, these objects identify the

reserved golf course and starting slot. The latter specifies both the starting time, and the

names of all the golfers who have been allocated that starting time and who will therefore

play together.

















This class provides a single constructor method, which must be called with values for all

four fields.

106 Microsoft .Net Interface

GolfService: StartingSheet class
The StartingSheet class represents the result of the GetStartingSheet method. It

contains 5 fields named OK, Course, Date, Slots and Message. OK is Boolean and

indicates whether or not a starting sheet is available for the specified course and date.

If OK is false (0), the Message field (a string) indicates the reason for failure.

If OK is true (1) the Course field contains an instance of a GolfCourse object, the

Date field contains the date in question, and the Slots field contains an array of Slot

objects. Each Slot object specifies a starting time and the names of golfers who are

booked to play at that time.



















Like the Booking class, the StartingSheet class provides a single constructor

method. In this case, the constructor is called with values for just 3 of the fields; the values

of the other fields are expected to be assigned later.

 Chapter 6: Writing Web Services 107

GolfService: GetCourses function










The Get function retrieves the tie number of the GolfData component file from

the Application object and reads its first component.

The function then creates a GolfCourse object for each of the courses recorded on the

file, and returns the array of GolfCourse objects as its result.

108 Microsoft .Net Interface

GolfService: GetStartingSheet function
The  function retrieves the tie number of the GolfData

component file from the Application object and reads its first component. Line [11]

creates an instance of a StartingSheet object and uses it to initialise the result . The

value of the OK field is set to 0 to indicate failure.

It then validates the requested CourseCode. If invalid, it simply sets the Message field

in the result and returns it. Similarly, it checks to see if there is a starting sheet on file for

the requested date. If not, it sets the Message field to indicate this, and returns.

Note that line[16] extracts the Year, Month and Day properties from the requested tee

time, a DateTime object, and converts to an IDN. This is used to index the component

containing the starting sheet for that day.

































 Chapter 6: Writing Web Services 109



110 Microsoft .Net Interface

Line[24] sets the OK field of the result to 1 (success).

Line[25] converts the stored tee times (in minutes) to DateTime objects.

Line[26] combines the tee times and golfers into a vector of 2-element arrays, and creates a

Slot object for each of them. The result is assigned to the Slots field of the result .

GolfService: MakeBooking function
The  function checks that the requested tee-time is available, for the

specified number of players and updates the starting sheet accordingly. The result of the

function is a Booking object.

 first retrieves the tie number of the GolfData component file from the

Application object and reads its first component.

Lines[13 14] create instances of GolfCourse and Slot objects, which at this stage are

not validated. Line[15] then initialises the result , a Booking object, which includes these

instances. At this stage,  is 0 indicating failure.

Line[16] validates the requested CourseCode, and, if invalid, simply sets 

and returns.

Similarly, Lines[20 24] check that the requested tee time is within the next 30 days from

now. If not, the function assigns the appropriate error message to  and returns.

Note that these two statements employ the APL primitive function  (rather that the

op_GreaterThan method) to compare the requested tee time (a DateTime object) with

a new DateTime object that represents now and now+30 days respectively.

Notice that Line[24] uses the AddDays method to create a new DateTime object that

represents now + 30 days. An alternative expression, to get now+30 days is:



Lines[28-47] are concerned with retrieving the appropriate component from the file,

initialising it or re-using an old one, if it is not present. Each component represents the

starting sheet for a particular course on a particular day.

Lines[48-63] check whether or not the requested slot is available (for the specified number

of golfers). If not it returns an error message as before or, if  is 1 (true), it

attempts to allocate the slot closest to the requested time.

If an appropriate slot is found, Lines[72 73] update the Slot object with the assigned time

and names of the golfers. Line[74] then inserts the modified Slot object into the result,

and sets the  field to 1 (true) to indicate success.

 Chapter 6: Writing Web Services 111















































112 Microsoft .Net Interface








 Chapter 6: Writing Web Services 113











































114 Microsoft .Net Interface

Testing GolfService from IE5
If you point your browser at the URL

http://localhost/apl.net/Golf/Golf.asmx, GolfService will be

compiled and ASP.NET will fabricate a page about it for the browser to display as shown

below.

The three methods exposed by GolfService are listed.

 Chapter 6: Writing Web Services 115

Invoking the GetCourses method generates the following output.

Notice that the data type of the result is ArrayOfGolfCourse, and the data type of each

element of the result is GolfCourse. Furthermore, the public fields defined for the

GolfCourse object are clearly named.

All this information is derived from the declarations in the Golf.asmx script.

As supplied, the GolfData component file contains only 3 golf courses as shown below.

ASP.NET generates a Form containing fields that allow the user to invoke the

MakeBookings method as shown below.

116 Microsoft .Net Interface

Notice the way a DateTime value is specified. Note too that the GimmeNearest

parameter is Boolean, so you must enter "True" or "False". If you enter 0 or 1, it will

cause an error and the application will refuse to try to call MakeBookings because you

have specified the wrong type for a parameter.

When you try this yourself, remember to enter a date that is within the next 30 days, and a

time between 07:00 and 15:00. Alternatively, you may wish to experiment with invalid data

to check the error handling.

 Chapter 6: Writing Web Services 117

The result of invoking MakeBooking with this data is shown below.

Notice how all the information about the Booking object structure, including the structure

of the sub-objects, is provided.

118 Microsoft .Net Interface

The following picture shows data suitable for invoking the GetStartingSheet method.

If you try this for yourself, choose a course and date on which you have made at least one

successful booking.

 Chapter 6: Writing Web Services 119

Finally, the result of the GetStartingSheet function is illustrated below.

The output clearly shows that the result, a StartingSheet object, contains an array of

Slot objects, each of which contains a Time field and a Players field.

120 Microsoft .Net Interface

Using GolfService from C#
The csharp sub-directory in samples\asp.net\golf contains sample files for

accessing the GolfService Web Service from C#. The C# source code in Golf.cs is

shown below.

using System;

class MainClass {

 static void Main(String[] args)

 {

 GolfService golf = new GolfService();

 int nArgs = args.Length;

 Booking booking;

 booking=golf.MakeBooking(

/* Course Code */ 1,

/* Desired Tee Time */ DateTime.Parse(args[0]),

/* nearest is OK*/ true,

/* player 1 */ (nArgs > 1) ? args[1] : "",

/* player 2 */ (nArgs > 2) ? args[2] : "",

/* player 3 */ (nArgs > 3) ? args[3] :"",

/* player 4 */ (nArgs > 4) ? args[4] :""

);

 Console.WriteLine(booking.OK);

 Console.WriteLine(booking.TeeTime.Time.ToString());

 foreach (String player in booking.TeeTime.Players)

 Console.WriteLine(player);

 }

}

The following example shows how you may run the csharp program golf.exe from a

DOS prompt. Please remember to specify a reasonable date and time rather than the one

used in this example.

csharp>golf 2001-08-07T08:00:00 T.Woods A.Palmer P.Donnelly

True

25/08/2001 08:00:00

T.Woods

A.Palmer

P.Donnelly

csharp>

 Chapter 6: Writing Web Services 121

Sample Web Service: EG2
In all the previous examples, we have relied upon ASP.NET to compile the APLScript

into a .NET class prior to running it. This sample illustrates how you can make a .NET class

yourself.

For this example, the Web Service script, which is supplied in the file

samples\asp.net\webservices\eg2.asmx (mapped via an IIS Virtual Directory

to the URL http://localhost/apl.net/webservices/eg2.asmx)is reduced

to a single statement that merely invokes the pre-defined class called

APLServices.Example.

The entire file, viewed in Notepad, is shown below.

Given this instruction, ASP.NET will locate the APLServices.Example Web Service

by searching the Bin sub-directory for assemblies. Therefore, to make this work, we have

only to create a .NET assembly in samples\asp.net\Bin. The assembly should

contain a .NET Namespace named APLServices, which in turn defines a class named

Example.

The procedure for creating .NET classes and assemblies in Dyalog APL was discussed in

Chapter 3. Making a WebService class is done in exactly the same way.

Starting with a , we first create a namespace called . This will

act as the container corresponding to a .NET Namespace in the assembly.




Within , we next create a  object called  that inherits

from System.Web.Services.WebService. This is the Web Service class.







122 Microsoft .Net Interface

Then, within , we can write a function called  that will

represent the single method to be exported by this Web Service.








The next step is to define the .NET Properties for the  function as shown below.

 Chapter 6: Writing Web Services 123

It is a good idea to)SAVE the workspace, although this is not absolutely essential.








Then, select the Export… item from the Session File menu, and save the assembly in

samples\asp.net\Bin. The name of the assembly is unimportant.



124 Microsoft .Net Interface

When you click Save, the Status Windows displays the following information to confirm

that the assembly has been created correctly.

 Chapter 6: Writing Web Services 125

Testing EG2 from IE5
If you point your browser at the URL

http://localhost/apl.net/webservices/eg2.asmx, ASP.NET will

fabricate a page about it for the browser to display as shown below.

The Add method exposed by APLServices.Example is shown, together with a Form

from which you can invoke it.

126 Microsoft .Net Interface

If you enter the numbers 123 and 456 in the fields provided, then press Invoke, the method

will be called and the result displayed as shown below.

 Chapter 6: Writing Web Services 127

129

C H A P T E R 7

Calling Web Services

Introduction
A Web Service communicates with its clients using TCP/IP and HTTP/XML protocols. To

call a Web Service directly you need to write plumbing code to handle this communication.

Fortunately, Microsoft provides a utility called WSDL.EXE that creates a stub or proxy

class for a Web Service. The client can then call the Web Service by creating an instance of

the proxy class and calling its methods. The methods exposed by the proxy have exactly the

same syntax as those of the Web Service itself.

WSDL.EXE actually produces the source code for the proxy class, which must then be

compiled.

The MakeProxy function
The  function is provided in the supplied workspace

samples\asp.net\webservices\webservices.dws.

 is monadic and its argument specifies the URL of the Web Service to which

you want to connect. For example, the following expressions uses  to connect

to the LoanService sample Web Service provided with Dyalog .Net:



 runs the Microsoft utility WebServiceUtil.exe passing the name of

your URL to it as an argument. The utility then creates a C# source code file in your current

directory that contains the code necessary to create a proxy class. The name of the C# file is

the name of the Web Service (as declared in its header line) followed by the extension .cs.

 then calls the C# compiler to compile this file, creating an assembly with the

same name, but with a .dll extension, in your current directory. This assembly contains a

.NET class of the same name.

Note that the paths to WSDL.EXE and CSC.EXE are hard-coded in , but are

checked when it runs. You will have to modify this function if the hard-coded paths are

wrong.

130 Microsoft .Net Interface

Using LoanService from Dyalog APL
For example, the above call to  will create a C# source code file called

LoanService.cs, and an assembly called LoanService.dll in your current

directory. The name of the proxy class in LoanService.dll is LoanService.

You use this proxy class in exactly the same way that you use any .NET class. For example:






Notice that, as expected, the result of  is an object of type LoanResult.

For convenience, we will assign this to  and then reference its fields, which behave like

variables:









The  field is, of course, a vector because it was defined that way. Whilst it may

be inconvenient that .NET Web Services does not currently support multi-dimensional

arrays, it is easy to get the data into the right shape:









When you execute the CalcPayments method in the proxy class, the class transforms and

packages up your arguments into an appropriate SOAP/XML stream and sends them, using

TCP/IP, to the URL that represents the Web Service wherever that URL is on the internet or

your Intranet. It then decodes the SOAP/XML that comes back, and returns the response as

the result of the method.

Note that, depending upon the speed of your connection, and the logical distance away of

the Web Service itself, calling a Web Service method can take several seconds; regardless

of how much time it actually takes to execute on its server.

 Chapter 7: Calling Web Services 131

Using GolfService from Dyalog APL
The workspace samples\asp.net\webservices\webservices contains

functions that present a GUI interface to the GolfService web service.

The  function accesses GolfService through a proxy class.  is called with an

argument of 0 or 1. Use 1 to force GOLF to create or rebuild the proxy class, which it does

by calling . You must use an argument of 1 the first time you call , or if

you ever change the GolfService APL code.

Note that there is currently a problem if you attempt to use (i.e. compile) GolfService

for the very first time via the  function. It is currently necessary to ensure that

GolfService is first compiled using browser access as described previously.

The first few lines of the function are listed below. If the argument is 1, line[2] makes the

proxy class GolfService.DLL in the current directory; if not it is assumed to be there

already. Line[6] defines  to use it, and Line[7] creates a new instance which is

assigned to . Line[8] calls the GetCourses method, which returns a vector of

GolfCourse objects. Notice how namespace reference array expansion is used to extract

the course codes and names from the Code and Name fields respectively.












132 Microsoft .Net Interface

The following screen shot illustrates the user interface provided by . In this example,

the user has typed the names of two golfers (one rather more famous than the other) and

then presses the Book it! button.

This action fires the  callback function which is shown below.
























 Chapter 7: Calling Web Services 133

Line[6] calls the MakeBooking method of the  object, passing it the data entered by

the user. The result, a Booking object, is assigned to . Line[8] checks its OK

field to tell whether or not the reservation was successful. If so, lines[9-11] display the

message box illustrated below. Notice how the various fields are extracted and notice how

the ToLongDateString and ToShortTime String methods are employed.

Pressing the Starting Sheet button runs the  callback listed below.



























134 Microsoft .Net Interface

Line[3] calls the GetStartingSheet method of the  object. The result, a

StartingSheet object, is assigned to . Line[4] checks its OK field to see if the

call succeeded. If so, lines[5-12] display the result in a Grid, which is illustrated below.

 Chapter 7: Calling Web Services 135

Exploring Web Services
You can use the Workspace Explorer to browse the proxy class associated with a Web

Service, in exactly the same way that you can browse any other .NET Assembly. The

following screen shots show the Metadata for LoanService, loaded from the

LoanService.dll proxy.

Remember, LoanService was written in APLScript, but it appears and behaves just

like any other .NET class.

The first picture displays the structure of the LoanResult class.

136 Microsoft .Net Interface

The second picture shows the methods exposed by LoanService. In addition to

CalcPayments, which was written in APLScript, there are a large number of other

methods, which have been inherited from the base class.

 Chapter 7: Calling Web Services 137

Asynchronous Use
Web Services provide both synchronous (client calls the function and waits for a result) and

asynchronous operation.

Each method is exposed as a function with the same name (the synchronous version)

together with a pair of functions with that name prefixed with  and  respectively.

The  functions take two additional parameters; a delegate class that represents a

callback function and a state parameter.

To initiate the call, you execute the  method using the standard parameters

followed by two objects. The first is an object of type System.AsyncCallback that

represents an asynchronous callback, i.e. a callback to be invoked when the asynchronous

call is complete. The second is an object which is used to supply extra information. We will

see how callbacks are used later in this section. If you are not using a callback, these items

should be null object references. You can specify a reference to a null object using the

expression . For example, using the LoanService sample as above:



The result is an object of type WebClientAsynchResult.




Then, some time later, you call the  method with this object as a parameter. For

example:




You can execute several asynchronous calls in parallel:









138 Microsoft .Net Interface

Using a callback
The simple approach described above is not always practical. If it can take a significant

amount of time for the web service to respond, you may prefer to have the system notify

you, via a callback function, when the result from the method is available.

The example function  in the workspace

samples\asp.net\webservices\webservices.dws illustrates how you can do

this. It is somewhat artificial, but hopefully explains the mechanism that is involved.

 itself is just a convenience function that calls  with

suitable arguments.  takes an argument of 1 or 0 that determines whether

or not a Proxy class for LoanService is to be built.





The  function, and its callback function , are more

interesting.




























 Chapter 7: Calling Web Services 139



140 Microsoft .Net Interface

The effect of running  is as follows:













 creates a new instance of the LoanService class called . The next

line creates an object of type System.AsyncCallback named . This object, which is

termed a delegate, identifies the callback function that is to be invoked when the

asynchronous call to CalcPayments is complete. In this case, the name of the callback

function is . Note that  is necessary because the AsyncCallback

constructor must be called with a parameter of type System.Object. The line

 calls BeginCalcPayments with the parameters for

CalcPayments, followed by references to  (which identifies the callback) and ,

which identifies the object in question. The latter will turn up in the argument supplied to

the  callback. Lines[12-14] loop, displaying dots, until the asynchronous

call is complete.  will be invoked during or immediately after this loop,

and will be executed in a different APL thread.

When the  callback is invoked, its argument  is an object of type

System.Web.Services.Protocols.WebClientAsyncResult. It is in fact a

reference to the same object , that was the result returned by .

This object has an AsyncState property that references the LoanService object 

that we passed as the final parameter to . 

retrieves this object and assigns it to .  calls the

EndCalcPayments method, passing it  as the AsyncResult parameter as before.

The resulting LoanResult object is then formatted and displayed.

 Chapter 7: Calling Web Services 141

143

C H A P T E R 8

Writing ASP.NET Web Pages

Introduction
Under Microsoft IIS, a static web page is defined by a simple text file with the extension

.htm or .html that contains simple HTML. When a browser requests such a page, IIS simply

reads it and squirts it back. The contents of a static web page are constant and, until

somebody changes it, the page appears the same to all users at all times.

A dynamic web page is represented by a simple text file with the extension .aspx. Such a

file may contain a mixture of (static) HTML, ASP.NET objects and a server-side script.

ASP.NET objects are built-in .NET classes that generate HTML when the page is

processed. Scripts contain functions and subroutines that are invoked by events (such as the

Page_Load event) or by user interaction.

Typically, a script will generate HTML dynamically, when the page is loaded. For example,

a script could perform a database operation and return an HTML table containing a list of

products and prices. A script may also contain code to process user interaction, for example

to process the contents of a Form that is filled in and then submitted by the user. These

scripts are referred to as server-side scripts because they are executed on the server. The

browser sees only the results produced by the scripts and not the scripts themselves. Code in

a server-side script always involves the generation of a new page by the server for display in

the browser.

The first time ASP.NET processes a .NET web page, it compiles the entire page into a

.NET Assembly. Subsequently, it calls the code in the assembly directly. The language used

to compile the page is defined in the <script> section, which is typically defined at the top

of the page. If the <script> section is omitted, or if it fails to explicitly specify the language

attribute, the page is compiled using the default scripting language. This is configurable, but

is typically VB or C#.

144 Microsoft .Net Interface

This Chapter is made up almost entirely of examples, the source code of which is supplied

in the samples\asp.net directory and the sub-directories it contains. This directory is mapped

as an IIS Virtual Directory named apl.net, so you may execute the examples by

specifying the URL http://localhost/apl.net/ followed by the name of the sub-

directory and page.

To use APLScript effectively in Web Pages, you need to have a thorough understanding

of how ASP.NET works.

In the first example, an outline description ASP.NET technology is provided. For further

information, see the Microsoft .NET Framework documentation and Beginning ASP.NET

using VB.NET, Wrox Press Ltd, ISBN 1861005040.

Your first APL Web Page
The first web page example is Intro\intro1.aspx, which is listed below. This page

displays a button whose text is reversed each time you press it.
























In this example, the page language is defined in the <script> section to be "apl". This

in turn is mapped to the APLScript compiler via information in the IIS configuration file,

Machine.config.

The page layout is described in the section between the <html> and </html> tags. This

page contains a Form in which there is a Button labelled (initially) “Press Me”

 Chapter 8: Writing ASP Web pages 145

The Form and Button page elements may appear to be simple HTML, but in fact there is

more to them than meets the eye and they are actually both types of ASP.NET intrinsic

controls.

Firstly, the runat="server" attribute indicates that an HTML element should be parsed

and treated as an HTML server control. Instead of being handled as pure text that is to be

transmitted to the browser "as is", an HTML server control is effectively compiled into

statements that then generate HTML when executed. Furthermore, an HTML server control

can be accessed programmatically by code in the Script, whereas a pure HTML element

cannot. On its own, runat="server" identifies the HTML element as a so-called basic

intrinsic control.

When you add runat="server" to a Form, ASP.NET automatically adds other

attributes that cause the values of its controls to be POSTed back to the same page. In

addition, ASP.NET adds a HIDDEN control to the form and stores state information in it.

This means that when the page is reloaded into the browser the state and contents of some

or all of its controls can be maintained, without the need for you to write additional code.

The asp: prefix for the Button, identifies the control as a special ASP.NET intrinsic

control. These are fully-fledged .NET Classes in the .NET Namespace

System.Web.UI.WebControls that expose properties corresponding to the standard

attributes that are available for the equivalent HTML element. You manipulate the control

as an object, while it, at runtime, emits HTML that is inserted into the page.

At this point, it is instructive to study what happens when the page is first loaded and the

appearance of the page is illustrated below.

146 Microsoft .Net Interface

The HTML that is transmitted to the browser is:

<html>

<body>

 <form name="ctrl1" method="post" action="intro1.aspx"

id="ctrl1">

<input type="hidden" name="__VIEWSTATE"

value="YTB6NTQ3ODg0MjcyX19feA==5725bd57" />

 <input type="submit" name="Pressme" value="Press Me"

id="Pressme" />

 </form>

</body>

</html>

Firstly, notice that, as expected, the contents of the <script> section are not present.

Secondly, because the Form and Button are intrinsic controls, ASP.NET has added certain

attributes to the HTML that were not specified in the source code.

The Button now has the added attribute input type="submit", which means that

pressing the Button causes the contents of the Form to be transmitted back to the sever.

The Form now has method="post" and action="intro1.aspx" attributes, which

means that, when the Form is submitted, the data is POSTed back to intro1.aspx, the

page that generated the HTML in the first place.

So when the user presses the button, the browser sends back a POST statement, with the

contents of the Form, including the value of the HIDDEN field, requesting the browser to

load intro1.aspx.

In the server, ASP.NET reloads the page and processes it again. In fact, because of the

stateless nature of HTTP, the server does not know that it is reprocessing the same page,

except that it is being executed by a POST command with the hidden data embedded in the

Form that it put there the first time around. This is the mechanism by which ASP.NET

remembers the state of a page from one invocation to another.

This time, because a POST back is loading the page, and because the Pressme button

caused the POST, ASP.NET executes the function associated with its onClick attribute,

namely the APLScript function .

When it is called, the argument supplied to Reverse contains two items. The first of these is

an object that represents the control that generated the onClick event; the second is an

object that represents the event itself. In fact,  and its argument are very similar to

a standard Dyalog APL callback function.

 Chapter 8: Writing ASP Web pages 147








The code in the  function is simple. The expression () is a namespace

reference (ref) to the Button, and ().Text refers to its Text property whose value is

reversed. Note that  could just as easily refer to the Button by name, and use

 instead.

After pressing the button, the page is redisplayed as shown below:

This time, the HTML generated by intro1.aspx is:

<html>

<body>

 <form name="ctrl1" method="post" action="intro1.aspx"

id="ctrl1">

<input type="hidden" name="__VIEWSTATE"

value="YTB6NTQ3ODg0MjcyX2Ewel9oejV6MXhfYTB6X2h6NXoxeF9hMHph

MHpoelRlXHh0X2VNIHNzZXJQeF9feF9feHhfeHhfeF9feA==45acf576"

/>

 <input type="submit" name="Pressme" value="eM sserP"

id="Pressme" />

 </form>

</body>

</html>

148 Microsoft .Net Interface

Returning to the  function, note that the declaration statements at the top of the

function are essential to make it callable in this context.








Firstly the  function must be declared as a public member of the script. This is

achieved with the statement.



Secondly, the .NET runtime will only call the function if it possesses the correct signature,

which is derived from its parameters and their types.

The required signature for a method connected to an event, such as the OnClick event of a

Button, is that it takes two parameters; the first of which is of type System.Object and

the second is of type System.EventArgs. The  function declares its

parameters with the statements:



Note that the parameter declarations do not include the System prefix. This is because

when the script is compiled the names are resolved using the current value of .

When the APLScript is compiled, the default value for  is automatically defined

to contain System along with most of the other namespaces that will be used when writing

web pages

 (Strictly speaking, the first argument is expected to be of type

System.Web.UI.WebControls.Button, but as this type inherits ultimately from

System.Object the function signature is satisfied.)

Note that if the  function is defined with a signature that does not match that

expected signature for the OnClick callback, the function will not be run.

Furthermore, if the function associated with the OnClick statement is not defined as a public

method in the APLScript the page will appear to compile but the  function will

not get executed.

 Chapter 8: Writing ASP Web pages 149

Note that unlike Web Services, there is no requirement for a  or 

statement in the script. This is because a file with an .aspx extension implicitly generates

a class that inherits from System.Web.UI.Page.

The Page_Load Event
Intro6.aspx illustrates how you can dynamically initialise the contents of a Web Page

using the Page_Load event. This example also introduces another type of Web Control, the

DropDownList object.



































When an ASP.NET web page is loaded, it generates a Page_Load event. You can use this

event to perform initialisation simply by defining a public function called  in

150 Microsoft .Net Interface

your APLScript. This function will automatically be called every time the page is loaded.

The  function should be niladic.

 Chapter 8: Writing ASP Web pages 151

Note that, if the page employs the technique illustrated in Intro1.aspx, whereby the

page is continually POSTed back to itself by user interaction, your  function

will be run every time the page is loaded and you may not wish to repeat the initialisation

every time. Fortunately, you can distinguish between the initial load, and a subsequent load

caused by the post back, using the IsPostBack property. This property is inherited from

the System.Web.UI.Page class, which is the base class for any .aspx page.

The  function in this example checks the value of . If 0 (the

page is being loaded for the first time) it initialises the contents of the  object, adding

3 items "Apples", "Oranges" and "Bananas". The explanation for the statement:



is that the DropDownList WebControl has an Items property that is a collection of

ListItem objects. The collection implements an Add function that takes a String

Argument that can be used to add an item to the list.

Notice that the name of the object  is defined by the id="list" attribute of

theDropDownList control that is defined in the page layout section of the page.

In this example, the page is processed by a POST back caused by pressing the 

button. As it stands, changing the selection in the  object does not cause the text in the

 object to be changed; you have to press the  button first.

152 Microsoft .Net Interface

However, you can make this happen by adding the following attributes to the  object.

AutoPostback="true"

OnSelectedIndexChanged="Select"/>

AutoPostback causes the object to generate HTML that will provoke a post back

whenever the selection is changed. When it does so, the OnSelectedIndexChanged

event will be generated in the server-side script which in turn will call , which in

turn will cause the text in the out object to change.

Note that this technique, which can be used with most of the ASP.NET controls including

CheckBox, RadioButton and TextBox controls, relies on a round trip to the server every

time the value of the control changes. It will not perform well except on a fast connection to

a lightly loaded server.

 Chapter 8: Writing ASP Web pages 153

Code Behind
It is often desirable to separate the code content of a page completely from the HTML and

other text, layout or graphical information by placing it in a separate file. In ASP.NET

parlance, this technique is known as code behind.

The intro7.aspx example illustrates this technique.

%@Page Language="apl" Inherits="FruitSelection"

src="fruit.apl" %>

<html>

<body>

<form runat="server" >

<asp:DropDownList id="list" runat="server"

autopostback="true"

OnSelectedIndexChanged="Select"/>

<p>

<asp:Label id=out runat="server" />

<p>

<asp:Button id="btn" Text="Pick" runat="server"

OnClick="Select" />

</form>

</body>

</html>

This essentially implements the same web page as intro6a.aspx but here code behind

is used to separate the script implementation from the .aspx file.

The statement

%@Page Language="apl" Inherits="FruitSelection"

src="fruit.apl" %>

says that this page, when compiled, should inherit from a class called FruitSelection.

Furthermore, the FruitSelection class is written in the "apl" language, and its source

code resides in a file called fruit.apl. FruitSelection is effectively the base class

for the .aspx page.

In this case, fruit.apl is simply another text file containing the APLScript code and

is shown below.

154 Microsoft .Net Interface





















The first thing to notice is that the file requires  and  statements.

These are required to tell the APLScript compiler the name of the class being defined,

and the name of its base class. When the source code is in a .aspx file, this information is

provided automatically by the APLScript compiler. However, this is not the case here.

The name of the class, in this case FruitSelection, must be the same name as is

referenced in the .aspx web page file itself (intro7.aspx). The base class must be
System.Web.UI.Page

The body of the script is just the same as the script section from the previous example. Only

the names of the fruit have been changed so that it is clear which example is being executed.

 Chapter 8: Writing ASP Web pages 155

156 Microsoft .Net Interface

Workspace Behind
The previous section discussed how APL logic can be separated from page layout, by

placing it in a separate APLScript file which is referred to from the .aspx web page. It is

also possible to have the code reside in a separate workspace. This allows you to develop

web pages using a traditional workspace approach, and it is probably the quickest way to

give an HTML front-end to an existing Dyalog APL application.

In the previous example, you saw that the fruit.apl file defined a new class called

FruitSelection that inherits from System.Web.UI.Page. This class contains a

 function that (by virtue of its name) overrides the Page_Load method of the

underlying base class and will be called every time the web page is loaded or posted back.

The  function takes whatever action is required; for example, initialisation.

The class also contained a callback function to perform some action when the user pressed a

button.

A similar technique is employed when the code behind the web page is implemented in a

separate workspace. The workspace should contain a NetType object that inherits from

System.Web.UI.Page. This class may contain a  function that will be

invoked every time the corresponding web page is loaded, and as many callback functions

as are required to provide the application logic. The workspace is hooked up to one or more

web pages by the Inherits="<classname>" and src="<workspace"

declarations in the Page directive statement that appears at the beginning of the web page

script.

The ACTFNS sub-directory in samples\asp.net contains some examples of Dyalog

APL systems that have been converted to run as Web applications using this technique.

Dyadic is grateful to David Hughes (dhughes@hughes-

farnham.freeserve.co.uk) who provided the original workspaces and advised on

their conversion.

The two workspaces are named ACTFNS.DWS and PROJ.DWS. The original code used the

Dyalog APL GUI to display an input Form, collect and validate the user's input, and

calculate and display the results. The original logic supported field level validation and

results were immediately recalculated whenever any field was changed. With some

exceptions, this has been changed so that the user must press a button to tell the system to

recalculate the results. This approach is more appropriate in an Internet application,

especially when connection speed is low. Apart from this change, the applications run more-

or-less as originally designed.

 Chapter 8: Writing ASP Web pages 157

proj_xxx.asp

x

sla_tab.aspx sla_disp.asp

x

proj.aspx

actfns.htm

ACTFNS.DWS PROJ.DWS

The diagram above illustrates the structure of the web application and the various

files involved. The starting page, actfns.htm, simply provides a menu of

choices which link to various .aspx web pages. These pages in turn are linked to

one of the two workspaces via the src="" declaration

158 Microsoft .Net Interface

The actfns.htm start page offers 3 application choices

 Chapter 8: Writing ASP Web pages 159

The result of choosing Tabulate single life insurance and annuity values

When you choose the first option, the system loads sla_tab.aspx. This defines the

screen layout in terms of ASP.NET controls, including the DataGrid control for

tabulating the results. The sla_tab.aspx script contains the declarations

Inherits="actuarial" src="actfns.dws, so ASP.NET loads the actuarial

class from this workspace (via a call to Dyalog APL). When the page is loaded, it generates

a Page_Load event, which in turn calls its Page_Load method. This populates the ASP

controls with data, and the resulting web page is displayed. The mechanism is described

below.

For further details, see the sla_tab.aspx script and ACTFNS.DWS workspace.

160 Microsoft .Net Interface

Converting an existing Workspace
The steps involved in converting the workspaces were as follows:

1. Replace the Dyalog APL GUI with the equivalent HTML Forms, which are

defined in one or more separate .aspx web pages. To retain consistency, it is

helpful to give the ASP controls the same names as the original GUI controls,

which they are replacing.

2. Attach the names of APL callback functions to the appropriate ASP controls;

essentially, any controls that will be involved in a postback operation, such as the

Submit button.

3. Starting with a , create a  object that represents a .NET class

based upon System.Web.UI.Page. For example, in converting the ACTFNS

workspace, we started by defining  as follows:








and then creating the NetType object:



The name you choose for this object will replace classname in the

Inherits="classname" declaration in the .aspx web page(s) that call it.

4. Change into the newly created  object, and copy the workspace to be

converted; in this case, the starting point was a workspace named DH_ACTFNS:






5. Modify the code as appropriate, inserting a  function and whatever

callbacks functions are required.

 Chapter 8: Writing ASP Web pages 161

The Page_Load function
Using its .NET Properties page, the  function must be declared as a Public

Method. You may either call the function , or export an arbitrary function as

Page_Load by entering the name Page_Load in the edit box on this property page. Note

that, either way, Page_Load must be spelled correctly as it is this name that causes the

function to override the base class Page_Load method of the same name.

For example, the Page_Load function of the actuarial class in ACTFNS.DWS is shown

below:


































If exported correctly,  will be called every time the calling web page is loaded.

This occurs when the page is loaded for the first time, and whenever the page is submitted

162 Microsoft .Net Interface

back to the web server by the browser (postback). A postback will occur whenever a

callback function is involved, and potentially at other times.

 Chapter 8: Writing ASP Web pages 163

The  function may determine whether it is being invoked by a first time load,

or by a postback, from the value of the IsPostBack property. This is a property of the

container NetType object that it inherits from its base class System.Web.UI.Page.

The  example shown above uses this property to control the initialisation of

the controls in the calling web page. The names , ,  and so forth refer to

names of controls in the calling web page. When  is executed, the

 object is associated with the web page itself, and so the names of all its

controls are visible as sub-objects within it.

Note that the actuarial class is used by two different web pages, and the function

 function determines which of these are involved. (It does so by

detecting the presence or otherwise of a particular control on the page).

Callback functions
The actuarial class in ACTFNS.DWS provides four callback functions named

,   and

. The first two of these functions are attached as callbacks to

the Calculate button in each of two separate web pages sla_tab.aspx and

sla_disp.aspx. For example, the statement that defines the button in sla_tab.aspx

is:

<asp:Button id=Button1 runat="server" Text="Calculate"

onClick="CALC_FSLTAB_RESULTS"></asp:Button>

The third callback, , is called by sla_tab.aspx when the user selects

a different set of Mortality Tables from the three provided.  is

called when the user clicks either of the two radio buttons that select how the output is to be

displayed.

Like the  function, callback functions must be declared as being Public

Methods. This is most easily achieved using their .NET Property page.

In addition, and this is essential, APL callback functions must be declared to have the

correct signature expected of .NET callback functions. This means that they must be

monadic, and their argument must be declared to be a 2-element nested array containing two

.NET objects; the object that generated the event, and an object that represents the

arguments to the event.

Specifically, these parameters must be of type System.Object and

System.EventArgs respectively. However, as our  contains System, it is not

necessary to include the System prefix.

164 Microsoft .Net Interface

For example, the .NET property page for the function  is shown

below:

 Chapter 8: Writing ASP Web pages 165

Validation functions
In a Dyalog APL web page application, there are basically two approaches to validation.

You can handle it entirely yourself, or you can exploit the various validation controls that

come with ASP.NET. The sample application uses the latter approach by way of

illustration. For example:

<asp:TextBox id=EINT runat="server"></asp:TextBox>

<asp:RequiredFieldValidator id="RFVINT"

 ControlToValidate="EINT"

 ErrorMessage="Interest Rate must be a number

 between 0 and 20"

 Text="*"

 runat="server"/></td>

These ASP.NET statements associate a RequiredFieldValidator named RFVINT

with the EINT field, the field used to enter Interest Rate. If the user leaves this field blank,

the system will automatically generate the specified error message. The page defines a

separate ValidationSummary control as follows:

<asp:ValidationSummary id="Summary1"

 HeaderText="Please enter a value in the following

 fields"

 Font-Size="smaller"

 ShowSummary="false"

 ShowMessageBox="true"

 EnableClientScript="true"

 runat="server"/>

The ValidationSummary control collects error messages from all the other validation

controls on the page, and displays them together. In this case, a pop-up message box is used.

One advantage of this approach is that this type of validation can be carried out client-side

by local JavaScript that is generated automatically on the server and incorporated in the

HTML that is sent to the browser.

Logical field validation for this page is carried out on the server by APL functions that are

attached to CustomValidator controls. For example:

<asp:CustomValidator id="CustomValidator_INT"

 OnServerValidate="VALIDATE_INT"

 ControlToValidate="EINT"

 Display="Dynamic"

 ErrorMessage="Interest Rate must be a number between 0

 and 20"

 runat="server"/>

166 Microsoft .Net Interface

These ASP.NET statements associate a CustomValidator control named

CustomValidator_INT with the Interest Rate field EINT. The statement

OnServerValidate="VALIDATE_INT" specifies that  is the

validation function for the CustomValidator_INT object.

The  function and its .Net Properties page are shown below.












To make the  function available to the calling web page, it is exported as a

method. Its calling signature, namely that it takes two parameters of type

System.Object and

System.Web.UI.WebControls.ServerValidateEventArgs respectively,

identifies it as a validation function. All these factors are essential in making it recognizable

and callable.

 assigns its (2-element) argument to  and  respectively.

Both are namespace references to .NET objects.  is the object that fired the event

(CustomValidator_INT).  is an object that represents the event. Its Value property

returns the text in the control being validated, in this case the control named EINT1.

 converts the text in the EINT control to a number, using the

ToDouble method of the System.Convert class. You could of course use , but

the Convert methods automatically cater for National Language numerical formats. This

statement is executed within a  control structure because the method will generate a

.NET exception if the data in the field is not a valid number.

 set the IsValid property of the

ServerValidateEventArgs object  to 0 or 1 accordingly. This also sets the

IsValid property of the validation control represented by . The system will

automatically display the error message associated with any validation control whose

 property is 0. Furthermore, the page itself has an IsValid property, which is

the logical-and of all the IsValid properties of all the validation controls on the page.

This is used later by the calculation function .

In this case, the validation function stores the numeric value of the control in a variable

, which will subsequently be used by the calculation functions.

 Chapter 8: Writing ASP Web pages 167



When the page is posted back to the server, ASP.NET executes its own built-in validation

controls and then calls the functions associated with the CustomValidator controls, in

the order they are defined on the page. In addition to the  function, there

are eight other custom validation functions. Three of these, which validate the Initial Age,

Endowment Term and Initial Duration fields, are listed below. Note that all of the

 functions have the same .NET signature as .

168 Microsoft .Net Interface













 is similar to , except that, because it expects an integer

value, it uses the ToInt32 method instead of the ToDouble method.

, which validates the Endowment Term field is slightly more interesting

because there are two levels of checking involved. The first check that the user has entered

an integer number, is performed by lines  in the same way as in the previous

examples, using the ToInt32 method of the System.Convert class within a 

control structure. However, validation of the Endowment Term field depends upon the value

of another field, namely Initial Age. Not only must the user enter an integer, but also its

value must be between 10 and (90-) where  is the value in the Initial Age field.

However, if the user has entered an incorrect value in the Initial Age field, this, the second

level of validation cannot be performed.






















 Chapter 8: Writing ASP Web pages 169

At this stage it is worth reviewing the sequence of events that occurs when a user action in

the browser causes a postback to the server.

a) The page, including all the contents of its fields, is sent back to the ASP.NET

server using an http POST command.

b) The postback causes the creation of a new instance of the page; which is

represented by a new clone of the  namespace.

c) The creation of a new page instance raises the Page_Load event which in turn

invokes the Page_Load method associated with the Page class, or an override

method is one is specified. In this case, it calls our  function in the

newly cloned instance of the  namespace. The  function

typically deals with initialisation, such as opening a component file or establishing

a connection to a data source. In this case, it does nothing on a postback.

d) Because the Calculate button was pressed (see Forcing Validation), each of the

CustomValidator controls on the page raises an OnServerValidate

event, which in turn calls the associated function in the current instance of the

page. These events occur in the order the controls are defined within the page.

Note that built-in validation controls, including any

RequiredFieldValidator controls, are invoked first, potentially in the

browser prior to the postback.

e) The control that caused the postback raises an appropriate event, which in turn

fires the associated callback function.

f) After all the control events have been raised and processed the Page_UnLoad

event is raised and the associated function (if any) is invoked. This function is a

good place to implement termination code, such as closing a component file or

data source.

g) The instance of the page is destroyed. Any global variables in the namespace, that

were defined by the Page_Load function, the validation functions and the callback

function, are lost because the clone of the  namespace disappears.

This means that within the life of the cloned instance of the actuarial namespace, the system

runs our  function followed by , followed by

, ,  etc. and finally by

. These functions take their input from the values passed in

their arguments (as in the case of the  functions) or from the properties of

any of the controls on the Page. They perform output by modifying these properties, or by

invoking standard methods on the Page.

Notice that, if successful, the  function set up a global variable (strictly

speaking, only global within the current instance of the actuarial namespace) called 

that contains the value in the Interest Rate field. Similarly,  defines a

variable called . These variables are subsequently available for use by the calculation

function.

170 Microsoft .Net Interface

This technique, of having each validation function define a variable for its associated field,

saves repeating the conversion work in the calculation routine 

that will be called when the validation is complete. It also saves repeating the conversion

work in a validation routine that needs to know the value of a previously validated field.

Returning to the explanation of , line [14] checks to see that both the

RequiredFieldValidator and CustomValidator controls for the Initial Age

field register that the value in the field is valid, before attempting to perform the second

stage of the validation which depends upon . Note that  must exist (and be a

reasonable value) if CustomValidator_AGE.IsValid is true. Notice too that it is

insufficient just to check the CustomValidator control, because its validation function

will not be invoked (and the control will register that the field is valid) if the field is empty.

Line [3] uses similar logic to set up an appropriate error message, which is assigned to the

ErrorMessage property of the corresponding CustomValidator control, represented

by .

, which validates the Initial Duration field, uses similar logic to check that

the value in the Endowment Term field is correct and that , on which it depends, is

therefore defined. In addition, in line [6] it refers to the Checked property of the

RadioButton controls named  and  respectively.



























 Chapter 8: Writing ASP Web pages 171




172 Microsoft .Net Interface

Forcing Validation
Validation controls are automatically invoked when the user activates a Button control, but

not when other postbacks occur. For example, when the user selects a different Mortality

Table (represented by a RadioButtonList control), the page calls the

 function.

<asp:RadioButtonList id=MT runat="server"

 RepeatDirection="Vertical"

 RepeatRows="3"

 tabIndex=1

 onSelectedIndexChanged="CHANGE_TABLES"

 AutoPostBack="true">

<asp:ListItem Value="UK Assured Lives">

 Selected="True">UK Assured Lives</asp:ListItem>

<asp:ListItem Value="UK Immediate Annuitant">

 UK Immediate Annuitant</asp:ListItem>

<asp:ListItem Value="UK Pension Annuitant">

 UK Pension Annuitant</asp:ListItem>

</asp:RadioButtonList>

A RadioButtonList control does not cause validation to occur, so this must be done

explicitly. This is easily achieved by calling the Validate method of the Page itself as

shown in  below.
























 Chapter 8: Writing ASP Web pages 173

Calculating and Displaying Results
The function , which for brevity is only partially shown below,

is used by the sla_tab.aspx page to calculate and display results.




































The results of the calculation are displayed in a DataGrid object named fsl. This is

defined within the sla_tab.aspx page as follows:

<asp:DataGrid id="fsl" runat="server" Width="700"

 AllowPaging="false" BorderColor="black" CellPadding="3"

 CellSpacing="0" Font-Size="9pt" PageSize="10">

174 Microsoft .Net Interface

 <ItemStyle HorizontalAlign="right" Width="100">

 </ItemStyle>

 <HeaderStyle HorizontalAlign="center"

 Font-Size="12pt" Font-Bold="true" BackColor="#17748A"

 ForeColor="#FFFFFF"></HeaderStyle>

 </asp:DataGrid>

 Chapter 8: Writing ASP Web pages 175

 checks to see if the user input is valid. If not,  hides

the DataGrid object  so that no results are displayed in the page. The display of

error messages is handled separately, and automatically, by the ValidationSummary

control on the page.

 obtain the values of the CMTAB (DropDownList) and TA

(RadioButton) controls on the page.

 store the calculated data table  in the DataGrid .

176 Microsoft .Net Interface

177

C H A P T E R 9

Writing Custom Controls for ASP.NET

Introduction
The previous chapter showed how you can build ASP.NET Web Pages by combining APL

code with the Web Controls provided in the .NET Namespace

System.Web.UI.WebControls. These controls are in fact just ordinary .NET classes.

In particular, they are extensible components that can be used to develop more complex

controls that encapsulate additional functionality.

This chapter describes how you can go about building custom server-side controls, for

deployment in ASP.NET Web Pages.

A custom control is simply a .NET class that inherits from the Control class in the .NET

Namespace System.Web.UI, or inherits from a higher class that is itself based upon the

Control class. Like any other .NET class, a custom control is implemented in an

assembly, physically as a DLL file. This chapter explores three different ways to implement

a custom control.

The Control class provides a Render method whose job is to generate the HTML that

defines appearance of the control. The first example, the SimpleCtl control, overrides

the Render method to display a simple string "Hello World" in the browser.

The TemperatureConverterCtl1 control is an example of a compositional control,

i.e. one that is composed of other standard controls packaged with special functionality.

The TemperatureConverterCtl2 control, uses the basic approach of the

SimpleCtl control, but provides the same functionality as

TemperatureConverterCtl1.

These examples, which are based upon a series of articles called Advanced ASP.NET

Server-Side Controls by George Shepherd that appeared in the msdn magazine (October

2000, January 2001 and March 2001 issues), are implemented in a namespace called

 in the workspace samples\asp.net\Temp\Bin\Temp.dws.

The corresponding .NET Assembly samples\asp.net\Temp\Bin\Temp.dll was

generated from this workspace.

178 Microsoft .Net Interface

The SimpleCtl Control



Starting with a , the first step is to make the  container

namespace, and then change into it.







Next we must define  to include all of the .NET Namespaces that will be needed:








Then we can build the first of the three example classes  , specifying its base

class to be Control (actually, System.Web.UI.Control).






Having changed into the  namespace, we can define a function called 

that overrides the Render method that  has inherited from its base class,

System.Web.UI.Control.







The Render method defined by the System.Web.UI.Control base class is void

and takes a parameter of type HtmlTextWriter. When the SimpleCtl control is

referenced in a Web Page, ASP.NET creates an instance of it and calls its Render method

because it is a Control and is expected to have one. Moreover, ASP.NET supplies an

object of type HtmlTextWriter as its parameter. You do not need to worry where this

object came from, or what it actually represents. You need only know that an

HtmlTextWriter provides a method called WriteLine that may be used to output a

 Chapter 9: Writing Custom Controls for ASP.NET 179

text string to the browser. The mechanics of how this actually happens are handled by the

HtmlTextWriter object itself.

180 Microsoft .Net Interface

In APL terms, the argument to our  function, , will be a namespace

reference, and the function can simply call its WriteLine method with a character vector

argument. This argument can contain any valid HTML string and defines the appearance of

the SimpleCtl control.

The next step is to define the public interface for the  function using its .Net

Properties dialog box as shown below. The function is defined to be void (i.e. it does not

return a result) and to take a single parameter of type HtmlTextWriter. Note that to

successfully override the inherited method, the  function must have exactly this

signature.

 Chapter 9: Writing Custom Controls for ASP.NET 181

Finally, we can save the workspace and generate the .NET Assembly. This must be located

in the Bin subdirectory of samples\asp.net\Temp which itself is mapped to the IIS

Virtual Directory localhost/apl.net/Temp.




When we select Export… from the File menu, the information displayed in the Status

window confirms that the SimpleCtl class has been successfully emitted and saved.

182 Microsoft .Net Interface

Using SimpleCtl
Our SimpleCtl control may now be included in any .NET Web Page from which

Temp.dll is accessible. The file samples\asp.net\Temp\Simple.aspx is

simply an example. The fact that this control is written in Dyalog APL is immaterial.

<%@ Register TagPrefix="Dyalog"

 Namespace="DyalogSamples" Assembly="TEMP" %>

<html>

<body>

<Dyalog:SimpleCtl runat=server/>

</body>

</html>

The first line of the script specifies that any controls referenced later in the script that are

prefixed by Dyalog:, refer to custom controls in the .NET Namespace called

DyalogSamples. In this case, DyalogSamples is located by searching the Assembly

TEMP.dll in the Bin subdirectory.

 Chapter 9: Writing Custom Controls for ASP.NET 183

The TemperatureConverterCtl1 Control

The TemperatureConverterCtl1 control is an example of a compositional control,

i.e. a server-side custom control that is composed of other standard controls.

In this example, The TemperatureConverterCtl1 control gathers together two

textboxes and two push buttons into a single component as illustrated below. Type a number

into the Centigrade box, click the Centigrade To Fahrenheit button, and the control

converts accordingly. If you click the Fahrenheit To Centigrade button, the reverse

conversion is performed.

Starting with the TEMP workspace, the first step is to change into the 

container namespace.







184 Microsoft .Net Interface

The TemperatureConverterCtl1 control is going to contain other standard controls

as child controls. A control that acts as a container should implement an interface called

INamingContainer. This interface does not in fact require any methods; it merely acts

as a marker.

When we create a  namespace to represent the control, we need to specify that it

provides this interface.


INamingContainer





Child Controls
Whenever ASP.NET initialises a Control, it calls its CreateChildControls method

(the default CreateChildControls method does nothing). So to make the appropriate

child controls, we simply define a function called  with the

appropriate public interface (no arguments and no result) as shown below.


























 Chapter 9: Writing Custom Controls for ASP.NET 185

Line[2] creates an instance of a LiteralControl (a label) containing the text

"Fahrenheit" with an HTML tag "<H3>". Controls is a property of the Control class

(from which TemperatureConverterCtl1 inherits) that returns a

ControlCollection object This has an Add method whose job is to add the specified

control to the list of child controls managed by the object.

Lines[3-5] create a TextBox child control containing the text "0", and Line[5] adds it to

the child control list.

Line[6] adds a second LiteralControl to terminate the "<H3>" tag.

Lines [8-12] do the same for Centigrade.

Lines[14-15] create a Button control labelled "Fahrenheit To Centigrade". Line[16]

associates the callback function  with the button's onClick

event. Note that it is necessary to assign the  of the function rather than its name.

Line[17] adds the button to the list of child controls.

Lines[19-22] create a Centigrade button in the same way.

This function is run every time the page is loaded; however in a postback situation, other

code steps in to modify the values in the textboxes, as we shall see.

The public interface for the  function is defined using the .NET

Properties dialog box and is shown below.

186 Microsoft .Net Interface

 Chapter 9: Writing Custom Controls for ASP.NET 187

Fahrenheit and Centigrade Values
The TemperatureConverterCtl1 maintains two public properties named

CentigradeValue and FahrenheitValue, which may be accessed by a client

application. These properties are not exposed directly as variables, but are obtained and set

via property get (or accessor) and property set (or mutator) functions. (This is

recommended practice for C# , so the example shows how it is done in APL.) In this case,

the values are simply stored in or obtained directly from the corresponding textboxes set up

by .





188 Microsoft .Net Interface

Notice that the  function uses  to convert the text in the textbox

to a numeric value. Clearly something more robust would be called for in a real application

The corresponding Set function is:





Similar functions to handle the Centigrade property are provided but are not shown

here.

 Chapter 9: Writing Custom Controls for ASP.NET 189

Responding to Button presses
We have seen how APL callback functions have been attached to the onClick events in

the two buttons. The  callback function simply obtains the

CentigradeValue property using , converts it to Fahrenheit

using , and then sets the FahrenheitValue property using

.

















These functions are all internal functions that are private to the control, and it is therefore

not necessary to define public interfaces for them.

Using the Control on the Page
The text of the script file samples\Temp\Temp1.aspx is shown below. There is really

no difference between this example and the simple.aspx described earlier.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"

 Assembly="TEMP"%>

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature

Control</h3>

<form runat=server>

<Dyalog:TemperatureConverterCtl1 id=TempCvtCtl1

runat=server/>

</form>

</center>

190 Microsoft .Net Interface

</body>

</html>

 Chapter 9: Writing Custom Controls for ASP.NET 191

The HTML generated by the control at run-time is shown below. Notice that in place of the

server-side control declaration in temp1.aspx, there are two edit controls with numerical

values in them, and two push buttons to submit data entered on the form to the server.

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature

Control</h3>

<form name="ctrl1" method="post" action="temp1.aspx"

id="ctrl1">

<input type="hidden" name="__VIEWSTATE"

value="YTB6MTc3MzAxNzYxNF9fX3g=03f01d88" />

<h3>Fahrenheit: <input name="TempCvtCtl1:ctrl1" type="text"

value="32" /></h3><h3>Centigrade: <input

name="TempCvtCtl1:ctrl4" type="text" value="0" /></h3><input

type="submit" name="TempCvtCtl1:ctrl6" value="Fahrenheit To

Centigrade" /><input type="submit" name="TempCvtCtl1:ctrl7"

value="Centigrade To Fahrenheit" />

</form>

</center>

</body>

</html>

192 Microsoft .Net Interface

The TemperatureConverterCtl2 Control

The previous example showed how to compose an ASP.NET custom control from other

standard controls. This example shows how you can instead generate standard form

elements on the browser by rendering the HTML for them directly.

Starting with the TEMP workspace, the first step is to change into the 

container namespace.







In the composite temperature control TemperatureConverterCtl1, discussed

previously, all the data transfers between the browser and the server, relating to the standard

child controls that it contains, are handled automatically by the controls themselves.

Rendered controls require a bit more programming because it is up to the control developer

to do the data transfer. The data transfer is managed through two interfaces, namely

IPostBackDataHandler and IPostBackEventHandler. We will see how these

interfaces are used later.

When we create a  namespace to represent the control, we need to specify that it

provides these interfaces.








Fahrenheit and Centigrade Values
Like the previous TemperatureConverterCtl2 control, the

TemperatureConverterCtl2 maintains two public properties named

CentigradeValue and FahrenheitValue using property get and property set

functions.

This time, the control manages the current temperature values in two internal variables

named  and , which we must initialise.




 Chapter 9: Writing Custom Controls for ASP.NET 193

The  function simply returns the current value of

. Its .NET Properties are defined as shown so that it is exported as a

property get function for the CentigradeValue property, and returns a Double.





194 Microsoft .Net Interface

The  function simply resets the value of 

to that of its argument. Its .NET Properties are defined as shown so that it is exported as a

property set function for the CentigradeValue property, and takes a Double.





The property get and property set functions for the FahrenheitValue property are

similarly defined. The .NET Properties for these functions are similar to those for the

CentigradeValue functions and are not shown.

 Chapter 9: Writing Custom Controls for ASP.NET 195









Rendering the Control

Like the SimpleCtl example described earlier in this Chapter, the

TemperatureConverterCtl2 control has a  function that generates the

HTML to represent its appearance, and in this case its behaviour too.

































196 Microsoft .Net Interface





 Chapter 9: Writing Custom Controls for ASP.NET 197

As we saw in the SimpleCtl example, the Render method will be called by ASP.NET

with a parameter that represents an HtmlTextWriter object. This is represented by the

APL local name .

Lines[2-6] and lines [9-13] generate HTML that defines two text boxes in which the user

may enter the Fahrenheit and centigrade values respectively. Lines[7 14] use the Write

method of the HtmlTextWriter object to output the HTML.

Lines[3 10] obtain the fully qualified identifier for this particular instance of the

TemperatureConverterCtl2 control from its UniqueID property. This is a

property, which it inherits from Control and is therefore also a property of the current

(APL) namespace

198 Microsoft .Net Interface

Lines[16-20] and Lines[22-26] generate and output the HTML to represent the two buttons

that convert from Fahrenheit to Centigrade and from Centigrade to Fahrenheit respectively.

Lines[18 24] generate HTML that wires the buttons up to JavaScript handlers to be

executed by the browser. The JavaScript simply causes the browser to execute a postback,

i.e. send the page contents back to the server. GetPostBackEventReference is a

(static) method provided by the System.Web.UI.Page class that generates a reference

to a client-side script function. In this case it is called with two parameters, an object that

represents the current instance of the TemperatureConverterCtl2 control, and a

string that will be passed to the server to indicate the cause of the postback (i.e. which

button was pressed). The first parameter is a namespace reference to the current space

which is generated by the function .

 Chapter 9: Writing Custom Controls for ASP.NET 199

The client-side script is itself generated, and inserted into the HTML stream, by calling the

RegisterPostBackScript method. This is done by the  function,

which overrides the OnPreRender method of the Control class upon which

TemperatureConverterCtl2 is based. This method is called by ASP.NET before it

calls Render.





To help to understand this process fully, it is instructive to examine the HTML that is

generated by these functions. We will do this a bit later in the Chapter.

200 Microsoft .Net Interface

Loading the Posted Data
Once the server-side control has rendered the HTML for the browser, the user is free to type

numbers into the text boxes and to press the buttons.

When the user presses a button, the browser runs the client-side JavaScript code (that was

inserted by the  function) that in turn generates a postback to the server.

When we created TemperatureConverterCtl2 with , we specified that it

supported the IPostBackDataHandler interface. This interface must be implemented

by controls that want to receive postback data (i.e., the contents of Form fields that the user

may have entered or changed) IpostBackDataHandler has two methods

LoadPostData and RaisePostDataChangedEvent. LoadPostData is

automatically invoked when a postback occurs, and the postback data is supplied as a

parameter.

So when the postback occurs, the server reloads the original page and, because this is a

postback situation and our control has advertised the fact that it implements

IPostBackDataHandler, ASP.NET invokes its LoadPostBack method. This

method is called with two parameters. The first is a key and the second is a collection of

name/value pairs. This contains the names of all the Form fields on the page (and there may

be others not directly associated with our custom control) and the values they had when the

user pressed the button. The key provides the means to extract the relevant part of this

collection. The  function is shown below.

 Chapter 9: Writing Custom Controls for ASP.NET 201










Line[7] obtains the two parameters from the argument and Line[8] uses the key to extract

the appropriate data from the collection.  is a comma-delimited string

containing name/value pairs. The function  simply extracts the

values from this string, i.e. the contents of the Fahrenheit and Centigrade text boxes.

202 Microsoft .Net Interface

Postback Events
The result of LoadPostData is Boolean and indicates whether or not any of the values in

a control have changed. If the result is True (1), ASP.NET will next call the

RaisePostDataChanged method. This method is called with no parameters and merely

signals that something has changed. The control knows what has changed by comparing the

old with the new, as in .

Finally, the page framework calls the RaisePostBackEvent method, passing it a string

that identifies the page element that caused the post back.

The objective of these calls is to provide the control with the information it requires to

synchronise its internal state with its appearance in the browser.

In this case, we are not interested in which of the two text box values the user has altered;

what matters is which of the two buttons FarenheitToCentigrade or CentigradeToFarenheit

was pressed. Therefore, in this case, the control uses RaisePostBackEvent rather than

RaisePostDataChanged (or indeed, LoadPostData itself, which is another option).

The reason is that RaisePostBackEvent receives the name of the button as its

argument.

 Chapter 9: Writing Custom Controls for ASP.NET 203

So in our case, the  function does nothing. Nevertheless, it is

essential that the function is provided and essential that it supports the correct public

interface, namely that it takes no arguments are returns no result (Void).





204 Microsoft .Net Interface

The  function simply switches on its argument, which is the name

of the button that the user pressed, and recalculates  or

 accordingly.










 Chapter 9: Writing Custom Controls for ASP.NET 205

Finally, the page framework calls the  and  functions again, which

generate new HTML for the browser.

Using the Control on a Page
Once all the functions, and their public interfaces for the

TemperatureConverterCtl2 have been defined, the workspace is saved and

TEMP.DLL is remade using Export from the Session File menu. For brevity, this process is

not shown pictorially here.

So long as it has access to this DLL, our custom control may be accessed from any

ASP.NET Web Page, and a simple example is shown below.

<%@ Register TagPrefix="Dyalog" Namespace="DyalogSamples"

 Assembly="TEMP" %>

<html>

<body bgcolor="yellow">

<center>

<h3>

Temperature Control</h3>

<h4>

Server-Side Noncompositional control</h4>

<form runat=server>

<Dyalog:TemperatureConverterCtl2 id=TempCvtCtl2

runat=server/>

</form>

</center>

</body>

</html>

206 Microsoft .Net Interface

The HTML that is generated by the control is illustrated below. Notice the presence of a

JavaScript function named __doPostBack. This is generated by the

RegisterPostBackScript method called from the  function. The

code that wires the buttons to this function was generated by the

GetPostBackEventReference method called from the  function.

<html>

<body bgcolor="yellow">

<center>

<h3>Temperature

Control</h3>

<h4>Server-Side

Noncompositional control</h4>

<form name="ctrl1" method="post" action="temp2.aspx"

id="ctrl1">

<input type="hidden" name="__EVENTTARGET" value="" />

<input type="hidden" name="__EVENTARGUMENT" value="" />

<input type="hidden" name="__VIEWSTATE"

value="YTB6MTc3MzAxNzYxM19fX3g=9cfcfa5c" />

<script language="javascript">

<!--

 function __doPostBack(eventTarget, eventArgument) {

 var theform = document.ctrl1

 theform.__EVENTTARGET.value = eventTarget

 theform.__EVENTARGUMENT.value = eventArgument

 theform.submit()

 }

// -->

</script>

<h3>Fahrenheit <input name=TempCvtCtl2 id=FahrenheitValue

type=text value=0></h3><h3>Centigrade <input name=TempCvtCtl2

id=CentigradeValueKey type=text value=0></h3><input

type=button value=FahrenheitToCentigrade

onClick="jscript:__doPostBack('TempCvtCtl2','FahrenheitToCent

igrade')"><input type=button value=CentigradeToFahrenheit

onClick="jscript:__doPostBack('TempCvtCtl2','CentigradeToFahr

enheit')">

</form>

</center>

</body>

</html>

 Chapter 9: Writing Custom Controls for ASP.NET 207

209

C H A P T E R 10

APLScript

Introduction
APLScript is a Dyalog APL scripting language. It was originally designed specifically to

program ASP.NET Web Pages and Web Services, but it has been extended to be of more

general use outside the Microsoft .NET environment.

APLScript is not workspace oriented (although you can call workspaces from it) but is

simply a character file containing function bodies and expressions.

APLScript files may be viewed and edited using any character-based editor such as

Notepad. APLScript files may also be edited using Microsoft Word, although they

must be saved as text files without any Word formatting.

APLScript files employ Unicode encoding so you need a Unicode font with APL

symbols to view them. The Microsoft font Arial Unicode MS is included in Dyalog APL.

The SimPL font designed by Phil Chastney may be downloaded from the British APL

Association web site http://www.vector.org.uk.

In order to type Dyalog APL symbols into an APLScript file, you also need the Dyalog

APL Input Method Editor (IME), which is included with Dyalog APL and automatically

added to your working set of IMEs during installation.

The Dyalog APL IME may be configured using Control panel/Keyboard. In particular, you

may change the associated .DIN file from the dialog box obtained by pressing IME

Settings in the Input Locales tab. Under Windows XP, this is done using Control

panel/Regional and Language Options.

There are basically three types of APLScript files that may be identified by three different

file extensions. APLScript files with the extension .aspx and .asmx specify .NET classes

that represent ASP.NET Web Pages and Web Services respectively. APLScript files with

the extension .apl may specify .NET classes or may simply represent an APL application

in a script format as opposed to a workspace format. Such applications do not necessarily

require the Microsoft .NET Framework.

210 Microsoft .Net Interface

The APLScript Compiler, aplc.exe
APLScript files are compiled into executable code by the APLScript compiler aplc.exe.

This program is called automatically by ASP.NET when a client application requests a

Web Page (.aspx) or Web Service (.asmx) and in these circumstances always generates the

corresponding .NET class. However, aplc.exe may also be used to:

 Compile an APLScript into a workspace (.dws) that you may subsequently run

using DYALOG.EXE or DYALOGRT.EXE in the traditional manner.

 Compile an APLScript into a .NET class (.dll) which may subsequently be used

by any other .NET compatible host language such as C# or Visual Basic.

 Compile an APLScript into a native Windows executable program (.exe), which

may be run as a stand-alone executable. This program may be distributed, along

with the Dyalog APL runtime DLL, as a packaged application, and does not

require any of the additional support files and registry entries that are typically

needed by the Dyalog APL run-time DYALOGRT.EXE. Note too that the Dyalog

APL dynamic link lbrary does not use MAXWS but instead allocates workspace

dynamically as required. See User Guide for further details.

 Compile a Dyalog APL Workspace (.dws) into a native Windows executable

program, with the same characteristics and advantages described above.

The aplc.exe program is designed to be run from a command prompt. If you type

aplc /? (to query its usage) the following output is displayed:

aplc.exe command line options:

/? Usage

/r:file Add reference to assembly

/o[ut]:file Output file name

/res:file Add resource to output file

/q Operate quietly

/v Verbose

/s Treat warnings as errors

/runtime Build a non-debuggable binary

/lx:expression Specify entry point (Latent Expression)

/t:library Build .Net library (.dll)

/t:nativeexe Build native executable (.exe). Default

/t:workspace Build dyalog workspace (.dws)

/nomessages Process does not use windows messages. Used

 when creating a process to run under IIS

/console Creates a console application

 Chapter 10: APLScript 211

Creating an APLScript File
Conceptually, the simplest way to create an APLScript file is with Notepad, although you

may use many other tools including Microsoft Visual Studio as described in the next

Chapter.

1. Start Notepad

2. Choose Format/Font from the Menu Bar and select an appropriate Unicode font

that contains APL symbols, such as SimPL or Arial Unicode MS.

3. Select the APL keyboard (IME) by clicking on your keyboard selector in the

System Tray. When you do so, the keyboard icon will change to the APL IME

icon, and a small floating toolbar containing an APL button will appear on your

display. Note that this keyboard setting (and button) is associated only with the

current instance of Notepad. If you start another instance of Notepad, or another

editor, you will have to select the APL keyboard for it separately and there will be

two floating toolbars on your display.

4. Initially the APL button is depressed to indicate that keystrokes are being

interpreted by the Dyalog APL IME. This utilises the input table (.DIN file)

defined by the registry key Software\Dyadic\IME\Translate Table. Normally this

will be the same as the one specified for your Dyalog APL Session.

5. Now type in your APL code. If you use a Unified keyboard, you will discover that

Ctrl+ keystrokes generate APL symbols For example, Ctrl+n generates . If you

use an APL/ASCII keyboard, you will discover that Ctrl+n and Ctrl+o switch

between APL and ASCII. In both cases, the keystrokes are intercepted immediately

by the Dyalog APL IME and do not perform the standard Notepad operations

(ctrl+n would normally open a new file). Note that you can toggle the APL button

temporarily disable and enable the APL IME.

6. Choose File/Save. When the Save As dialog appears, ensure that Encoding is set to

Unicode and Save as type: is set to All Files. Enter the name of the file, adding the

extension .asmx or .aspx, and then click Save. Note that you have to save the .asmx

file somewhere in an IIS Virtual Directory structure.

212 Microsoft .Net Interface

Transferring code from the Dyalog APL Session
You may find it easier to write APL code using the Dyalog APL function editor that is

provided by the Dyalog APL Session. Or you may already have code in a workspace that

you want to copy into an APLScript file.

If so, you can transfer code from the Session into your APLScript editor (e.g. Notepad)

using the clipboard. Notice that because APLScript requires Unicode encoding (for APL

symbols), you must ensure that character data is written to the clipboard in Unicode.

This is controlled by a parameter called UnicodeToClipboard that specifies whether or not

data is transferred to and from the Windows clipboard as Unicode. This parameter may be

changed using the Trace/Edit page of the Configure dialog box.

If set (the default), APL text pasted to the clipboard from the Session is written as Unicode

and APL requests Unicode data back from the clipboard when it is required. This makes it

easy to transfer APL code between the Session and an APLScript editor, which is using the

Arial Unicode MS font.

Unfortunately, when Dyalog APL requests Unicode data from the clipboard that was

written as ASCII text by another application (including Dyalog APL Version 8 or 9),

Windows converts the plain ASCII text to Unicode and gets it wrong. To make it possible

to transfer APL expressions to and from previous versions of Dyalog APL, or to an editor

using the (non-Unicode) Dyalog Std TT or Dyalog Alt TT font, you must set this parameter

to 0.

Unless you explicitly want to have line numbers in your APLScript, the simplest way to

paste APL code from the Session into an APLScript text editor is as follows:

1. open the function in the function editor

2. select all the lines of code, or just the lines you want to copy

3. select Edit/Copy or press Ctrl+Ins

4. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.

5. Insert del () symbols at the beginning and end of the function.

If you want to preserve line numbers, you may use the following technique:

1. In the Session window, type a del () symbol followed by the name of the

function, followed by another del () and then press Enter. This causes the

function to be displayed, with line numbers, in the Session window.

2. Select the function lines, including the surrounding dels ()and choose Edit/Copy

or press Ctrl+Insert.

3. switch to your APLScript editor and select Edit/Paste or press Shift+Ins.

 Chapter 10: APLScript 213

General principles of APLScript
The layout of an APLScript file differs according to whether the script defines a Web

Page, a Web Service, a .NET class, or an APL application that may have nothing to do with

the .NET Framework. However, within the APLScript, the code layout rules are basically

the same.

An APLScript file contains a sequence of function bodies and executable statements that

assign values to variables. In addition, the file typically contains statements that are

directives to the APLScript compiler aplc.exe. If the script is a Web Page or Web

Service, it may also contain directives to ASP.NET. The former all start with a colon

symbol (:) in the manner of control structures. For example, the  statement

tells the APLScript compiler to create, and change into, a new namespace. The

 statement terminates the definition of the contents of a namespace and

changes back from whence it came.

Assignment statements are used to set up system variables, such as , ,  and

arbitrary APL variables. For example:










These statements are extracted from the APLScript and executed by the compiler in the

order that they appear. It is important to recognise that they are executed at compile time,

and not at run-time, and may therefore only be used for initialisation.

Notice that it is acceptable to execute  to bring in functions and variables from a

workspace that are to be incorporated into the code. This is especially useful to import a set

of utilities. However, note that it is not possible to export these functions as methods of

.NET classes unless they have already been saved with .NET properties. Otherwise, all

exported functions must be defined explicitly in the APLScript.

The APLScript compiler will in fact execute any valid APL expression that you include.

However, the results may not be useful and may indeed simply terminate the compiler. For

example, it is not sensible to execute statements such as , or .

Function bodies are defined between opening and closing del () symbols. These are fixed

by the APLScript compiler using . Line numbers and white space formatting are

ignored.

214 Microsoft .Net Interface

Creating Programs (.exe) with APLScript
The following examples, which illustrate how you can create an executable program

(.exe) direct from an APLScript file, may be found in the directory

samples\aplscript.

A simple GUI example
The following APLScript illustrates the simplest possible GUI application that displays a

message box containing the string "Hello World".







This example, which is saved in the file eg1.apl, is compiled to a Windows executable

(.exe) using aplc and run from the same command window as shown below. Notice that it

is essential to define a  either in the APLScript itself, or as a parameter to the aplc

command.

 Chapter 10: APLScript 215

You can associate the .exe with a desktop icon, and it will run stand-alone, without a

(DOS) command window. Furthermore, any default APL output that would normally be

displayed in the session window will simply be ignored.

A simple console example
The following APLScript illustrates the simplest possible application that displays the text

"Hello World".

This example, which is saved in the file eg2apl, is compiled to a Windows executable

(.exe) and run from a command window as shown below. Notice that the /console flag

is used to tell the APLScript compiler to create a console application that runs from a

command prompt. In this case, default APL output that would normally be displayed in the

session window turns up in the command window from which the program was run.






Once more, it is essential to define a  either in the APLScript itself, or as a parameter to

the aplc command.

216 Microsoft .Net Interface

Defining Namespaces
Namespaces are specified in an APLScript using the  and :

statements. Although you may use  and  within functions inside an APLScript, you

should not use these system functions outside function bodies. Note that such use is not

prevented, but that the results will be unpredictable.



 introduces a new namespace called  relative to the current space.



 terminates the definition of the current namespace. Subsequent statements and

function bodies are processed in the context of the original space.

All functions specified between the  and  statements are

fixed in that namespace. Similarly, all assignments define variables inside that namespace.

The following example illustrates how APL namespace usage is handled in APLScript. The

program, contained in the file eg3.apl, is as follows:





















 Chapter 10: APLScript 217

This somewhat contrived example illustrates how a namespace is defined using

 and  statements. The namespace  contains a single

function called , which is called from the main function .

Notice that  is defined dynamically in function . If it were defined outside a

function in a static statement in the script (say, after the statement that sets , it would

not be honoured when the application was run.

This program is shown, compiled and run as a console application, below.

218 Microsoft .Net Interface

Creating .NET Classes with APLScript
It is possible to define and use new .NET classes within an APLScript.

A class is defined by  and  statements. The methods provided by the

class are defined as function bodies enclosed within these statements.

You may also define sub-classes or nested classes using nested  and 

statements.



Declares a new class called , which is based upon the Base Class ,

which may be any valid .NET Class.



Terminates a class definition block

A class specified in this way will automatically support the methods, properties and events

that it inherits from its Base Class, together with any new public methods that you care to

specify.

However, the new class only inherits a default constructor (which is called with no

parameters) and does not inherit all of the other private constructors from its Base Class.

You can define a method to be a constructor using the Access:Constructor

declarative comment. Constructor overloading is supported and you may define any number

of different constructor functions in this way, but they must have unique parameter sets for

the system to distinguish between them.

You can create and uses instances of a (local) class by invoking the  method in

statements elsewhere in the APLScript.

Exporting Functions as Methods
Within a :Class definition block, you may define private functions and public functions.

A public function is one that is exposed as a method and may be called by a client that

creates an instance of your class. Public functions have to begin with a section of

declaration statements. Other functions are purely internal to the class and are not directly

accessible by a client application.

The declaration statements for public functions perform the same task for an APLScript

that is performed using the .NET Properties dialog box, or by executing SetMethodInfo in

the Dyalog APL Session, prior to creating a .NET assembly. The following declaration

statements may be used.

 Chapter 10: APLScript 219



Specifies that the function is callable. This statement applies only to a .NET class

or to a Web Page and is not applicable to a Web Service.



Specifies that the function is callable as a Web Method. This statement applies

only to a Web Service (.asmx).



Specifies that the function is a constructor for a new .NET class. This function

must appear between  and  statements and this applies only

to a Web Page (.aspx). See Defining Classes in APLScript for further details. A

constructor is called when you execute the  method in the class.



Declares a parameter to the method to have a given data type and name.  is

optional and may be any well-formed name that identifies the parameter. This

name will appear in the metadata and is made available to a client application as

information. It is therefore sensible to choose meaningful names. The names you

allocate to parameters have no other meaning and are not associated with the

names of local variables that you may choose to receive them. However, it is not a

bad idea to use the same local names as the public names of your parameters.



Declares the result of the method to have a given data type.

220 Microsoft .Net Interface

A .NET Class example
The following APLScript illustrates how you may create a .NET Class using APLScript.

The example class is the same as Example 1 in Chapter 5. The APLScript code, saved in the

file samples\aplclasses\aplclasses6.apl, is as follows:
















This APLScript code defines a namespace called . This simply acts as a

container and is there to establish a .NET namespace of the same name within the resulting

.NET assembly. Within  is defined a .NET class called  whose

base class is System.Object. This class has a single public method named ,

which takes a parameter called  whose data type is Int32, and returns an array of

Int32 as its result.

 Chapter 10: APLScript 221

The following command shows how aplclasses6.apl is compiled to a .NET

Assembly using the /t:library flag.

APLClasses>aplc /t:library aplclasses6.apl

Dyalog APLScript compiler Version 1.0

Copyright Dyadic Systems Limited 2002

APLClasses>

The next picture shows a view of the resulting aplclasses6.dll using ILDASM.

222 Microsoft .Net Interface

This .NET Class can be called from APL just like any other. For example:









Defining Properties
Properties are defined by  and  statements. A property

pertains to the class in which it is defined.



Declares a new property called  whose data type is . The latter may be

and valid .NET type.



Terminates a property definition block

Within a  block, you must define the accessors of the property. The accessors

specify the code that is associated with referencing and assigning the value of the property.

The accessor used to reference the value of the property is represented by a function named

 that is defined within the  block. The accessor used to assign a value to

the property is represented by a function named s that is defined within the 

block. No other function definitions or statements are allowed inside a  block.

The  function is used to retrieve the value of the property and must be a niladic result

returning function. The data type of its result must match the  specified by the

 statement. The  function is used to change the value of the property and

must be a monadic function with no result. The argument to the function will have the data

type  specified by the  statement. A property that contains a 

function but no  function is effectively a read-only property.

 Chapter 10: APLScript 223

The following APLScript, saved in the file

samples\aplclasses\aplclasses7.apl, shows how a property called

 can be added to the previous example. Within the  block

there are two functions defined called  and  which are used to reference and assign

a new value respectively. These functions have the fixed names and syntax specified for

property get and property set functions as described above.













 
 
 
 
 
 
 
 






224 Microsoft .Net Interface

The ILDASM view of the new aplclasses7.dll, with the addition of an

IndexOrigin property, is illustrated below.

For other examples of the use of property definitions, see The Components File Solution in

Chapter 11.

This .NET Class can be called from APL just like any other. For example:














 Chapter 10: APLScript 225

Indexers
An indexer is a member of a class that enables an instance of that class (an object) to be

indexed in the same way as an array, if the host language supports this feature. Languages

that support object indexing include C# and Visual Basic, but Dyalog APL does not itself

allow indexing to be used on objects. This means that although you can define an APL class

that exports an indexer, you can use the indexer from C# or Visual Basic, but not from APL.

Indexers are defined using  and  statements. An indexer block

pertains to the class within which it is defined, and there may be only one indexer defined

for a class.



Declares an indexer called  whose data type is Type. The latter may be and

valid .NET type and specifies the data type of the indexed element of the class.



Terminates an indexer definition block

An indexer must have at least one parameter that is defined by a 

statement within the  block. These parameters identify the element of the object

that is to be accessed.

Within a  block, you must define the accessors of the indexer. The accessors

specify the code that is associated with referencing and assigning an element of the object.

The accessor used to reference the value of an element is represented by a function named

 that is defined within the  block. The accessor used to assign a value to the

element is represented by a function named s that is defined within the 

block. No other function definitions or statements are allowed inside a  block.

The  function is used to retrieve an element of the object and must be a monadic result

returning function. The argument for the  function will contain the parameters defined

by the  statement for the indexer. The data type of its result must match

the  specified by the  statement. The  function is used to change an

element of the object and must be a monadic function with no result. The argument to the

 function will contain the parameters defined for the indexer, and an additional

parameter that specifies the new value of the element. This will have the data type 

specified by the  statement.

Note. The  statement in Dyalog APL is closely modelled on the indexer feature

in C# and employs similar syntax. If you use ILDASM to browse a .NET class containing an

indexer, you will see the indexer as the default property of that class, which is how it is

actually implemented. However, Dyadic has chosen to use the C# model which is also

supported by Visual Studio.

226 Microsoft .Net Interface

Creating ASP.NET Classes with APLScript
As mentioned previously, the original purpose of APLScript was to provide the ability to

write ASP.NET Web Pages and Web Services in Dyalog APL. Both these applications are

based upon script files.

Web Page Layout
An ASP.NET Web Page typically consists of a mixture of HTML and code written in a

scripting language. The script code is separated from the HTML by being embedded within

<script> and </script> tags and normally appears in the <head> </head> section of the

page. Only one block of script is allowed in a page. The script block normally consists of a

collection of functions, which are invoked by some event on the page, or on an element of

the page.

APLScript code starts with a statement:



and finishes with:



Typically, the APLScript code consists of callback functions that are attached to server-side

events on the page.

Web Service Layout
The first line in a Web Service script must be a declaration statement such as:



where ServiceName is an arbitrary name that identifies your Web Service.

The next statement must be a  statement that declares the name of the Web Service

and its Base Class from which it inherits. The base class will normally be

System.Web.Services.WebService. For example:



The last line in the script must be:



Although it may appear awkward to have to specify the name of your Web Service twice,

this is necessary because the two statements are being processed quite separately by

different software components. The first statement is processed by ASP.NET. When it sees

Language="apl", it then calls the Dyalog APLScript compiler, passing it the

remainder of the script file. The  statement tells the APLScript compiler the

name of the Web Service and its base class.  and  statements are

private directives to the APLScript compiler and are not relevant to ASP.NET.

 Chapter 10: APLScript 227

How APLScript is processed by ASP.NET
Like any other Web Page or Web Service, an APLScript file is processed by ASP.NET.

The first time ASP.NET processes a script file, it first performs a compilation process

whose output is a .NET assembly. ASP.NET then calls the code in this assembly to generate

the HTML (for a Web Page) or to run a method (for a Web Service).

ASP.NET associates the compiled assembly with the script file, and only recompiles it

if/when it has changed.

ASP.NET does not itself compile a script; it delegates this task to a specialised compiler

that is associated with the language declared in the script. This association is made in the

Machine.config file which is updated to associate Language="apl" with the

appropriate Dyalog APL process when Dyalog APL is installed.

The APLScript compiler is itself written in Dyalog APL.

Although the compilation process takes some time, it is typically only performed once, so

the performance of an APLScript Web Service or Web Page is not compromised. Once it

has been compiled, ASP.NET redirects all subsequent requests for an APLScript to its

compiled assembly.

Please note that the use of the word compile in this process does not imply that your APL

code is actually compiled into Microsoft Intermediate Language (MSIL). Although the

process does in fact generate some MSIL, your APL code will still be interpreted by the

Dyalog APL DLL engine at run-time. The word compile is used only to be consistent with

the messages displayed by ASP.NET when it first processes the script.

228 Microsoft .Net Interface

229

C H A P T E R 11

Visual Studio Integration

Introduction
Dyalog APL supports loose integration with Microsoft Visual Studio.NET. Loose

integration allows you to create Visual Studio projects using APLScript, and build .EXEs

and .DLLs using Visual Studio as the front-end tool.

Dyalog APL is not yet tightly integrated with Visual Studio, and does not, for example,

permit you to use the Visual Studio User Interface design tools.

The Dyalog APL installation program adds some sample APL applications in the

appropriate Visual Studio directory, which are described in this Chapter.

To begin with, the Hello World example shows you how to go about creating a .EXE

program file using Visual Studio and APLScript.

230 Microsoft .Net Interface

Hello World Example
This example illustrates what is involved how you go about creating an application program

(.exe) using APLScript with Visual Studio.

Creating an APL.EXE Project
Start Visual Studio and click New Project, or select File/New/Project from the menu bar.

Navigate to the Other Projects/Other Languages folder. This gives you a choice of two APL

templates as shown below.

Select APL.exe Project, and click OK.

 Chapter 11:Visual Studio Integration 231

Visual Studio will then create a new Project, in this case named Project1, containing a

single source code file named main.apl and a ReadMe.txt as shown below. The latter

contains instructions about using Visual Studio with Dyalog APL.

232 Microsoft .Net Interface

main.apl is an APLScript file containing a single comment as illustrated below. (Note

that, at the time of writing, there is a bug in the .NET Framework that causes the APL

comment sign to be displayed incorrectly, and you will need to change it.)

 Chapter 11:Visual Studio Integration 233

Select the APL keyboard (see Input Method Editor), and type your APLScript program. The

following example illustrates code to display a Hello World message box.

Notice that you must set  to start your application, but you do not have to explicitly call

 to end it.

The next step, re-saving main.apl, is only necessary because of a current limitation in

Visual Studo.NET (it forgets the Unicode encoding).

234 Microsoft .Net Interface

Choose Save main.apl As… from the File menu. This brings up the dialog box shown

below.

Now click the dropdown part of the Save button and choose Save with Encoding… from the

pop-up menu. This brings up the Advanced Save Options dialog illustrated below.

Choose Unicode - Codepage 1200 from the Encoding menu, then click OK.

 Chapter 11:Visual Studio Integration 235

The next step is to build the project. To do this, select Build from the Build menu.

Assuming that your code is correct, the following messages will appear in the Output

window.

The result of this process is an executable program named Project1.exe.

To run the program, select Debug/Start Without Debugging from the menu (or press

Ctrl+F5)

The program displays the dialog box shown below, waits for you to click OK, and then

exits.

236 Microsoft .Net Interface

Using an Existing Workspace
This next example takes the approach a stage further and illustrates how an application built

using Visual Studio can access an existing workspace.

Go to the Start page and click New Project.

Follow the steps described previously to create a new APL.EXE project (named "hello

world", and type the APLScript code shown below into main.apl.

Notice that it refers to a function  that is not itself defined in the script.

The DISPLAY function will be provided by the DISPLAY workspace, which you can add

to a project as follows.

 Chapter 11:Visual Studio Integration 237

In the Solution Explorer window, select Source Files and click the right button to bring up

the context menu.

Select Add, and then Add Existing Item…. This brings up a file selection dialog. Navigate to

c:\dyalog90\ws and choose display.dws.

238 Microsoft .Net Interface

This file is then added to the project as shown below.

The next stage is to add information to the Build Command Line for the project (this will

happen automatically in future versions). To do this, select the apl hello world project, click

the right button and select Properties. This brings up the apl hello world Property Pages

dialog. Select the NMake page (from the left pane) as shown below.

 Chapter 11:Visual Studio Integration 239

Click on Build Command Line, then click the "…" button to bring up the Build Command

Line editor.

Change the workspace reference from *.dws to c:\dyalog90\display.dws (or wherever it is

installed on your computer) as shown below. Then click OK.

Then select Build from the menu ,or press Ctrl+Shift+b, to build the project.

Run the program by selecting Debug/Start without Debugging or press Ctrl+F5. This

particular program sends its output to a console window as shown below.

240 Microsoft .Net Interface

The Component Files Solution
This example illustrates a Visual Studio Solution that combines an APL project with a

project written in another language, in this case C#. It illustrates how a C# program can read

and write APL component files.

As part of the installation of Dyalog APL, the Component Files solution sample is installed

in My Documents\Visual Studio Projects\ComponentFiles

Select Open Solution from the File menu, navigate to the ComponentFiles folder, open

it and then select ComponentFiles.sln.

The Solution Explorer window shows that there are 2 projects. The first, called cfiles, is

written in APL; the second, called ComponentFiles, is written in C#.

The cfiles project (APL)
The APLScript in main.apl is shown below. It defines a class named

ComponentFile. This has a single constructor function called  which takes the

name of an APL component file as its parameter. This function ties the file, and creates an

(internal) object called  that is an instance of the internal class,

FileComponents. This object is exposed via a property named Components. This is a

read-only property because only its  function has been defined. The ComponentFile

class provides an override for the ToString method which displays the name of the file

prefixed by the string Componentfile:. Finally, ComponentFile exposes a method called

Close that closes the file.

 Chapter 11:Visual Studio Integration 241










































242 Microsoft .Net Interface






























The internal class FileComponents is defined within the ComponentFile class and

is local to it. Its constructor function  simply remembers the tie number of the file in a

variable called tie. This variable is local to this particular instance of the

FileComponents object.

The FileComponents class exports a property named Count whose value is the

number of components in the file. This property is read-only because there is no 

function defined for it.

The FileComponents class exports a method named Add, which takes an object of type

Array, and appends it to the file.

The FileComponents class has a  section which specifies that an instance of

the class may be referenced using indexing, as if it were an array, if the host language

supports this feature. The C# code to do this is discussed later. The  statement

specifies the type and name of an element of the object-as-an-array; in this case the element

is called Item and is of type Array. The  statement of the indexer

 Chapter 11:Visual Studio Integration 243

specifies that the index itself is of type Int32. The  function takes both parameters;

the index and the (new) element value. The  function takes only the index.

244 Microsoft .Net Interface

The ComponentFiles project (C#)
The C# source code for Class1.cs, that employs the APL ComponentFile class, is

shown below.

The program first creates an instance of the ComponentFile class named file. Next, it

displays the contents of each component in the file using its DumpArray subroutine. Notice

that File.Components refers to a FileComponents object, and

File.Components[I] refers to the ith element of this object, namely the ith component

in the file. The program goes on to add a component using the Add method, and to replace

it using indexing.

using System;

namespace ComponentFiles

{

 class Class1

 {

 public static void Main()

 {

 ComponentFile file = new

ComponentFile(".\\cfiles.dcf");

 for (int i=1;i<=file.Components.Count;i++)

 DumpArray(file.Components[i]);

 Console.WriteLine(file.ToString());

 Console.Write("file.Count:");

 Console.WriteLine(file.Components.Count);

 Console.Write("file.Components[2]:");

 DumpArray(file.Components[2]);

 int[] New = new int[3];

 New[0]=1;

 New[1]=3;

 New[2]=5;

 Console.Write("Added component at ");

 int at = file.Components.Add(New);

 Console.WriteLine(at);

 Console.Write("New component contains:");

 DumpArray(file.Components[at]);

 New[0]=11;

 New[1]=33;

 New[2]=55;

 Console.Write("Overwritten component.Now contains:");

 file.Components[at]=New;

 DumpArray(file.Components[at]);

 file.Close();

 }

 Chapter 11:Visual Studio Integration 245

 static void DumpArray(Array a)

 {

 switch (a.Rank)

 {

 case 1:

 for (int i=0;i<a.Length;i++)

 {

 if (i!=0)

 Console.Write(",");

 Console.Write(a.GetValue(i));

 }

 break;

 }

 Console.WriteLine();

 }

 }

}

246 Microsoft .Net Interface

Running the Solution
Select Build from the menu, or press Ctrl+Shift+b, to build the project.

Run the program by selecting Debug/Start without Debugging or press Ctrl+F5. This

particular program sends its output to a console window as shown below.

Starting with a component file containing 3 components, the output from the program is

shown below.

 Chapter 11:Visual Studio Integration 247

249

C H A P T E R 12

Implementation Details

Introduction
dyalog10.dll is the Dyalog APL engine that hosts the execution of all .NET classes

that have been written in Dyalog APL, including APL Web Pages and APL Web Services.

dyalog10.dll provides the interface between client applications (such as ASP.NET)

and your APL code. It receives calls from client applications, and executes the appropriate

APL code. It also works the other way, providing the interface between your APL code and

any .NET classes that you may call.

dyalog10.dll is the full developer version of the DLL that contains the APL Session,

Editor, Tracer and so forth, and may be used to develop and debug an APL .NET class

while it is executing

dyalog10rt.dll is the re-distributable run-time version of dyalog10.dll and

contains no debugging facilities.

If there are several applications running on your computer that use APL .NET Classes, each

one will have a separate copy of dyalog10.dll loaded in its process space. However,

each application could be providing services to a number of users, and could be hosting a

number of different APL .NET classes.

The dyalog10.dll active workspace
dyalog10.dll has a workspace associated with it that contains all the APL objects it is

currently hosting.

The workspace will contain one or more namespaces associated with .NET AppDomains.

An AppDomain is a .NET Class that represents an application domain, which is an isolated

environment where applications execute. When .NET calls Dyalog APL to process an APL

class, it specifies the AppDomain in which it is to be executed. To maintain AppDomain

isolation and scope, Dyalog APL associates each different AppDomain with a namespace

whose name is that of the AppDomain, prefixed by .

250 Microsoft .Net Interface

Within each  namespace, there will be one or more namespaces associated

with the different Assemblies from which the APL classes have been loaded. These

namespaces are named by the Assembly name prefixed by . If the APL class is

a Web Page or a Web Service, the corresponding Assembly is created dynamically when the

page is first loaded. In this case, the name of the Assembly itself is manufactured by .NET.

Below the  namespace is a namespace that corresponds to the .NET

Namespace that represents the container of your class. If the APL class is a Web Page or

Web Service, this namespace is called . Finally, the namespace tree ends with a

namespace that represents the APL class. This will have the same name as the class. In the

case of a Web Page or Web Service, this is the name of the .aspx or .asmx file.

Note that in the manufactured namespace names, characters that would be invalid symbols

in a namespace name are replaced by underscores.

The following picture shows the namespace tree that exists in the dyalog10.dll

workspace when the aplfns1.exe program is executed. This example is discussed as

Example1 in Chapter 5. To cause the suspension, a stop has been set on .

In this case, there is a single AppDomain involved whose name, aplfns1.exe, is

specified by .NET. APL has made a corresponding namespace called

. Next, there is a namespace associated with the Assembly

aplclasses1, named Assembly_APLCLASSES1. Beneath this is a namespace called

 associated with the .NET Namespace of the same name. Finally, there is a

namespace called  that represents the APL class of that name. This

namespace contains all the code associated with the class; in this case, just a single function

called .

 Chaper 12:Implementation Details 251

The next picture shows the APL Session window that is displayed with execution suspended

on . Notice that the State Indicator in Dyalog APL has been extended to

display the entire .NET calling structure, and not just the APL stack. In this case, the State

Indicator shows that  was called from MainClass.Main, which combines the

class and method names specified in aplfns1.cs. Note that .NET calls are slightly

indented.

This extension to  applies also to DYALOG.EXE. For example, if you attach an APL

callback function to a Winforms Button object, the callback is executed as a result of a call

from the Button object back into the APL environment. The State Indicator will show the

entire call stack, including methods in the .NET components.

Notice too that  has been started on APL thread 1 which, in this case, is

associated with system thread 2844. If the client application were to call  on

multiple system threads, this would be reflected by multiple APL threads in the workspace.

This topic is discussed in further detail below.

The possibility for the client to execute code in several instances of an object at the same

time requires that each executing instance is separated from all the others. This is

implemented by having a separate unnamed instance namespace associated with every

client instance of the APL object. Each instance namespace starts off as a clone of the class

namespace (in this case ), but as the object is used, values of variables will

typically differ from one instance to another. Note that the instance namespaces are created

using a shallow copy. Functions and variables in the instance are effectively just pointers to

functions and variables in the class and do not use undue amounts of workspace. Only when

an instance variable changes value will it occupy additional space in the workspace.

252 Microsoft .Net Interface

Threading
The .NET Framework is inherently a multi-threaded environment. For example, ASP.NET

runs its own thread pool from which it allocates system threads to its clients. Calls from

ASP.NET into APL Web Pages and Web Services will typically be made from different

system threads. This means that APL will receive calls from .NET while it is processing a

previous call. The situation is further complicated when your write an APL Web Page that

calls an APL Web Service, both of which are being hosted by a single dyalog10.dll

inside ASP.NET. In these circumstances, ASP.NET may well allocate different system

threads to the .NET calls, which are made into the two separate APL objects. Although in

the first example (multiple clients) APL could theoretically impose its own queuing

mechanism for incoming calls, it cannot do so in the second case without causing a

deadlock situation.

It is important to remember that whether running as DYALOG.EXE, or as

dyalog10.dll, the Dyalog APL interpreter executes in a single system thread.

However, APL does provide the ability to run several APL threads at the same time. If you

are unfamiliar with APL threads, see Language Reference, Chapter 1 for an introduction to

this topic.

To resolve this situation, Dyalog APL automatically allocates APL threads to .NET system

threads and maintains a thread synchronisation table so that calls on the same system thread

are routed to the same APL thread, and vice versa. This is important because a GUI object

(cf. System.Winforms) is owned by the system thread that created it and can only be

accessed by that thread.

The way that system threads are allocated to APL threads differs between the case where

APL is running as the primary executable (DYALOG.EXE) or as a DLL hosted by another

program (dyalog10.dll). The latter is actually the simpler of the two and will be

considered first.

DYALOG10.DLL Threading
In this case, all calls into dyalog10.dll are initiated by Microsoft .NET.

When a .NET system thread first needs to run an APL function, APL starts a new APL

thread for it, and executes the function in that APL thread. For example, if the first call is a

request to create a new instance of an APL .NET object, its constructor function will be run

in APL thread 1. An entry is made in the internal thread table that associates the originating

system thread with APL thread 1. When the constructor function terminates, the APL thread

is retained so that it is available for a subsequent call on its associated system thread. In this

respect, the automatically created APL thread differs from an APL thread that was created

using the spawn operator  (See Language Reference).

 Chaper 12:Implementation Details 253

When a subsequent call comes in, APL locates the originating system thread in its internal

thread table, and runs the appropriate APL function in the corresponding APL thread. Once

again, when the function terminates, the APL thread is retained for future use. If a call

comes in on a new system thread, a new APL thread is created.

Notice that under normal circumstances, APL thread 0 is never used in dyalog10.dll. It

is only ever used if, during debugging, the APL programmer explicitly changes to thread 0

by executing  and then runs an expression.

Periodically, APL checks the existence of all of the system threads in the internal thread

table, and removes those entries that are no longer running. This prevents the situation

arising that all APL threads are in use.

DYALOG.EXE Threading
In these cases, all calls to Microsoft .NET are initiated by Dyalog APL. However, these

calls may well result in calls being made back from .NET into APL.

When you make a .NET call from APL thread 0, the .NET call is run on the same system

thread that is running APL itself.

When you make a .NET call from any other APL thread, the .NET call is run on a different

system thread. Once again, the correspondence between the APL thread number and the

associated system thread is maintained (for the duration of the APL thread) so that there are

no thread/GUI ownership problems. Furthermore, APL callbacks invoked by .NET calls

back into APL will automatically be routed to the appropriate APL thread. Notice that,

unlike a call to a DLL via , there is no way to control whether or not the system uses a

different system thread for a .NET call. It will always do so if called from an APL thread

other than APL thread 0.

Thread Switching
Dyalog APL will potentially thread switch, i.e. switch execution from one APL thread to

another, at the start of any line of APL code. In addition, Dyalog APL will potentially

thread switch when a .Net method is called or when a .Net property is referenced or

assigned a value. If the .NET call accesses a relatively slow device, such as a disk or the

internet, this feature can improve overall throughput by allowing other APL code while a

.NET call is waiting. On a multi-processor computer, APL may truly execute in parallel

with the .NET code.

Note that when running DYALOG.EXE, .NET calls made from APL thread 0 will prevent

any switching between APL threads. This is because the .NET code is being executed in the

same system thread as APL itself. If you want to use APL multi-threading in conjunction

with .NET calls, it is therefore advisable to perform all of the .NET calls from threads other

than APL thread 0.

254 Microsoft .Net Interface

Debugging an APL .NET Class
All APL.NET objects are executed by the Dyalog APL dynamic link library

dyalog10.dll or dyalog10rt.dll. The former contains all of the development and

debug facilities of the APL Session, including the Editors and Tracer. The latter contains no

debugging facilities at all. You choose to which of the two DLLs your APL .NET class is

bound, when you create the class.

If an APL .NET object that is bound to dyalog10.dll generates an untrapped APL error

(such as a ) and the client application is configured so that it is allowed to

interact with the desktop, the APL code will suspend and the APL Session window will be

displayed. Otherwise, it will throw an exception.

If an APL .NET object that is bound to dyalog10rt.dll generates an untrapped APL

error it will throw an exception.

Specifying the DLL
There are a number of different ways that you choose to which of the two DLLs your

APL.NET class will be bound. Note that the appropriate DLL must be available when the

class is subsequently invoked. If the DLL to which the APL .NET class is bound is not

present, it will throw an exception.

If you build a .NET class from a workspace using the File/Export menu item, you use the

Runtime application checkbox. If Runtime application is unchecked, the .NET Class will be

bound to dyalog10.dll. If Runtime application is checked, the .NET Class will be

bound to dyalog10rt.dll.

If you build a .NET class using the APLScript compiler, it will by default be bound to

dyalog10.dll. If you specify the /runtime flag, it will be bound to

dyalog10rt.dll.

If your APL .NET class is a Web Page or a Web Service, you specify to which of the two

DLLs it will be bound using the Debug attribute. This is specified in the opening

declaration statement in the .aspx, .asax or .asmx file. If the statement specifies

"Debug=true", the Web Page or Web Service will be bound to dyalog10.dll. If it

specifies "Debug=false", the Web Page or Web Service will be bound to

dyalog10rt.dll.

If you omit the Debug= attribute in your Web page, the value will be determined from the

various .NET config files on your computer.

 Chaper 12:Implementation Details 255

Forcing a suspension
If an APL error occurs in an APL .NET object, a suspension will occur and the Session will

be available for debugging. But what if you want to force this to happen so that you can

Trace your code and see what is happening?

If your APL class is built directly from a workspace, you can force a suspension by setting

stops in your code before using Export to build the DLL. If your class is a Web Page or

Web Service where the code is contained in a workspace using the workspace behind

technique (See Chapter 8), you can set stops in this workspace before you  it.

If your APL class is defined entirely in a Web Page, Web Service, or an APLScript file, the

only way to set a break point is to insert a line that sets a stop explicitly using . It is

essential that this line appears after the definition of the function in the script. For example,

to set a stop in the Intro\intro1.aspx example discussed in Chapter 8, the script

section could be as follows:














As an alternative, you can always insert a deliberate error into your code!

Finally, you can usually force a suspension by generating a Weak Interrupt. This is done

from the pop-up menu on the APL icon in the System Tray that is associated with

dyalog10.dll. Note that selecting Weak Interrupt from this menu will not have an

immediate effect, but it sets a flag that will cause Dyalog APL to suspend when it next

executes a line of APL code. You will need to activate your object in some way, e.g. by

calling a method, for this to occur. Note that this technique may not work if

dyalog10.dll is busy because a thread switch automatically resets the Weak Interrupt

flag. In these circumstances, try again.

The run-time version of the Dyalog APL DLL does not display an icon in the System Tray.

256 Microsoft .Net Interface

Using the Session, Editor and Tracer
When an APL.NET object suspends execution, all other active APL .NET objects bound to

dyalog10.dll that are currently being executed by the same client application will also

suspend. Furthermore, all the classes currently being hosted by dyalog10.dll are

visible to the APL developer whether active (an instance is currently being executed) or not.

Note that if a client application, such as ASP.NET, is also hosting APL .NET objects bound

to the runtime DLL, these objects will be hosted in a separate workspace attached to

dyalog10rt.dll and will not be visible to the developer.

Debugging a running APL.NET object is substantially the same process as debugging a

stand-alone multi-threaded APL application. However, there are some important things to

remember.

Firstly, the namespace structure above your APL class should be treated as being inviolate.

There is nothing to prevent you from deleting namespaces, renaming namespaces, or

creating new ones in the workspace. However, you do so at your peril!

Similarly, you should not alter, delete or rename any functions that have been automatically

generated on your behalf by the APLScript compiler. These functions are also inviolate.

If execution in dyalog10.dll is suspended, you may not execute  or .

You may execute  or , but if you do so, the client application will terminate. If

you attempt to close the APL Session window, you will be warned that this will terminate

the client application and you may cancel the operation or continue (and exit).

If you fix a problem in a suspended function and then press Resume or Continue (Tracer) or

execute a branch, and the execution of the currently invoked method succeeds, you will be

left with an empty State Indicator (assuming that no other threads are actively involved).

The Dyalog APL DLL is at this stage idle, waiting for the next client request and the State

Indicator will be empty.

If, at this point, you close the APL Session window, a dialog box will give you the option of

terminating the (client) application, or simply hiding the APL Session Window. If you

execute  or  the client application will terminate.

Note that in the discussion above, a reference to terminating the client application means

that APL executes Application.Exit(). This may cause the application to terminate

cleanly (as with ASP.NET) or it may cause it to crash.

257

Index





in APLScript 193

 6, 21, 29, 64, 132

.

.NET Classes

exploring 9

using 7

writing 35

.NET namespaces ... 5

A

Access:Constructor statement 197

accessors ... 200, 203

ACTFNS workspace 141

Active Server Pages See Chapter 5

adding .NET objects 16

APL language extensions

for .NET objects 16

aplc.exe ... 188

APLScript See Chapter 10

Access:Constructor statement 196, 197

Access:Public statement 79, 134, 197

Access:WebMethod statement 197

Class statement 196

Class statement 139, 204

compiler 188, 205

copying from workspaces 191

defining classes 196

defining properties 200

editing 189

EndClass statement 139, 196, 204

EndIndexer statement 203

EndNamespace statement 194

EndProperty statement 200

example of a .NET Class 198

example of a console application 193

example of a GUI application 192

Implements statement 79

importing code 190

Indexer statement 203, 220

layout 191

Namespace statement 194

Parameter statement 79

ParameterList statement 134, 197

Property statement 200

Returns statement 79, 197

specifying namespaces 194

Web Page 204

Web Service 204

AppDomain ... 225

Application.Run method 33

Application_End method 93

Application_Start method 93

ASP.NET.config files 93

assemblies

browsing 123

creating 35

exploring 9

Assembly class .. 24

AsyncCallback class 127

asynchronous use

of a Web Service 125

AutoPostback property 137

B

base class 5, 23, 35, 42, 78, 86, 124, 136, 138,

139, 160, 196, 198, 204

BRIDGE.DLL ... 3, 24

Browse .Net Assembly dialog box 10

Button class ... 29, 166

ByRef class .. 24

C

C# 40, 45, 46, 50, 57, 61, 63

child controls

of a custom control 165

class constructor .. 13

Class Methods ... 16

Class statement 139, 196, 204

code behind ... 138

258 Microsoft .Net Interface

Common Language Runtime 1

Common Operators ... 16

Common Type System 1, 5

comparing .NET objects 16

compositional control 164

config files

for ASP.NET 93

constructor .. 29, 42, 43

constructor methods See Constructors

constructor overloading 51

Constructor statement 196

Constructors .. 8

Constructors folder .. 13

Control class.. 159, 178

ControlCollection class 166

Convert class ... 23, 150

CreateChildControls method 165

creating GUI objects 27

custom control ... 164

custom controls ... 159

D

DataGrid class ... 156

examples See WINFORMS.workspace

DataGrid control ... 144

debugging .. 47

Directory class .. 19

DropDownList class 135

DYADIC.DLL .. 3

DYALOG APL.DLL 3, 36, 81, 188

DYALOG APL.RUNTIME.DLL.............. 3, 225

Dyalog namespace .. 24

E

EndClass statement 139, 196, 204

enumeration ... 30, 31

enumerations ... 23

ErrorMessage property 154

EventArgs class ... 147

exception ... 18, 48

Exception class .. 18

Export ... 36, 44

F

File class ... 19

FileStream class .. 26

Font class .. 24

FontStyle class .. 24

Form.ControlCollection class 31

FormBorderStyle class 23, 30

FormStartPosition class 30

G

GDIPlus workspace .. 34

GetPostBackEventReference method ... 177, 185

GetType method ... 9

global.asax file .. 93

GOLF function .. 34, 119

GolfService

calling from C# 109

testing from a browser 103

using from Dyalog APL 119

writing 92

GraphicsUnit class .. 24

GUI objects ... 27

H

hidden fields ... 132

HtmlTextWriter class 176

HttpWebRequest class 21

HttpWebResponse class 22

I
IIS ... See Chapter 5

application 68

virtual directory 68, 69, 70, 75, 77, 81, 82, 85,

110, 130, 162, 189

ILDASM 9, 199, 202, 203

INamingContainer Interface 165

Indexer statement .. 220

Indexers .. 203

Input Method Editor (IME) 187, 189

Interfaces .. 65

Interfaces property .. 65

intrinsic controls 131, 132

IpostBackDataHandler Interface 179

IPostBackDataHandler Interface 172

 Index 259

IPostBackEventHandler Interface 172

IsPostBack property 136, 147

IsValid property .. 150

J

JavaScript ... 177, 185

L

LiteralControl class 166

LoadPostData method 179

LoanService

exploring 123

testing from a browser 87

using asynchronously 125

using from Dyalog APL 118

writing 85

M

MailMessage class .. 20

MakeProxy function 117, 119

manipulating files.. 19

MAXWS parameter 188

Metadata ... 9, 11, 123

method overloading 58, 79

method signature ... 134

Methods folder .. 15

Microsoft Internet Information Services See

Chapter 5

modal dialog box 28, 29

N

namespace reference array expansion 19, 119

NET classes See Chapter 2

NetType object 35, 65, 141, 165, 172

New method 7, 8, 13, 29, 196, 197

nGetVersion method 24

non-modal Forms .. 33

Notepad... 187, 189

O

object hierarchy .. 28



in APLScript 195

 6, 21, 29, 65, 134

OnPreRender method 178

OnServerValidate event 153

Overloading ... 8

overriding .. 35

P

Page_Load event ... 144

Page_Load event ... 135

Page_Load function 145, 146

Page_Load method .. 144

ParameterList statement 197

Point class .. 28, 29

Pointers .. 24

positioning Forms and controls 28

post back 132, 146, 166, 179

post back events... 181

private .. 13, 170

PROJ workspace.. 141

properties

defining 168

property get function 79, 172, 173

property set function 79, 172, 174

Properties folder .. 14

proxy class 34, 117, 118, 119

ProxyData class ... 21

R

RadioButton control 154

RadioButtonList control 155

RaisePostBackEvent method 181

RaisePostDataChangedEvent method 179

RegisterPostBackScript method 178, 185

Render method 160, 175, 176, 185

RequiredFeildValidator control 149

RequiredFieldValidator control 153

Returns statement .. 197

runat attribute .. 131

S

Sending an eMail ... 20

server controls ... 131

Size class ... 28

sizing Forms and controls 28

SmtpMail class .. 20

260 Microsoft .Net Interface

State Indicator ... 227

Stream class .. 22

StreamReader class ... 22

subtracting .NET objects 16

T

TestAsyncLoan function 126

TETRIS workspace ... 34

TextBox class .. 166

thread switching .. 229

ToDouble method ... 150

ToInt32 method ... 152

ToString method ... 7, 9

U

Unicode ... 187

Unicode font.. 189

UnicodeToClipboard parameter 190

URI class ... 21

V

Validate method .. 155

Validation

of ASP.NET web pages 149

ValidationSummary control 149, 157

virtual directory See IIS virtual directory

Visual Studio

Hello World example 208

Visual Studio.NET

and APLScript 207

W

Weak Interrupt

in dyalog10.dll 231

web pages

code behind 138

custom controls 159

writing See Chapter 8

web scraping ... 21

Web Services .. 2

asynchronous use 125

WEBSERVICES workspace 34, 93, 117, 119

WFGOLF function .. 34

Windows.Forms See Chapter 3

WINFORMS workspace 27, 33

Workspace Explorer

browsing assemblies 123

WSDL.EXE .. 117

